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Learning Objectives

1. Understand about energy retrofit decision metrics for multiple buildings
2. Elaborate how differences in weather can have a significant affect on energy retrofit
decisions

ASHRAE is a Registered Provider with The American Institute of Architects Continuin{q Education
Systems. Credit earned on completion of this program will be reported to ASHRAE Records for
AIA members. Certificates of Completion for non-AlIA members are available on request.

This program is registered with the AIA/ASHRAE for continuing professional education. As such,
it does not include content that may be deemed or construed to be an approval or endorsement
by the AIA of any material of construction or any method or manner of handling, using
distributing, or dealing in any material or product. Questions related to specific materials,
methods, and services will be addressed at the conclusion of this presentation.
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Introduction

Conventional building energy modeling (BEM):
* 1 building
* Multiple energy retrofits (retrofits)
* 1 weather history

Objective: Show what retrofit performs best for a calibrated model and constant weather

2 disruptions require expansion beyond conventional BEM

Q1: Do differences in historic weather or projected future weather change how well
retrofits perform?

Q2: Do changes to BEM change how well retrofits perform?
New institutional BEM analyses:
* Multiple buildings
* Multiple energy retrofits
* Multiple weather histories: Uncertainty of future extreme weather events and historical weather

The new approach makes deciding what to do more difficult
* Metrics to aid decision processes are needed



Disruption 1: Climate Change

* Future weather will not be the same as historic weather (IPCC, 2021)
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Disruption 2: Institutional Energy Modeling

* The future of BEM will include cross comparisons between many
buildings

Institutional planners need to be able
to synthesize energy retrofit plans
across 100-1000’s of buildings on
budgets that can only implement the
most effective measures

Uncertainty in energy savings is needed

Finding the most effective retrofits is like looking for a
needle in a haystack from the institutional perspective



15t Site-wide energy retrofit analyses (2014)

Institutional Transformation (IX) software using 120 BEM indicated the FY11 25% performance goal would not be

met and that only 19% energy savings could be achieved without intrusive operational measures
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5 years later...



New Energy Assessment

Process

Goals:

1. Establish a culture of energy modeling that
cyclically improves and maintains a BEM
fleet

2. Include:

a. Self-consistency and uncertainty
analyses of retrofit decisions

b. Post-retrofit verification of energy
savings

3. Create new metrics that quantify the
relative accuracy of site-wide sequences of
retrofit decisions for different future
weather scenarios

—————————————————

ﬁ_/:

1. Precalibra- |
tion analvsis
of energy

retrofits (Aqp) ||

Assessments of
energy retrofit

decision
stability:
Aq1,A15, Aqg

P

2. Manually
verify most
important EE

parameters

!

3. Classify thermal
sensitivity to weather
(Geng et. al., 2018)

10. Update A
])l‘()('(‘HH.
document, and
refine BEM

9. Evaluate
process
accuracy (Ajg)

5. Multi-scenario cal-

1 ibrated BEM energy
4. AutoTune-DOE2 retrofit analyses (Ajs):
calibration to G-
14, NMBE., and S
CVRMSE + thermal
sensitivity parameters 3. Multiple historical
b 1 g weather years

4. TMY3

1. Extreme events effects
2. Climate change

8. Verify
energy savings
via BEM and

meter data

T

7. Inform
institutional
decisions for

investment

T

Curated weather

and sensor data

via Python API

C
GH. electric grid, transportation etc.

Jther institutional analyses: resilience, renew-

T ——

6. Calculate
trade-off
Ill(’t]'i('.‘i [:{’ﬂ."i-t .
net-zero)

——

>




What do theA.metrics represent?

Energy savings difference
between weather year w and baseline weatheryear w
for uncalibrated energy models (i.e. step 1)

Energy savings difference
between weather year w and baseline

weather year w
for steps w = index over weather years,
w = baseline weather year
l b = index over buildings

A Zg:dl Akl(ﬂELw,k o ﬂEl,cu,k) - (1 o 515)(5‘Es,w,k o AEs,m,k)J Sl.ZS;Ep number (previous
1 = slide
e ﬁidl Ay (ﬁ‘-ELm.k —(1- 5ls)ﬂEs,m,k) r = index over energy retrofits

* Ay, , isanalogous to a derivative of energy savings with respect to weather and step numbers (BEM updates). For
s =1, A1, only includes differences for weather.

