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Summary2

 Model validation was performed for a research structure 
subjected to combined inertial acceleration and vibration 
environments (vibrafuge)

 SIERRA coupled analysis was conducted to evaluate the 
effect of centrifuge acceleration combined with random 
vibration
 Preloading the cantilever beam structure using SIERRA/SM
 Updating the contact state, and evaluating the preloaded 

response using SIERRA/SD

 Results were validated with vibrafuge testing using 
piezoelectric actuators on a centrifuge
 Comparisons to test data showed that the SM to SD handoff 

model was able to account for the updated dynamic response 
due to the inertial acceleration preload

 Validation metrics were computed to quantify comparisons 
between model and test data

 This work demonstrates the development of an improved 
approach for combined mechanical environments analysis 
and model validation using SIERRA

3rd Bending Mode- 0/100 G Comparison Test Article Vibrafuge Setup

Acceleration Response Results and Location
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Introduction5

 Aerospace structures are often subjected to combined 
inertial acceleration and vibration environments during 
operation 

 Traditional test approaches independently assess a 
system under a sequence of inertial and vibration 
environments
 Incapable of addressing couplings in system response under 

combined environments

 Considering combined environments throughout the 
design and qualification of a system requires 
development of both analytical and experimental 
capabilities

 Recent ground testing efforts have improved the ability to 
replicate flight conditions and aid qualification by 
incorporating combined centrifuge acceleration and 
vibration environments in a vibrafuge test
 Modeling these loading conditions involves the coupling of 

multiple physical phenomena to accurately capture dynamic 
behavior

Vibrafuge Setup



Unit Description6

 Vibrafuge capability demonstrated with research structure
 Applied acceleration on centrifuge
 Vibration using Cedrat Technologies APA230L amplified piezoelectric 

actuators (APA)

 Consists of an inverted cantilever beam
 Functions as simple acceleration switch
 Goal to study dynamics as tip contact state changes under vibrafuge 

environment

 Assembly consists of the following
1. Aluminum beam
2. Tungsten mass
3. Aluminum support block
4. Aluminum base block
5. Piezoelectric actuators

Cantilever Beam Geometry

Test Subassembly



Vibrafuge Setup7

 Combined inertial acceleration and vibration environments simulated using “vibrafuge” setup
 Cantilever beam assembly and APA fixtured on centrifuge arm with reaction mass and angle 

bracket

 Test setup allows for dynamic characterization under simultaneous environments
 Instrumentation set up through slip rings and routed to external controller and data acquisition

 Additional polyurethane rubber sheets and rounds used to isolate APA vibration to 
centrifuge 

Vibrafuge Description and Test Setup
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Modal Testing9

 Instrumentation designed to capture modes of interest
 18 accelerometers, 22 DOF total

 Modal testing performed in free-free and centrifuge boundary 
conditions
 To evaluate effect of fixturing

 APAs also used to extract modal parameters during centrifuge 
testing
 Modes and frequencies evaluated at various G-levels
 Data used to later validate FE model 

Modal Test Setup Instrumentation Layout

Beam Tip Instrumentation Closeup



Modal Testing- Results10

Test 
Mode

Description
Free-Free 

Modal 
Freq. (Hz)

Vibrafuge 
Modal 0G 
Freq. (Hz)

Vibrafuge 
APA 5G 

Freq. (Hz)

Vibrafuge 
APA 5G  

Freq. (Hz)

Free-Free 
Modal 

Damp (%)

Vibrafuge 
Modal 0G 
Damp. (%)

Vibrafuge 
APA 5G  

Damp. (%)

Vibrafuge 
APA 100G  
Damp. (%)

1
1st Beam 
Vertical 
Bending

79 84 75.3 - 0.4 2.0 2.4 -

2
1st Beam 
Lateral 
Bending

267 261 - - 1.1 2.1 - -

3
2nd Beam 
Vertical 
Bending

616 623 623 - 2.1 3.3 3.2 -

4
3rd Beam 
Vertical 
Bending

1784 1776 1788 1472.4 1.1 1.2 1.4 2.55

Frequency Damping



Vibrafuge Testing11

 Vibrafuge testing conducted with APA
 1 GRMS 50 to 2000 Hz
 Range of acceleration from 5 to 100 G

 Vibration data measured at same 
accelerometers as modal testing

 Additional centrifuge acceleration profile

 Electrical contact measurement at beam tip

 Data used to validate FEM

100 G Vibrafuge Test Measurements
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Finite Element Analysis13

 FE modeling used to perform model 
calibration and validation
 CUBIT meshing software and SIERRA codes

 Model assumptions
 Elastic materials
 Tied contact at joints/interfaces
 Neglect rubber pads

 SIERRA Structural Dynamics used to perform 
initial calibration and updating to dial in 
modes and frequencies

