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2 I Motivation

Tuning (calibration) state-of-the-art

Time-consuming (6-12 months)

Automated tuning (goal)

Less than 6-12 months

Deterministic: one set of “tuned”
parameters per model release

Probabilistic: a distribution of parameters
per model release OR observational target

Non-reproducible

Reproducible

Computationally expensive

Computationally expensive




3 | Goals and motivating questions

1. Build a surrogate that maps uncertain model parameters to spatial fields instead of to a cost
function

o Spatial fields build intuition and enable users to customize field-dependent cost functions
2. Do it faster than the experts

oGoals: '
i

oMotivating questions

1. How many climate model simulations (samples) are needed to create a surrogate of |
a given accuracy? |

2. What is an achievable surrogate spatial field dimensionality and resolution?
o E.g. 1-D, coarsened 2-D, 2-D?

3. Should the multi-objective targets each get their own surrogate? Or should all targets
be combined into one surrogate?

4. What can we learn from ultra-low resolution E3SM (ne4) to guide our surrogate
construction for the low-resolution E3SM (ne30)? C/S
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+ I Surrogate construction

oOur approaches to calibration require surrogate models that map the feature space,
E3SM Atmosphere Model (EAM) parameters x, to a spatially varying climatological
output field (a multi-output field or image).

oln this work, we explore data-driven reduced order modeling (ROM) and ML based
surrogates.

o Combine dimension reduction with classical ML techniques (unsupervised + supervised).

oThese surrogates need to be multi-target, and multi-objective (>1 field Qols)

EAM spatial fields

surrogate
EAM parameters —>




ROM based surrogate construction architecture

E3SM ensemble data
ld)

1. Dimension reduction (DR) of the target data

Y (x) to a low-dimensional latent space. o ,
(1) PCA Dimension Reduction or NN autoencoders

2. Build machine learning surrogates for each
latent space dimension (this is where most of our
effort is spent).

Surrogate prediction
~-1

3. Finally, we map the latent space surrogate
values back to the original space to get our
surrogate prediction Y (x) .

(3) Inverse transform
latent space

‘(2) Build surrogates for latent space

Esm

E3SM ensemble tuning parameters Bt oy Ercie



E3SMv2 simulations

1. Clone case (Dakota) [1]
Spi 2. Select new parameters (Dakota)
pinup ‘ 3. Submit in bundles
@ i :
I I |
1 11 21
Simulation Year

Config. Nodes per | Sims. per SYPD per
bundle bundle bundle

Ultra-low ~7.5° F2010 500 5100
resolution
(ULR)*

Low ~1° F2010 200 10 100 10 95
resolution
(LR)

[1] Adams et al., 2014 QJ e

*E3SM ULR is not tuned or scientifically validated Earth System Mode



7 1| E3SMv2 sampled atm. parameters

Field Coordinates

TREFHT lat x lon 24x48 24x48, 129x256
o Constant for disspation 1 | 120 o PRECT lat x lon 24x48  24x48, 129x256
of variance of mean(w’?) SWCF lat x lon 24x48 24x48, 129x256
Constant of the width of LWCF lat x lon 24x48  24x48, 129x256
clubb_gamma_coef PDF 0.1_0.32_0.5
in w coordinate PSL lat x lon 24x48 24x48, 129x256
Time scale for FLNT lat x lon 24x48 24x48, 129x256
Zzmconv_tau consumption rate 1800__3600__14400
il FSNT lat x lon 24x48  24x48, 129x256
2500 lat x lon 24x48 24x48, 129x256
Parcel fractional mass o3 0703 - U200 lat x lon 24x48  24x48, 129x256
zmconv_dmpdz entrainment 01e-3 —
rate ’ U850 lat x lon 24x48 24x48, 129x256
RELHUM lat x lev 24x37 24x37, 129x37
micro_mg_ai Efétgpieed parameter for 35, 560 1400
T lat x lev 24x37 24x37, 129x37
U lat x lev 24x37 24x37, 129x37

[2] Qian et al., 2018



s | E3SM ne4 results

What's the best ML method for fitting the latent space?

What's the best target type — single objective (one for each climatology) or multi-
objective (all of them combined)?

How many climate model samples do we need to build a good surrogate?