* Ay will maintain a value of zero across all decisions if weather and BEM updates make no differences in the energy
savings

* A, .isexpected to diverge as more retrofit decisions are made where a value represents the fraction of energy savings

difference for the baseline weather year.
* The speed of this divergence provides feedback concerning how much confidence one can have in a retrofit decision



Energy Retrofit Decision Metrics A4,

. AE = —E
1. Choose baseline weather year sw,br = Zsw,b — Zsw,br

2. Calculate energy savings for all weather years

available
Form a new index d over the set of paired

_ . retrofit and building tuples
3. For the baseline energy year, sort energy savings  p ={ (b, 1), (by, 1), ., (bp, 1)}

per building area A, from highest to lowest Here, (by,71) is the building and retrofit for
which the most energy savings per area are
values. realized

4. Calculate the family of metrics below:

Ed= A (AE — AE —(1-6,.)(AE — AE d is the Dirac delta
Ais, , = k=d, k[( Lw.k 1‘m’k) ( 18 ( S s’m’k)] Ay is the area of the building for

dn .
;(:dlAk(ﬂEl,m,k - (1- Sls)ﬂ‘Es,w,k) decision d




Weather inputs and characteristics

RO Input Value
100 - 0.99 0.01 0.01
- Markov chain transition probability ma- {0.15 0.85 U.UU‘
trix 0.15 0.00 0.85
50 Weather file Albuquerque Interna-
55 tional Airport TMY3
. Extreme heat lognormal inputs to produce p = 1.800 (1.212), ¢ =
o R1 G F-hr/hr (°C - hr/hr) 0.5 (0.5)
- =~ Extreme cold lognormal inputs to produce p = 1.000 (0.412), ¢ =
§ 100] — extreme 0L 0.5 (0.5)
i 75- P § Random seed 434186856231
g g CDD HDD CDD HDD
2 ° 2 (°F -day) (°F-day) (°C-day) (°C - day)
g R'z 5 2017 1491 -3353 828 -1863
100 2018 1696 -3840 942 -2133
2019 1485 -4235 825 -2353
757 2020 2336 -3205 1298 -1780
50 TMY3 1218 -4278 676 -2376
25 RO 1613 -4259 896 -2366
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec R1 1178 ~4330 634 -2417
2021 R2 1192 -4401 662 -2445
Multi-scenario extreme weather simulator (MEWS) version 0.0.1
inputs: https://github.com/sandialabs/MEWS CDD = Cooling Degree Days, HDD = Heating Degree Days



Outputs

Description

Area (m2)

2017 (kWh)

2018 (kWh)

2019 (kWh)

2020 (kWh)

TMY3 (kWh)

RO (kWh)

Example with 97 NM BEM and 2 energy retrofits — insulate roof and External Finish Insulation System (EFIS)

R1 (kWh)

R2 (kWh)

Y O s W bO

<o

8
9
10
11

Building 1 EFIS
Building 2 EFIS
Building 3 EFIS
Building 4 Insulate Roof
Building 5 Insulate Roof
Building 6 EFIS
Building 1 Insulate Roof
Building 7 EFIS
Building 8 EFIS
Building 9 EFIS
Building 5 EFIS

1.8e+03
2.6e4+03
1.9¢4-03
9.9¢+4+02
1.6e+403
1.3e+03
1.8e<4-03
2.9e+03
1.2¢+403
1.8e403
1.6¢+03

5.0e+405
3.6e405
1.3¢4+05
2.1¢+404
3.3e404
1.8¢+404
4.4e+4+04
1.2¢405
1.4c404
5.2e404
2.3¢+404

9.5¢+05
5.3e+05
2.Te+05
6.1c+04
6.7Te+04
3.2¢+04
6.7Te+04
7.9e404
2.9¢+04
4.6e+404
3.8¢+04

9.7e405
5.Te405
3.1e405
6G.5¢+404
7.0e404
4.0e404
4.9e4+04
T.5¢e+404
3.3¢4-04
4.8e+404
4.3¢404

9.6e+05
4.8e4+05
2.9¢+05
6.6c+04
6.8e+04
3.8¢+04
H.le+04
8.0e+04
3.1e+04
4.4e+04
3.8¢c+04

5.4c+05
4.6e+05
1.7e+05
2.8¢+04
4.4e+04
2.2¢404
3.3e4+04
8.5e4+04
2.1e+04
4.1e404
3.4c+04

4.4e4-05
4.6e4+05
1.7e+05
2.8c+04
4.3e+4-04
1.4e+404
6.6e+04
8.9c4+04
1.8¢c+404
5.8e+04
3.3c+04

5.3c¢405
4.Te405
1.8e405
2.9¢4+04
4.3e+404
2.1e404
2.4e404
8.8¢404
2.0e4+04
4.4e404
3.3¢404

