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Updated response prediction

RESEARCH OBJECTIVES – A PHYSICS-CONSTRAINED DIGITAL TWIN 
MODEL 

Main objective is to develop a physics-
constrained digital twin of the system of 
interest that is a hybrid data-driven, physics-
based reduced-order model. 

Desired properties of the digital twin: 

• Data-driven: no need to specify model 
parameters or model structure.

• Physics-constrained: network architecture 
and data flow follows a physics-based 
structure provided by Hamiltonian 
mechanics.

• Self-aware: trained model is able to 
recognize domain shifts in new inputs 
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PHYSICS-CONSTRAINED ML FRAMEWORK 

Why ML? Speed, Differentiability, Learn 
Unknown Physics, Distill Reusable Modules

The physical constraints chosen are based on 
Hamiltonian mechanics. This framework was 
chosen to allow flexibility in the model so that 
it can handle nonlinearities, and Rayleigh 
dissipation models (i.e., proportional to 
velocity). 

Because the Euler-Lagrange equations of 
motion are based on the energy of the 
system, which are scalar fields, this approach 
is more computationally efficient than having 
to construct full state matrices. 

A consequence of choosing Hamiltonian 
mechanics is that the system has to be solved 
in generalized coordinates. In general, order 
reduction methods do not result in a 
generalized coordinate set, so an 
autoencoder is used to perform coordinate 
transformation. 

Euler-Lagrange equations of motion

Newtonian form of equations of motion

Equivalent

Other physics-based pROMs can be integrated as 
inductive bias kernels to the network. 



NEURAL NETWORK ENSEMBLE ARCHITECTURE
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PHYSICS-CONSTRAINED ML FRAMEWORK 

Numerics-informed

Pseudo-inverse



MULTILAYER PERCEPTRON NETWORKS FOR ENERGY 

Energy networks
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EXAMPLE: 2DOF OSCILLATOR WITH CUBIC NONLINEARITY
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MLP Architecture:
• 4 layers
• 8 neurons
• Swish activation

Training:
• Adam optimizer, 

~80,000 epochs



NEURAL NETWORK TRAINING DETAILS

Trained with a single realization and tested 
with different initial conditions and/or loads. 

Training took, on average, 60 minutes on 1 
CPU, including code compilation. 

Typical training 
behavior observed



RESULTS OF A SIMPLE 2DOF OSCILLATOR

*Trained with a single realization and tested with different initial conditions and/or loads. Training took, on average, ~60 minutes on 1 CPU.  

Linear Undamped 
Unforced

Linear Damped
Unforced

Nonlinear k 
Nonlinear c  
Unforced

Linear Damped 
Forced

Nonlinear Damped
Forced

Runtime per 
evaluation (s)

3.9E-5 4.1E-5 1.9E-4 1.7E-4 2.3E-4

Displacement 
MSE

1.0E-9 4.2E-8 2.4E-11 5.6E-7 1.5E-6

Phase space



NONLINEAR TRAINED NEURAL NETWORK CAPTURES BIFURCATION

Model was trained with a single example from random vibration response. The trained 
model was able to capture nonlinear behavior at larger amplitudes than the training data. 

*trained with 0.08 forcing amplitude

Still some discrepancies present due to this 
region not being explored at all during training. 



DISCREPANCIES IN ENERGY PREDICTIONS

Linear Damped Forced Nonlinear Damped Forced



WHAT IS THE NETWORK LEARNING?
A. Free-form

B. General form of the energy is prescribed

C. General form of the energy is prescribed + 
linear stiffness parameter is prescribed

This case reproduces energies and eigenvalues exactly. 

Even though energy terms are not 
reconstructed exactly, the state space 
representation (M-1K) learned is the 

same for all systems. 



WHAT IS THE NETWORK LEARNING?

C. General form of the energy is prescribed + 
linear stiffness parameter is prescribed

This case reproduces energies and eigenvalues exactly. 

Even though energy terms are not 
reconstructed exactly, the state space 
representation (M-1K) learned is the 

same for all systems. 

Visualization of M and K rotation

A. 
C. 



WHAT IF SYSTEM IS NOT IN GENERALIZED COORDINATES?

Start with Modal Coordinates, and find transformation to another set of 
generalized coordinates. 



AUTOENCODER LEARNS MODAL TRANSFORMATION 
Encoded response

Decoded response

Encoded external force

Network is robust to different 
forcing functions



LEVERAGING THE NETWORK TO IDENTIFY SYSTEM CHANGES
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CONCLUSION AND FUTURE WORK

A framework for data-driven, physics-
constrained, numerics-informed neural 
networks was established based on 
Hamiltonian mechanics. 
The framework combines physical and 
mathematical structure to regularize the 
network and provide a physically meaningful 
parameterization. 
This work demonstrates that the framework can 
be used to recover the general system state 
dynamics from data and feasibility of using ML 
model weight shifting for domain shift detection 
This research represents the first step towards 
a predictive ML digital twin model that can be 
incorporated in a general structural health 
monitoring system. 

*This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not 
necessarily represent the views of the U.S. Department of Energy or the United States Government. Sandia National Laboratories is a multimission 
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BONUS SLIDES



LEVERAGING THE NETWORK TO IDENTIFY SYSTEM CHANGES
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LEVERAGING THE NETWORK TO IDENTIFY SYSTEM CHANGES
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Wider distribution in 
Rayleigh damping 
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ADDING EXPLICIT PARAMETRIC DEPENDENCE TO THE NETWORKS
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DO THE NETWORKS PROPAGATE PARAMETRIC UNCERTAINTY?
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Self-organizing map weights for random sample collection