 Followed by SIERRA Solid Mechanics 
preload analysis and handoff to SD
 Coupled analysis used to pre-stress/stiffen 

cantilever beam and hand off state for a 
linearized modal analysis

Vibrafuge Subassembly FEM



Modal Analysis14

 Linear modal analysis using SIERRA/SD and model 
calibration with free-free test data

 Good match with frequency errors below 5% and MAC above 
0.9

 Similar results for on-centrifuge (vibrafuge) data
 Some discrepancies due to assumptions, approximate boundary 

conditions 
Free-Free MAC

On-Centrifuge MACFree-Free Cantilever Beam Modes



Code Coupling / Handoff15

 After initial model calibration, the handoff analysis was 
performed

 Preload analysis in SIERRA/SM to determine contact state 
and update element tangent stiffness matrices

 Automatic conversion to tied contact based on threshold for 
linear modal analysis in SIERRA/SD 

 Handoff model able to account of updated contact state and 
effect on dynamics
 Updated modes consistent with test data

SIERRA/SM Preload Results

0 G and 100 G Comparison for 3rd Bending Mode



Random Vibration Analysis16

 After model calibration and updated handoff model, random 
vibration analysis performed for same loading as testing

 Loading using input force at APAs
 Responses compared using 3 separate analysis approaches

1. Scale APA voltage
2. 1 DOF control
3. Estimate APA voltage transfer function

 These approaches highlight the discrepancies with test data 
and impact of modeling assumptions

ᵯ� = ᵅ� ᵅ� 33ᵅ� ᵃ�
ᵅ�

ᵄ� ᵆ�ᵆ� = ᵃ� ᵆ�ᵆ� ᵄ� ᵆ�ᵆ� ᵃ� ᵃ�
ᵆ�ᵆ�

Method 3

Method 2

Method 1

Random vibration loading and response location



Results- Control Accel17

 1 DOF Control (Method 2) matches 
control accelerometer exactly, as 
expected

 Computed APA FRF (Method 3) does 
better at some frequencies compared 
to scaled voltage (Method 1)
 Still, both are poor matches
 May be issues with FRF calculation 

causing discrepancies

 dB error high for methods 1 and 3 due 
to poor frequency match at certain 
bandwidths Case Response GRMS 1/12 Oct Smoothed dB Error 

St. Dev.
0 G Test 1.02 -

0 G FEM Method 1 0.82 8.7
0 G FEM Method 2 1.03 0.2
0 G FEM Method 3 1.08 13.9

100 G Test 1.04 -
100 G FEM Method 1 0.74 8.3
100 G FEM Method 2 1.01 0.7
100 G FEM Method 3 1.10 13.9

FEM/Test Comparison: Control Location 11006 (Z+)



Results- Mid-Beam18

Case Response GRMS 1/12 Oct Smoothed dB Error 
St. Dev.

0 G Test 2.10 -
0 G FEM Method 1 2.42 7.8
0 G FEM Method 2 2.53 3.6
0 G FEM Method 3 2.65 13.2

100 G Test 2.62 -
100 G FEM Method 1 1.96 8.0
100 G FEM Method 2 5.61 4.1
100 G FEM Method 3 3.37 14.5

 1 DOF Control (method 2) once 
again best match
 General trends match, good GRMS
 Able to capture mode shifting

 Again APA FRF (method3) does 
better at higher frequencies 
compared to scaled voltage (method 
1) are quite different

 dB error high for methods 1 and 3 
due to poor frequency match at 
certain bandwidths 

 Ideally APA scaled transfer function 
would perform better since it 
incorporates additional physics
 Assumptions and simplified equations 

may not be valid (neglected stack 
mass)

 Need to improve loads and BC, but 
this method is able to qualitatively 
match trends such as mode and 
frequency shifts

FEM/Test Comparison: Mid-Beam Location 22002 (Z+)
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Conclusion20

 Model validation was performed for a research structure subjected to combined inertial acceleration 
and vibration environments (vibrafuge)
 SIERRA coupled analysis performed by preloading the structure, updating the contact state, and evaluating 

the altered structural response 
 Results validated with modal and vibrafuge testing using amplified piezoelectric actuators on a centrifuge

 Comparisons to test data showed that the handoff model accounts for the updated dynamic 
response
 Mode frequency shift and elimination were observed under increased centrifuge acceleration
 ASD trends consistent with test data, although the approximate BCs led to large errors in some frequency 

bands

 Modeling adjustments can improve the match to test data, but this work demonstrates the 
development of an improved approach for combined mechanical environments analysis and model 
validation

 Future work can focus on improving model BC, adjusting the handoff parameters,
further work on force-voltage TF, and inverse solution methods to obtain better
input loading
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