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Abstract—Scientific communities are increasingly adopting
deep learning (DL) models in their applications to accelerate
scientific discovery processes. However, with rapid growth in
the computing capabilities of HPC supercomputers, large-scale
DL applications have to spend a significant portion of training
time performing I/O to a parallel storage system. Previous
research works have investigated optimization techniques
such as prefetching and caching. Unfortunately, there exist
non-trivial challenges to adopting the existing solutions on HPC
supercomputers for large-scale DL training applications, which
include non-performance and/or failures at extreme scale, lack
of portability and generality in design, complex deployment
methodology, and being limited to a specific application or
dataset. To address these challenges, we propose High-Velocity
AI Cache (HVAC), a distributed read-cache layer that targets
and fully exploits the node-local storage or near node-local
storage technology. HVAC seamlessly accelerates read I/O by
aggregating node-local or near node-local storage, avoiding
metadata lookups and file locking while preserving portability
in the application code. We deploy and evaluate HVAC on 1,024
nodes (with over 6000 NVIDIA V100 GPUS) of the Summit
supercomputer. In particular, we evaluate the scalability,
efficiency, accuracy, and load distribution of HVAC compared to
GPFS and XFS-on-NVMe. With four different DL applications,
we observe an average 25% performance improvement atop
GPFS and 9% drop against XFS-on-NVMe, which scale linearly
and are considered the performance upper bound. We envision
HVAC as an important caching library for upcoming HPC
supercomputers such as Frontier.

Index Terms—High-Performance Computing (HPC), Deep
Learning, Caching and I/O Optimizations

I. INTRODUCTION

Deep Learning (DL) is an emerging technology gaining
dominance to solve critical problems and predicting trends in
several domains, including computer vision [21], [20], speech
recognition [59], [45], natural language processing [48], [26],
scientific [43], [55], [24] and climate science [25], [29], [40].
To train an efficient deep neural network (DNN) with high
accuracy, large volumes of input datasets and high-speed
compute accelerators are required [43], [18], [55], [57].
Thus, training a DNN is becoming an increasingly important
workload on HPC supercomputers, such as Summit [23], [28].
However, to efficiently run and scale DL applications in HPC
environments to leverage state-of-the-art HPC supercomput-
ers remains a challenge. Figure 1 shows three key factors
involved in training a DNN: i) I/O provides the data and
labels for training to each node, ii) computation to execute
the DNN, and iii) communication, to synchronize updates

across nodes. Much of the prior work have focused on runtime
and algorithmic enhancements to optimize the computation
and communication [18], [43]. Despite these enhancements,
however, DL frameworks on HPC supercomputers still suffer
from scalability limitations, particularly with respect to data
I/O [37], [16], [46], [41].

On large-scale supercomputer systems, the shared parallel
file system (PFS) such as GPFS [3] and Lustre [44] store
the extremely large DL datasets. DL training makes use of
multiple epochs, where each epoch reads the entire dataset in
a random shuffled order. The HPC I/O subsystems are not built
to deal with the manner DL frameworks read data at scale and
thus, are easily saturated with a large number of concurrent and
random accesses on small files. For instance, ImageNet-1K [6]
– a popular image dataset for computer vision tasks, contains
more than 1.28 million files in 1, 000 categories. Similarly, the
Open Images [10] dataset contains approximately 9 million
images. This I/O problem will become even more severe with
forthcoming generation Exascale supercomputer, which will
deliver 1018 Flop/s of scalable computing capability [4]. All
that computing capability will be for naught if the I/O software
stack cannot meet the needs of DL applications running at
scale — leaving DL applications starve while waiting to read
data from PFS.

Therefore, a number of performance studies tend to explore
the scalability of DL applications workloads by exploiting the
node-local or near-node-local storage on HPC supercomputers.
Of particular interest and closely related to our work is the
subject of scaling DL application training on different HPC
supercomputer platforms [51], [52], [18], [55], [17], [43].
Several efforts such as, BGFS BeeOND [1], and local read-
only cache (LROC) on IBM Spectrum Scale (GPFS) [3],
have been done to create optimized file systems for HPC
applications. These file systems are intended for both write
and read access mechanisms for applications. However, for
DL applications which are primarily read-intensive, these
solutions incur a huge metadata overhead to support writes.
Lustre persistent client caching (LPCC) [44] with read-only
mode exploits node-local storage. However, the cache size and
performance is limited to a single node-local NVMe. A few of
the existing studies focus on building prefetching and caching
solutions for large datasets to improve I/O performance of DL
applications, such as [18], [55], [43], [58], [32], [53], [38],
[26], [40]. We discuss the limitations of existing studies in
section II-D.