What can we learn from the ne4 model to guide our surrogate approach for ne307?



MLP vs Polynomial-based ROM surrogates

We fit each of our 13 targets using
the ROM-based ML surrogates

We used k-fold cross-validation
with hyper-parameter tuning for
our model selection strategy.

Our metric for comparison was the
average R2scores (computed for
each latitude-longitude coordinate
and averaged over the globe)

Takeaway: Polynomials performed
better than MLP approaches for
fitting the latent space.

SWCEF

LWCF 4

PRECT -

FLNT 4

FSNT 4

PSL -

TREFHT -

U200 -

U850 -

Z500 1

RELHUM 4

T

IE

PCE vs MLP model accuracy

&8 & ROM-mip pred ncomp=auto

dummy pred |
@ ROM-pce pred ncomp=auto
i
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10 ‘ Single objective models vs multi-objective models

perc. variance captured

=
o

o
o

-
=]
L

12 PCA components captures >=
90% of the variance in each field.

Cumulative percent variance captured by PCA

—— all_fields

o 5 10 15 20 25 30
pca component

perc. variance captured
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Cumulative percent variance captured by PCA
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- LWCF U850
—+— PRECT —— Z500
—e— FLNT ~— RELHUM
—=— FSNT +— T
—=— PSL —e— U

- TREFHT

5 10 15 20 25 30
pca component

15 PCA components captures >=
90% of the variance in the multi-
objective field.

E’SM
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11

o As far as surrogate accuracy for the
same number of components, there
is no clear winner.

o Multi-objective is preferred for
efficiency and easier tuning of latent
dimension dimensions. - only have
to build one surrogate but need
scaling to combine the vector

o Multi-objective is 13x faster to train
since we only need a single model
for all targets, but we lose some
accuracy in some, while we gain in
others.
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12

How much data is enough?

The learning curve shows the gap
between the training and testing (cross-
validation) scores for different fractions
of the data.

Even with 400 training points, there is a
significant gap between the training and
testing scores, showing that more
training data would be useful.

o Also, the curve seems to level off
after 200-300 training points
indicating that one obtains a
smaller return-on-investment
beyond this.

We used the ne4 study to inform us
about the data requirements for the
ne30.

Score

PCE Learning Curve

0.75 -

0.70 -

0.65 A

0.60 ~

0.35 ~

0.50 -

0.45 -

0.40 -

—s— Training score
—e— Cross-validation score

0.35
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Bayesian calibration

oOnce the surrogate is constructed, we can begin
performing more computationally intensive tuning
and/or Bayesian calibration.

o The top right figure shows the error surface of the
surrogate which is a smooth approximation to the data
shown in green. The surrogate provides a sort-of road
map to the location of the most likely set(s) of tuning
parameters.

oThe idea is to use the surrogate and set of
observations to find the optimal set(s) of EAM
tuning parameters such that discrepancy between
the surrogate and the observations is minimized (in
some sense, e.g., squared error loss).

oWith the Bayesian approach, instead of a single set
of parameters, we can obtain a probability density
on the parameters indicated the most likely set of
parameters and their correlations (see the joint
density plot to the bottom right).

Surrogate for SWCF error

=== global opt

surrogate
simulation

1bn
------




4 I Summary and future work

What's the best ML method for fitting the latent space?
> A: Polynomials seem to the winner.
I

What's the best target type — single objective (one for each climatology) or multi-objective (all
of them combined)?

> There is no clear winner in terms of accuracy, but multi-objective is significantly more efficients (13x
faster for 13 targets)

How many climate model samples do we need to build a good surrogate?

o Even 400-500 samples is probably not enough for the ne4 model. 200-300 samples seems to
provide a good start for the ne30.

What can we learn from the ne4 model to guide our surrogate approach for ne307?

- What we haven'’t shown is that with a ROM-based PCE model, we can easily compute Sobol
parameter sensitivities, for which there seems to be consistency between the ne4 and ne30 models.

Next Steps?

> Using the ne4 studies as a guide and testbed for our ROM-based ML methods, we are currently
repeating the experiments with roughly 200 ne30 samples.

o |nitial results are very interesting and show that there is going to be a significant hurdle going from -
ne4 and ne30 in terms of model complexity and achieving similar levels of accuracy. ESSM
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