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Nonconformal Interfaces

(a) A p-nonconformal

(b) hp-nonconformal
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SBP Operator: Stability

The requirements for a stable SBP discretization are:
1. Differentiation operators Dx , Dy that satisfy, at minimum,

Dx 1 = 0 and Dy 1 = 0
2. Symmetric boundary operators Bx , By that satisfy, at

minimum, 1T Bx 1 = 0 and 1T By 1 = 0.
3. A diagonal mass matrix P that forms a quadrature rule of

degree 2p − 1, at least
4. Weak form integration matrices Qx = PDx and Qy = PDy .
5. Skew-symmetric splitting Qx = Sx +

1
2Bx and Qy = Sy +

1
2By

where Sx and Sy are skew-symmetric matrices.
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Nonconformal Discretization

Define interpolation from the face to the M grid integration points
PLM and PRM . The discretization is then:

P
duL

dt
+(Sx ◦ Fx(uL, uL)) 1 +

(
Sy ◦ Fy(uL, uL)

)
1

= − 1
2

∑
x

(RT
L PT

LM BMNx,M︸ ︷︷ ︸
use M integration rule

PRMRR

 ◦ Fx(uL, uR)

)
1

+W.F.T,

(1)

The face operator has similar structure to simplex SBP.
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Mapped SBP Construction

Must satisfy SBP properties with M quadrature rule.
Define the metrics:

Λξi ,xj ≈ diag(
[(

J ∂ξi
∂xj

)
1
· · ·

(
J ∂ξi
∂xj

)
n

]
), (2)

and construct SBP operator:

Sxi =
1
2

(
Λξ1,xi Qξ1 + Λξ2,xi Qξ2 − QT

ξ1
Λξ1,xi − QT

ξ2,xi
Λxi2,xi

)
(3)

Bxi =
∑
γ

RT
L PT

LMBMNxi ,MPLMRL (4)

Qxi = Sxi +
1
2

∑
γ

Bxi (5)

Dxi = (P|J|)−1 Qxi . (6)
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Metric Projection
Must satisfy constant exactess:

Dxi 1 = 0 ⇒ 1
2

∑
j

(
−QT

ξj
Λξj ,xi 1

)
+

∑
γ

Bxi 1

 = 0 (7)

Solve the (linear) optimization problem

min
m

(
m − mtarg

)T (
m − mtarg

)
(8)

subject to
∑

j

(
−QT

ξj
Λξj ,xi 1

)
+

∑
γ

Bxi 1 = 0 (9)

where

mtarg =

[
Λξ1,xi 1
Λξ2,xi 1

]
(10)
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Accuracy

For straight-sided elements:

Qxi =
∑

j

(
A
∂ξj

∂xi
Qξj

)
− 1

2

∑
γ

(
RT

L BLRT
L nxi

)
+

1
2

∑
γ

(
RT

L PT
LMBMPLMRLnxi

)

Qxi will be accurate for polynomials if the final two terms cancel.
Holds if BL and BM are exact for 2p polynomials
Otherwise, lose 1 order of accuracy (p rather than p + 1)
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Linear Advection

Test the linear advection equation:

∂u
∂t

+ a
∂u
∂x

+ b
∂u
∂y

+ S = 0 (11)

Manufactured solution

u(x, t) = exp(x + y + t) for x, y ∈
[
0 1

]
(12)

with curved grid

x2 = x1 + α sin(
x1 − cx

βx
) (13)

y2 = y1 + α sin(
y1 − cy

βy
), (14)
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Linear Advection: hp-Nonconformal Convergence

Straight-sided elements:
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Conventional-Conventional hp-Nonconformal
p1=1, p2=2
slope=1.5
p1=2, p2=3
slope=2.5

(a) Conventional elements for all blocks
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(b) Generalized elements in middle block,
Conventional elsewhere
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Linear Advection: hp-Nonconformal Convergence

Curved elements:
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(a) Conventional elements for all blocks
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(b) Generalized elements in middle block,
Conventional elsewhere
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Euler Equations

∂u
∂t

+
∂fi(u)
∂xi

= 0, (15)

where

u = [ρ, ρu, ρv, E ] (16)

Test problems
Steady isentropic vortex: convergence rate
Unsteady isentropic vortex (periodic domain): entropy stability

Entropy stable dissipation is used for all problems.
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Steady Isentropic Vortex

(a) First mesh
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(b) Convergence results
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Unsteady Isentropic Vortex

(a) Mesh (b) M Mesh
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Unsteady Isentropic Vortex
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Figure: Entropy history
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Conclusions

We have presented a new hp-nonconformal discretization is:
Conservative
Entropy stable
High-order accurate
Applicable to SBP operators with 2p − 1 quadratures
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