Unfortunately, there exist several non-trivial challenges to
adopting the above prefetching and caching solutions on HPC
supercomputers for large-scale DL training applications. First,
several aforementioned studies [57], [26], [55] show scaling
DL applications with small-scale testbed or in simulation en-
vironments [40] and do not scale well on real large-scale HPC
supercomputers, e.g., over 1000 nodes. Second, the majority
of the existing studies [18], [43], [55], [32], [53] require non-
trivial modifications of the entire input pipeline architecture
and are intrusive to the DL application code, which is contrary
to the goal of this study, i.e., portability. Third, choices like
Memcached [9] and LMDB [34] lack support for POSIX
interface and are not suitable choice for HPC supercomputers.
Fourth, a few of the existing works [38], [53], [18] require
managing additional metadata backend storage, which again
acts as bottleneck in case of large-scale small file I/Os. Last
but not least, a fraction of previous works have been tailored
to meet a particular application, dataset, and/or architectural
need and lack generality in their design.

Therefore, to address the aforementioned challenges, we
propose High-Velocity AI Cache (HVAC), a transparent read-
only caching layer, for large-scale HPC supercomputers to
improve DL applications training performance when using
large datasets (i.e., terabytes to petabytes). The key design
idea behind HVAC is to scale to thousands of compute nodes
on HPC supercomputer such as Summit and Frontier, and to
remove I/O bottleneck for large-scale DL applications without
the need to modify application or file systems, and free of
additional metadata bookkeeping overhead.

Our key contributions in this paper are:
• We present the design and implementation of HVAC, a

scalable lightweight read-only cache system for HPC su-
percomputers with node-local storage on compute nodes,
and near node-local storage, to cache large datasets from
shared parallel file systems.

• We use distributed hashing to determine the cached
location for data requests without compromising training
accuracy and avoid the metadata bottleneck with the goal
of significantly improving the random read performance
compared to traditional parallel file systems.

• We provide portability and support for standard POSIX
open, read, and close file operations by intercepting I/Os
via LD PRELOAD. So, that DL applications or underly-
ing parallel file systems do not require modifications to
adopt HVAC.

• We present a series of extensive experiments ran on Sum-
mit supercomputer using four different DL applications
and models in order to study the scalability, training
performance and accuracy for the proposed approach.
We compare multiple HVAC variants against large-scale
high-bandwidth GPFS and XFS-on-NVMe. The experi-
mental results show that HVAC can fully scale to 1,024
nodes on Summit with an average 25% reduction in
training time compared to GPFS. Whereas, HVAC shows
only 9% performance overhead compared to upper I/O
bound, i.e., XFS-on-NVMe.

Computation I/O  (67% - 85%)

Communication 

- Loading/Prefecting datasets
- Labels for training, shuffling

- Forward/Backward Propagation
- Syncing updates across distributed nodes

- Preprocessing, Tokenizing, 
- Normalization, Augmentation

Fig. 1: Distributed DL comprises of the three components. Note that,
DL applications running at large-scale training environments spend
67-85% of their execution time performing I/O to a PFS as reported
in several recent works [37], [16], [55], [42].

II. BACKGROUND AND MOTIVATION

A. Distributed Deep Learning

Deep learning on a single node has two steps: forward
computation and backward propagation. A data parallel ap-
proach to distributed DL involves replicating the DL model
and distributing the training dataset on all the nodes. The I/O
in a data parallel approach is complex and typically consists
of multiple stages as shown in Figure 1. First, I/O, the most
expensive step in distributed DL training [37], [16], [18], is re-
sponsible for providing data and labels to each training epoch
and iteration [18], [56], [43]. Second, computation which
involves dataset preprocessing in some of the image-based
models, such as augmentation operations including padding,
scaling, rotations, resizing, and distortion [55], [56]. Third,
communication which refers to transferring newly calculated
model gradients to all the involved GPUs for iterative model
updates, collations, forward/backward propagation, and sync-
ing updates across the distributed nodes [55], [56]. This data
parallel approach is most favored for scaling DL on thousands
of nodes, such as on a large scale HPC supercomputers [52].
Notably, backward propagation for distributed DL training
firstly computes the gradients on each node, then runs an MPI
all-reduce operation so that average gradients for each weight
are distributed to all nodes, and finally updates the weights in
each nodes. The gradient distribution takes place after each
epoch.

