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Motivation

Thermochemical process occurring in shock-heated air
are poorly understood.

Understanding is critical to many applications including:
* Hypersonic vehicles

* Spacecraft re-entry

* Explosive blasts

High Temperature Shock Tube (HST) at Sandia National
Laboratories:

* Free-piston shock tube generates strong shocks
for studying extreme conditions
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Thermochemical process occurring in shock-heated air
are poorly understood.

Understanding is critical to many applications including:
* Hypersonic vehicles

* Spacecraft re-entry

* Explosive blasts

High Temperature Shock Tube (HST) at Sandia National
Laboratories:
* Free-piston shock tube generates strong shocks
for studying extreme conditions
* Reservoir for shock tunnel (HST-R)

The rapid heating and
pressurization in the free-piston
driver produces very strong shocks.




Motivation

Thermochemical process occurring in shock-heated air HST_R
are poorly understood.

Understanding is critical to many applications including:
* Hypersonic vehicles

* Spacecraft re-entry

* Explosive blasts

High Temperature Shock Tube (HST) at Sandia National
Laboratories:
* Free-piston shock tube generates strong shocks
for studying extreme conditions
* Reservoir for shock tunnel (HST-R)

Need: diagnostics capable of characterizing shock heated
air at high-T (>3000 K) with near MHz resolution

1. Characterize operation of the HST

2. Measurements in shock heated air in conditions
relevant to explosive blasts

Nozzle and Test Section |
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Motivation and Goal

HST-R

Target Species: Nitric Oxide (NO)

Goal: Design a LAS diagnostic capable of

near-MHz measurements of T, P, and NO

mole fraction in shock heated air within the

HST.

* Temperatures ranging from ~3000 K to
5500K

* Pressures from ~1to 10 atm

Nozzle and Test Section |
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Technical Approach: Scanned-DA
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Technical Approach: m-FID

Beer-Lambert Law
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Modified molecular free-induction decay signal (m-FID)
15¢ 0.1r ' 2
— o from polyfit —Measured m-FID | Measured Absorbance
—1 . i - - Best-Fit m-FID 10 |'| - - Best-Fit
t =] 0.05+ i —f [Baseline Error] x 10 I ——Baseline Error x 10
—Measured Absorbance x 0.1 @© I\ [\,‘ || \
= ol | 1 \ A\ Py _— o 08F |\
= N f ‘\/ h\f; 8 |I I|
@ r \}N @ 06 I
1 ©-005- £ [
S = g 04 / Il'a
© © 01F m-FID signal isolated from < 50l / \\
3 2 estimated error in baseline (i.e., / // \
5 o -0.15F | ( 0) ob — me_w/
— | |
| 3 | | 1 T I T I T 1 ] 2 I I i
0.5 390 0 ' 05 1 15 2 25 3 '35 2o 08 07
E" 2 t1 t2 © 2r
5 =]
o o°
%ol g o ”“’mew
e g W/W/\[\/\/\/\M 8
U i i L 1 | E E
2059.6 2059.8 2060 2060.2 2060.4 2060.6 = : ' : : : : s 05 0.2
S : 5 ) 2

]
1.5 2 2.5 3 3.5

=]
=]
w
Y

Frequency, cm’’

Time, ns Relatwe Frequency cm’’
Best-fit m-FID signal from I, & simulated o Primary benefit:
I' _ Insensitive to errors PERGE=
I Gas Propertles in the baseline Purdue Energetics

Figures: Goldenstein et al., Applied Optics, 2020 Research Center



0.12

Absorbance
o o
o o o
(o)] (0] —_

o
o
Y

0.02

Technical Approach: Line Selection

Fundamentallbands of NO
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- Key Advantages:

1. Large line strengths
2. Minimal interference

- 3. Excellent temperature

sensitivity

Near-optimal spacing

. Accessible via
commercial QCL with
rapid tuning
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Experimental Setup

HST Data Acquisition
O Enables 500 kHz scan frequency
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Overcomes bandwidth
limitations of laser controller

Bias-tee combines DC current (from controller)
with modulation (from function generator)




Post Processing
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Results: Time History

/ Dashed lines: Prediction from NASA CEA shock tool

Key Findings:

1.

Pressure has reasonable agreement with
PCBs and follows the same trend in time.
500 kHz measurement rate enables
observation of temporal evolution to
equilibrium.

Temperature agrees well with NASA CEA.
Mole Fraction agrees well with equilibrium
calculation.
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Results: Time-Averaged Values

Temperature Pressure Xyno
6000 ‘ , 14 r ' w , . 1.5 ‘
— O Incident Shock O Incident Shock X O Incident Shock
= X Reflected Shock ‘E 12| X Reflected Shock ] X Reflected Shock
< 5000 | ) 3125
© Q40" o X
o 2 X s 1% X
o & Z X O
£ 4000 X S g X qm-=—mmmc - N
0o w
= - 2 ° 8o
@ S 6 <P g X
@ 3000 2 < X 075
o Q 4! ]
< p=
2000 ‘ * ' 2 L l J ' ' 0.5 ‘
2000 3000 4000 5000 6000 2 4 6 8 10 12 14 2000 3000 4000 5000 6000
CEA Temperature (K) PCB Pressure (atm) Measured Temperature (K)
Temperature has excellent agreement Pressure in close agreement with PCBs. Mole fraction of NO in good agreement
with NASA CEA predictions Differences may be due to: with equilibrium
« Biasin PCBs Differences may be due to:
« Error in collisional broadening model » Sensitivity of equilibrium calcto T
and P

» Propagating errors from measured P



Conclusion

* Designed and demonstrated a diagnostic capable of measuring
temperature, pressure, and NO mole fraction at 500 kHz in shock heated
air
« Demonstrated for T = 2500 to 5500 Kand P = 3 to 12 atm

* Diagnostic was able to well resolve chemical non-equilibrium behind the
shock and the temporal evolution to equilibrium

* Measured gas properties generally in good agreement with other
predicted/measured values (e.g., NASA CEA, PCBs, etc.)

PERGE=

Purdue Energetics
Research Center




; Acknowledgements

Funding support:

* Laboratory Directed Research and Development Program at Sandia
National Laboratories

* NASA Space Technology Research Fellowship

Special thanks to:
* Anil Nair and Mitchell Spearrin (ULCA)

Sandia
National
Laboratories

d
PERGE=
d N tional La b ator multimission laboratory managed and operated by National Technology &

Sa .
Engineering s lutio fS d LLC h IIy ned subs d ry of Honeywell International Inc., for the U.S. Purdue Energeftics
Depa rtm nt of Ene gy s Natio! IN clear Security Adm istration under contract DE-NA0003525. Research Center