6.3c+05
4.Te405
1.8e+05
3.1c+04
4.6e404
2.0c+04
8.2e404
8.9¢+04
2.2¢4+04
4.0e+04
3.6c+04

Description Area (ft2) 2017 (BTU) 2018 (BTU) 2019 (BTU) 2020 (BTU) TMY3 (BTU) RO (BTU) R1 (BTU) R2 (BTU)
1 Building 1 EFIS 1.9¢404 1.7e409 3.3¢4-09 3.3¢409 3.3¢409 1.8e+409 1.5¢4-09 1.8¢4-09 2.2¢+09
2 Building 2 EFIS 2.8e4+-04 1.2e4+09 1.8e+09 1.9e409 1.7Te+09 1.6e+09 1.6e4+09 1.6e4-09 1.6e+09
3 Blliltling 3 EFIS 2.0e404 4.3c+08 9.3e+08 1.1e409 9.9c4+08 5.8c+08 6.0c408 6.0e+08 6.0e+08
4 Building 4 Insulate Roof 1.1e4+04 7.2¢407 2.1e4-08 2.2¢+08 2.3¢+08 9.7Te4+07 9.6e407 9.9¢4+07 1.0e+08
o Building 5 Insulate Roof 1.8e4-04 1.1e4+08 2.3e4-08 2.4e408 2.3e4-08 1.5e4-08 1.5e408 1.5e4-08 1.6e4-08
G Building 6 EFIS 1.4c404 6.2¢4+07 1.1e4-08 1.3¢+08 1.3c+08 7.6¢+0T 4.9c4+07 T.3¢407 6.8¢+07
T Building 1 Insulate Roof 1.9e4-04 1.5e4+08 2.3e+08 1.7e4+08 1.7e+08 1.1e4+08 2.3e4+08 8.1e407 2.8e+08
8 Building 7 EFIS 3.1c+404 4.2¢+408 2.7¢408 2.6c408 2.7c+08 2.9e¢+08 3.0e408 3.0e+4+08 3.0e+08
9 Building 8 EFIS 1.3e+4-04 4.8¢407 9.8¢407 1.1e408 1.0e+08 T7.2e407 6.3c407 6.9¢407 7.4e4+07
10 Building 9 EFIS 1.9e+4+04 1.8e+08 1.6e+408 1.6e+408 1.5e+08 1.4e4+08 2.0e408 1.5e408 1.4e+08
11 Building 5 EFIS 1.8¢+404 8.0e4+07 1.3e4-08 1.5e+408 1.3e+08 1.2e408 l.1e4-08 1.1e408 1.2e4+08

Baseline year



Energy Metric Conclusions

Take-aways:
1. Don’t even consider past decision 40!

2. BEM engine errors on ECM’s may also

cause A4 to diverge from 0—We do not —02.

11

want to hinge decisions on numerical 3
bugs!

—0.31

3. Weather makes a significant

difference! —0.4

_0.5-

15t 60 of 130 decisions

2017
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2019
2020
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RO
R1
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SNL NM total site energy savings

P = potential estimate by IX analysis on 96 BEM
review o e =
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Y&&03
o0

pwN e
&l

Supply air temperature reset

Electricity W

Air side economizers Gas 1 L]
Electricity U] o
Total i
Air flow in datacenters Gas
Electricity - o

..... -2 -1 0 1 2 3 4 5
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Total site-wide potential

® These numbers are the maximum
potential

= Cannot add all enerEy retrofits without
changes in thermal behavior

®" The same total potential (~¥19%)
here as in 2013-2014 first
assessment

= Changes to the BEM have not
made significant differences.

= Real site potential depends on
whether each energy retrofit is
implementable

" This is the maximum potential for
incremental changes that do not
include CUB plant type savings or
major changes to operations.

Weather [Electricity (%) |Gas (%) Total (%)

2017 10.37 8.67 19.04
2018 9.49 10.65 20.14
2019 9.09 9.58 18.67
2020 8.80 9.92 18.72
TMY3 11.71 9.61 21.33
RO 8.64 9.52 18.16
R1 9.34 10.71 20.05
R2 8.69 10.12 18.81
Mean 9.52 9.85 19.37
Std 1.05 0.67 1.05




Conclusions

* Energy retrofit decisions are significantly affected by weather

* Uncertainty is an important part of institutional BEM energy
retrofit analyses

* Decision stability metrics like A;; can reveal what decisions are
robust w/r to uncertainty due to weather and BEM changes

* 5 years later, the energy assessment site-wide energy saving
potential has not changed significantly despite significant
changes to 120 BEM through quality checks and auto-
calibrations to ASHRAE Guideline 14
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