B. Deep Learning: Access Patterns and I/O Characteristics

Next, we discuss common access patterns and I/O charac-
teristics of DL applications. For simplicity, we show the data
access pattern of DL training application with a small dataset
containing 16 files, as shown in Figure 2. Before starting DL
training, a batch size is chosen, which signifies the number of
files that will be read together by a compute unit, such as a
GPU. Therefore reading the total dataset of 16 files in batches
divided into four iterations. Note that, an epoch constitutes
that all files in the training dataset are read once. The model
convergence can take hundreds to thousands of epochs. Before
each epoch, the DL training framework shuffles all the files
in the training dataset to generate a random read order. This
randomization is necessary to attain high prediction accuracy
and avoids overfitting in the trained model.



Fig. 2: The data access pattern of a training dataset of 16 files. The
numbers represents file IDs. The batch size is four. Files are shuffled
and accessed randomly after each epoch.

The DL training step for a dataset therefore exhibits the
following file-access characteristics.

• A DL training task only works on one dataset, and
performs read-only access to the dataset in one epoch.

• All files in a dataset are read once in an epoch, and
will be traversed again in subsequent epochs.

• Between epochs, files are shuffled in different random
orders to avoid model overfitting. However, the random
order of file accesses can be varied as it does not affect
the model accuracy.

The data access patterns in a DL training task therefore
provides the following I/O characteristics.

• Within a DL training job, there is a high degree of
shareability in I/O. As each DL training task makes
multiple passes (epochs) over the same input training
data, there is a clear benefit to caching the data for use
in subsequent epochs.

• Shareability of I/O makes DL jobs cache friendly. How-
ever, the random access pattern in each epoch makes it
cache-adverserial if the data does not fit in cache.

• The exact sequence of random order of data does not
affect the accuracy in an epoch. Therefore, I/O is substi-
tutable which makes the partially cached dataset equally
cache-friendly.

C. MDTest on Summit Supercomputer

To motivate the need of HVAC, we run MDTEST
benchmark on Summit supercomputer. The specifications of
the Summit supercomputer is described in Section IV-A1.
MDTest [8] is an MPI-based application to test and eval-
uate metadata performance of PFS. DL jobs can train on
a dataset that can have either small files or big files, both
raise two different kinds of PFS performance issues. Note
that, both file type I/Os follow a transaction comprising of
<open-read-close> operations. Therefore, we use 32KB
to demonstrate small files and 8MB to mimic large files.
The gap in performance between the parallel file system
(GPFS) and XFS-on-NVMe, i.e., node-local storage is shown
in Figures 3 and 4.

The results of the 32KB read measurements in Figure 3
show that at smaller file sizes the PFS metadata performance
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Fig. 3: Transactions per second for 32KB random file open-read-
close operations on Summit comparing GPFS and XFS-on-NVMe.
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Fig. 4: Transactions per second for 8MB random file open-read-close
operations on Summit comparing GPFS and XFS-on-NVMe.

is an impediment to large-scale DL training jobs. In contrast, at
8MB file accesses in Figure 4 the problem reduces the burden
on metadata and shifts to bandwidth constraints. The aggregate
read performance of the node-local storage, i.e., NVMe SSDs
at 4,096 nodes in Summit is 22.5 TB/s compared with 2.5
TB/s of Summit’s GPFS.

