
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and 

Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. 

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. 

Low-Dimensional Manifolds 
Underpin the Structure of 
Glassy Materials
Thomas J. Hardin (Sandia National Laboratories)

Mark Wilson (Sandia National Laboratories)

Michael Shields (Johns Hopkins University)

with thanks to

Michael Chandross (Sandia National Laboratories)

Tess Smidt (Massachusetts Institute of Technology)

Yannis Kevrekidis (Johns Hopkins University)

Michael Falk (Johns Hopkins University)

December 6, 2021 ● 2021 MRS Fall Meeting & Exhibit

SAND2021-15366CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



2

Atomic 
neighborhoods 
w/cutoff radius1

Distance measure:
Gaussian Integral 
Inner Product2

Hierarchical 
(agglomerative) 
clustering3

Diffusion Maps for 
low-dimensional 
latent space4



1. Extraction of neighborhoods from silicate glass
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• ReaxFF SiO potential (van Duin et al, 2003)
• 71k atoms: Quartz -> Melt -> Quench @ 3.7K/ps
• Averaged over first 500 steps (not relaxed)
• 5000 random Si or O atoms
• First nearest neighborhoods extracted



2. A Meaningful Distance Metric Between Atomic Neighborhoods
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Integral inner product
of two functions

(1)

Norm of a function induced
by the inner product above

(2)

Gaussian function with standard 
deviation sigma, normalized to 1

(3)

Atomic density function 
consisting of weighted Gaussians 

centered on atomic positions
(4)

Gaussian Integral Inner Product
(GIIP)

between two configurations
(5)

Distance between two 
configurations

(6)

Orientation invariance
by minimizing over all possible 

rotations/rotoinversions
(7)

GIIP is analytically tractable in a 
computationally convenient form

(8)



2. A Meaningful Distance Metric Between Atomic Neighborhoods

• PyTorch GPU-enabled code for GIIP-
distance calculations

• Pairwise GIIP-distance between all 5000 
atomic neighborhoods @ angular 
resolution of 5 degrees

• Histogram of 2.5 million GIIP distances at 
right immediately suggests the presence 
of classes of “defects” in the glass
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3. Hierarchical (Agglomerative) Clustering of Atomic Neighborhoods
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N=2500

Noise
threshold

N=55

Plotting (number of clusters) against (cluster error), we see two natural 
inflections. These inflections tell us something about the structure of the 
glass: the 5000 neighborhoods sampled can be naturally divided into 55 
coarse classes (motifs) or 2500 fine classes. 

Cluster Error as a fn of Granularity

(coarse)         Number of clusters         (granular)
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3. Hierarchical (Agglomerative) Clustering of Atomic Neighborhoods
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• Agglomerative clustering, 
n=5 classes

• Exemplar atomic 
environments from each 
class are plotted here

• Classes 2 and 3 are typical 
of SiO2 glass

• Classes 1, 4, and 5 are 
broad classes of defects



4. Diffusion Maps
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Diffusion maps are a well-established way of extracting a latent space from a pairwise distance matrix. 
Here, I’ve plotted all 5000 neighborhoods on the first three parsimonious latent space coordinates, and 
colored them according to the five clusters we extracted previously.
Notice that the classes (which we extracted directly from the pairwise distances) are, for the most part, 
also clustered on our latent space coordinates.



4. Diffusion Maps
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We can identify the physical interpretation of some diffusion coordinates by inspection.
For example, Diffusion Coordinate 1 captures the bond angle across bridging oxygens.

But, since the whole difficulty with glass is that the “by inspection” method is inadequate, 
is there a more data-driven approach available to us?

Increasing
Bond 
Angle



Conclusions
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1. Gaussian Integral Inner Product (GIIP) provides an intuitive and computationally 
convenient distance metric between atomic configurations. This formulation addresses 
noise sensitivity, continuity, smoothness, radial cutoff, and permutation and (optionally) 
orientation invariance.

2. Using hierarchical clustering on GIIP distance, we can classify the atomic neighborhoods 
in a material to varying degrees of coarseness. This provides a detailed discrete 
descriptor for local structure. 

3. Diffusion maps on GIIP distance provide a continuous latent space, parameterizing the 
implicit low-enthalpy manifold of the material. That parameterization is occasionally, but 
often not, friendly to interpretation by inspection.



Backup
Slides
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Smooth Overlap of Atomic Position (SOAP) Gaussian Integral Inner Product (GIIP)

Goal
Differentiable representation for potential energy 
functions; MD potentials.

Distance between configurations.

Atomic neighbor
density function

Gaussian attached to each atom Weighted Gaussian attached to each atom

Similarity Measure Integral
inner 
product

Integral inner product
GIIP distance induced by inner product.

Rotational invariance Integrate over 
orientations

Minimize GIIP distance over orientations

Implementation Expand in spherical harmonic & radial basis fns.
Kernel is dot product of expansion coefficients.
Pretty fast!

Inner prod. analytically tractable from positions.
Brute-force search over orientations.
Pretty slow! Use GPUs.

Continuity/smoothness 
at boundaries

Enforced by selection of radial basis functions. Enforced by weights going smoothly to zero as 
radial distance increases.

Permutation invariance
Tolerance to variable 
atom quantities

Enforced by expansion into atomic neighbor 
density function.

Enforced by expansion into atomic neighbor 
density function.



5. Conformal autoencoder for interpretability
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5. Conformal autoencoder for interpretability
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Using the conformal autoencoder, we extract the portion of the diffusion coordinates that is orthogonal to 
(that shares no information with) physical quantities 0 and 1– that is, with central species and local volume.
In other words, we have interpreted our diffusion coordinates in terms of two intuitive physical quantities, 
and one yet-to-be-determined parameter.


