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INTRODUCTION

Scalable geologic carbon storage operations require fast forward modeling and forecasting.
Real-time forecasting with data assimilation approaches usually encounters high-dimensional,
ill-posed, and underdetermined (i.e., more unknowns than observations) problems.
Furthermore, multiple simulations are often required to quantify the uncertainty, which is
time-consuming.

Here, we will present a framework of coupling variational autoencoder (VAE) and (ensemble-
based) data assimilation ((En)DA) for fast and accurate history matching of CO, operations
and real-time forecasting of pressure development. A deep learning-based modeling approach
that combines convolutional neural network (CNN), long-short term memory (LSTM), and
dense neural network (DNN) is adopted to perform faster simulation of multiphase CO, flow
and pressure propagation. The high-dimensional state variables (e.g., permeability) are
reparametrized with the low-dimensional latent variables in VAE. The latent variables are
updated by the (En)DA approach using the observed pressure data. The updated latent
variables are then used by the decoder of VAE to produce updated state variables, which are
the inputs to the CNN-LSTM-DNN model. Clastic Shelf data will be used to show the
performance of permeability estimation and real-time pressure forecasting.

https://agu2021fallmeeting-agu.ipostersessions.com/Default.aspx?s=BA-8C-FF-8B-C1-B2-D0-47-AA-CF-53-0E-86-74-EA-6C&pdfprint=true&guestvi...  2/20



12/8/21, 9:33 AM AGU - iPosterSessions.com (agu-vm-0)

VARIATIONAL AUTOENCODER-BASED DATA
ASSIMILATION

For a forward problem y = G(m), with [ Gauss-Newton iterations from m’ = my,.;o, the
permeability field m is updated as follows:

m'*! = m° + Cprior (ICypriord” + Cops) " (y — G(m') + I (m' — m"))
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Figure 1. The framework of variational autoencoder-based data assimilation [ref. Poster H150-1226]
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Using the decoder of VAE to map m to latent space z, the forward problem becomes
y = G(D(z)), where dim(z) < dim(m). With this dimension reduction, the data
assimilation process can be applied to latent space z:

2 =2+ a(I7Cds + Cpplyyiy) (v — G(D(2) — Cppfy2)

prior(z
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PERMEABILITY ESTIMATION
Clastic Shelf Data

e 211 x 211 unknowns to 32 latent variables
e 4 injection wells, 2 monitoring wells, and 3 testing wells

o Observation data: 1.5, 2, 5, and 10 years pressure (monthly data up to 2 yrs, followed by yearly
data to 10 yrs)
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Figure 2. Log permeability field with well locations and pressure profiles at 4 injection, 2 monitoring,
and 3 testing wells

Estimation Results

e Scenario 1: observed pressure data from 4 injection wells

e Scenario 2: observed pressure data from 4 injection wells and 2 monitoring wells
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(b) Permeability estimation using observed data at 4 injection and 2 monitoring wells
True In k. Estimated In k (Obs=15yrs)  Estimated In k (Obs=2yrs) Estimated In k (Obs=5yrs)  Estimated In k (Obs=10yrs)
- n

(c) Standard deviation of 1,000 permeability fields using observed data at 4 injection wells
STO of In k (Obs=1.5yrs) STD of In k. (Obs— ) STD of In k (Obs=5yrs) STD of In k (Obs=10yrs)
~ vy i

STD of In'k (Obs=1.5yrs) STO of In k (Obs=2yrs) STO of In k (Obs=5yrs) S0 ot i kiobez 1072

Figure 3. (a-b) Estimated permeability fields of two scenarios with different observation periods. (c-d)
Standard deviation of 1,000 realizations from post-covariance analysis.
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PRESSURE PREDICTION

o Both scenarios match observed pressure data at three testing wells similarly

o Low sensitivty with additional monitoring well data stems from relatively high errors of forward
model at the injection wells compared to the rest of model domain (e.g., 4% at injection wells vs
less than 0.5% error in the rest of the domain in CNN-LSTM-DNN model accuracy)
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Figure 4. Comparison of observed and predicted pressure data over time at three testing locations with
varying observation periods. The predicted pressure data are generated based on the estimated
permeability fields shown in Figure 3 (4INJ: Scenario 1, 4INJ 2MW: Scenario 2).
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CONCLUSIONS

The VAE-based data assimilation framework demonstrates promising performance for
permeability estimation with uncertainty quantification and accurate prediction of pressure
development. Furthermore, the proposed approach is computationally efficient which takes 3-
5 min for the data assimilation process. The training of CNN-LSTM-DNN model takes 10-15
minutes using NVIDIA Quadro RTX 6000, and the training of VAE takes around 10 minutes.
We believe that our method is applicable for 3D and more complex cases because of

its computational efficiency and accurate estimation ability.
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