When a DL training job runs on a large-scale HPC super-
computer, the model is trained using hundreds or more GPUs,
each requesting small batches of data creating potentially
millions of requests to the PFS. This access pattern is very
challenging for PFS. When a process opens a file on the PFS,
a request is made to a metadata server to verify the global
state of the file and the locations of the objects holding the
data for the file. On behalf of the requester, the metadata server
requests a lock or token to access the data to ensure it is not in
a modified state. The read request then generates new requests
to the series of servers holding the stripes of data needed for
the request. Upon receipt of the data, the application closes
the file and begins to process the data. Reading each file from
the PFS creates a cascade of operations. On leadership class
storage supercomputers, there are tens of metadata servers and
a few hundreds of data servers. This infrastructure works well
when file metadata operations are low and access requests are
large, but when millions or hundreds of millions of file open
requests are required in a short amount of time, such as for a
DL training job, the low count of metadata resources struggles
to operate on the request in a timely manner.

D. Limitations of Existing Systems

Optimizations in PFS: BGFS BeeOND [1] is used to
aggregate the performance and capacity of internal SSDs
in compute nodes for the duration of a compute job to



provide a transient namespace. Lustre persistent client caching
(LPCC) [44] provides a read-write cache on the local SSD of a
single client; and a read-only cache over the SSDs of multiple
clients. Solutions such as LROC/ILM on IBM Spectrum
Scale (GPFS) [3] or UnifyCR [13] enable applications to use
node-local storage as burst-buffers for caching writes. These
optimizations are intended to create full-fledged write and read
access mechanisms for applications. HVAC differs from these
strategies by not explicitly supporting writes, which eliminates
a significant overhead in the ways of metadata checks, locking,
and data search.

Distributed Caching for DL Jobs:

• FanStore [58] places metadata and file data in RAM and
local disks, respectively. One or more worker threads
within each FanStore process handle file system requests
intercepted from the DL training process. However,
FanStore works on an internal hash map technique which
limits resiliency on large-scale HPC supercomputers.

• Quiver [32] is designed for a shared GPU cluster where
Kubernetes manages scheduling of DL jobs on a spe-
cific virtual machine. However, Quiver needs data pre-
processing, works only on static data and needs a Quiver
specific API, which makes it not transparent and usable
for large-scale HPC DL applications.

• DIESEL [53] is data-aware storage and caching co-
designed supercomputer that supports both data writing
and data reading for DL jobs. DIESEL however requires
restructuring of the dataset, additional storage servers,
and provides a FUSE interface that routes I/O operations
from inside the Linux kernel back out to a user process
which incurs a performance penalty. Also, each client
caches the metadata eliminating the need for metadata
servers, but the metadata can consume significant mem-
ory if there are a large number of files.

• NoPFS [18] solves the I/O challenges of loading large-
scale DL datasets from PFS on HPC supercomputers
and proposed a near optimal prefetching and caching
by analyzing DL application access patterns. It highly
depends on the regression, access patterns and history
data. Thus, accuracy of prefetching can be compromised
if DL application shows different access patterns. Also,
it requires an additional metadata store to track access
patterns and samples. Further, it requires some changes
in data loader of DL application to use NoPFS.

In-Memory Stores: The choices like Memcached [9] and
LMDB [34] provide scalable I/O for datasets and are used to
improve DL workflows. Memcached is an in-memory, key-
value store that uses a distributed hash table to store keys
up to 250 bytes and value objects up to 1 MB, and places
the burden on the application to manage mapping larger files
onto multiple key-value pairs. LMDB is memory-mapped
DB and relies on mmap to perform in-memory data access.
Both Memcached and LMDB have non-POSIX interface that
require application-level modifications. Atop, mmap interface
is not suitable to complex DL applications access patterns,
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Fig. 5: The target architecture for the proposed system. (a) depicts
Summit’s node-local storage on compute nodes, whereas (b) reflects
the near node-local storage.

such as strided access of batches of data [43].
Although, the current work shares some basic design con-

siderations with the existing works. However, most of the ex-
isting studies are limited to various perspectives. For instance,
running DL applications at a large scale has not been studied
well enough, e.g., 1024 nodes. Other limitations include non-
trivial modifications of the entire input pipeline and metadata
bottlenecks. Thus, we design HVAC to be a highly scalable
software library for large-scale HPC supercomputers. Our key
contributions lie in the real deployment of HVAC library on the
Summit supercomputer at 1,024 nodes scale, without requiring
any modifications to the application and without the need for
any additional metadata storage backends.

III. HVAC: DESIGN AND IMPLEMENTATION

In this section, we present our key design goals and target
architecture followed by design and implementation of the
proposed caching system.

A. Design Goals

Our key design goals include:

• Scalability: The key design goal is to enable DL applica-
tion scalability on large-scale HPC supercomputers. The
training cost of DNN-based applications is very high for
two reasons. First, DNNs are getting more complicated
due to increased depth and parameters. Second, the
training samples are getting much larger, i.e., terabytes
of training data, which wields significant pressure on
IO subsystems as the entire data is re-loaded in random
order on every iteration to achieve higher accuracy and
convergence. Therefore, in this regard, HVAC must scale
to hundreds of application threads, and petabytes of data.

• Portability: There exist several existing studies to impro-
vise the training time of DL applications. However, those
studies require non-trivial modifications to either input
pipeline to the application code or underlying PFS. Our
goal is simple yet effective: keeping HVAC lightweight,
generic and portable, requiring no modifications to com-
plex scientific DL applications or underlying file system.
Further, HVAC can seamlessly benefit with any read
optimizations applied to underlying PFS.
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• No Metadata Bottleneck: Another key bottleneck in
large-scale PFS such as GPFS and Lustre is often at-
tributed to metadata I/Os. Therefore, we aim to elimi-
nate such metadata bottlenecks by employing a robust
metadata-less server architecture and enable algorithmic
location determination from the application to improve
performance.

B. Target Architecture

In recent years, it has become common to deploy large-
scale systems with additional storage, often flash-based as
shown in Figure 5, for handling high-bandwidth workloads
such as check-pointing [31]. These storage systems have a
variety of deployment models such as stand-alone racks in the
case of DataWarp, compute node-local storage as in Summit
and Sierra, and rack-local storage such as the upcoming
“Rabbit” architecture in El Capitan [7]. Therefore, HVAC
caching system is designed to be robust and easily deployable
on large-scale HPC supercomputers with different deployment
models.

C. System Overview

HVAC is a simple, lightweight and transparent client-server
library intended to accelerate I/O accesses for DL applica-
tions that utilize read-only data with a high re-read rate. An
architectural overview of HVAC caching system is shown in
Figure 6. The HVAC consists of two main components: HVAC
client library and HVAC server process. When a training job is
allocated over a set of compute nodes on HPC supercomputer
such as Summit, an instance of HVAC server is constructed
on the fly across these compute nodes, using the node-local
storage, or other fast storage devices. For instance, on Summit
supercomputer, the alloc_flags “hvac” option in job sub-
mission script initiates both the NVMe device on the compute
nodes in the allocation and spawns the HVAC server process.
At startup the server process establishes the Mercury RPC and
bulk communication components and generates a directory of
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PFS
RPC Handler

Open, Read, Close

Mercury RPC Library 

HVAC Client

Mercury RPC Library

NVMe
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Network
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intercepts IO 
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No, redirect 
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dataset directoryreturn file
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cached?
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Yes, redirect 
IO to NVMe

track file and 
copy on NVMe

return file descriptor

RPC Handler

Read from 
PFS DM

Shared
Queue

DL I/O to PFS HVAC I/O DM: Data Mover Thread

Fig. 7: HVAC I/O flow on compute node. Note that, ML/DL
application is unmodified. HVAC client and server instances can be
co-located on same node or different nodes based on the underlying
target architecture. Further, multiple HVAC server instances can be
executed on a single node.

known server processes. On the node-local storage, the HVAC
server is designed to have the same temporary life cycle as a
batch-submitted job, while it uses node-local fast storage to
improve application read performance.

When HVAC server instances are constructed, every HVAC
server instance spawns a dedicated data-mover thread, which
manages a shared FIFO queue to track and manage the
forwarded file I/O operations from HVAC client. The HVAC
server daemon operates independently and does not com-
municate with other server processes on remote compute
nodes, therefore being effectively unaware of each other. An
HVAC server daemon’s purpose is to process forwarded file
system operations from HVAC clients and to retrieve data from
PFS and cache it to node-local storage. The server internally
builds an aggregate cache layer atop node-local fast storage
to accelerate the DL application read performance as shown
in Figure 6. On the other hand, the HVAC client consists
of an interception interface that catches relevant file system
calls to PFS and redirects to the respective HVAC server.
The environment variable HVAC_DATASET_DIR points to
the parent directory of the dataset to be cached within the
allocation.

HVAC uses the Mercury communication library [49] for
supporting RPC and bulk data transfers on Summit over the
Infiniband network and in future will also support Slingshot 11
on the Frontier supercomputer [5].

D. I/O Flow

HVAC works as a traditional cache, where files are first
attempted to be accessed from the cache, and only upon a
cache miss the file is retrieved from the PFS. This step also
aids in overcoming the challenges of having to pre-copy data to
the node-local storage when sharding [55], [56] and prefetch-
ing [18] techniques are used to avoid the PFS. We consider
prefetching an important addition to HVAC as our future work.
As shown in Figure 7, the large-scale DL applications running
on compute nodes make use of distributed DL frameworks,
such as, Caffe [2], PyTorch [11], and TensorFlow [12]. These
DL applications access the read-only datasets stored on PFS
such as GPFS and Lustre. Any DL application that uses HVAC



must first preload the client interposition library that intercepts
file system operations such as open, read, and close.
This is a commonly observed pattern in DL training. Note that,
the file system calls are intercepted via LD_PRELOAD and do
not require any modifications to existing DL applications or
underlying parallel file system.

We demonstrate I/O flow in HVAC with two file read
scenarios.

First Read: 1 A DL application initiates a read request to
DL dataset directory on PFS as shown in Figure 7. 2 HVAC
client intercepts any incoming file I/O <open, read and
close> and starts tracking in the dataset directory. 3 The
RPC handler of HVAC client redirects the requested file I/O
to respective HVAC server whether local or remote to HVAC
client. This redirection is done via hashing, which we describe
in next subsection III-E. HVAC client and server internally
manage RPC handlers, responsible to send and receive the
messages over the network. 4 When HVAC server receives a
request, the RPC handler en-queues the forwarded file I/O to
share FIFO queue. 5 The data-mover thread checks if the file
is already cached on node-local storage. As, this is usecase
for the first read of a file, 6 the data-mover thread tracks and
copies the file to node-local storage via fs::copy(src,
dst) method from PFS. 7 The returned file descriptor or
stream is used to track the read offset and length, and used in
RPCs to the servers for initiation of the bulk transfers. 8 Close
calls are then intercepted and out of band RPCs are generated
to the owning server process to signal the tear down of the file
being accessed. Note that, it is highly likely that a single file
can be requested by multiple HVAC clients simultaneously,
therefore we use mutex lock on shared queue to guarantee
consistency and to avoid repeated copying of file to node-local
storage.

Future Cached Reads: On the contrary to the first read,
when a read I/O is received for an already cached file on
the HVAC server as shown in Figure 7, 6 the data mover
thread redirects the I/O to read file from node-local storage
bypassing PFS and 7 returns the file descriptor or stream to
the corresponding HVAC client, which then provides the file
descriptor to the DL application. The step 8 is performed
same as above.

Note that, the life cycle of the dataset in the cache is coupled
with the life cycle of the job on HPC supercomputer. When
the job is finished, the cached datasets is purged from the
node-local storage.

E. Hash-based I/O Redirection

HVAC client aggressively uses hashing to distribute I/Os
internally and locate the contents cached at HVAC servers.
This obviates the need for a metadata store or in-memory
database to store cached file metadata. In HVAC, file cache
locations are determined using the file path and job node
allocation. This combination of information is first used to
algorithmically determine the location of the cache within
the allocation that “homes” the file. The client then contacts
the resident server process to retrieve the data. Note that,

each file is managed and cached by one HVAC server. This
hashing technique is common in file systems such as GekkoFS
and CephFS [47]. Though CephFS uses CRUSH which is an
intelligent pseudo-random object placement algorithm. This
hash-based server determination not only relieves us from
i) complicated location metadata management for datasets
with billions of files, and ii) broadcasting requests to find
file to hundreds of servers but also aids in balancing load-
across the compute nodes. In current work, HVAC caches
data at file granularity. However, to ensure an even load-
distribution among HVAC servers for datasets with highly
skewed file sizes, segment-level caching [17] can be imple-
mented. HFetch [17] proposed segment-level caching to accel-
erate scientific workflows, which requires managing additional
file-to-segment layout mappings.

F. Intercepting Read I/Os

For the initial prototype, HVAC is used to profile the read
calls from the DL frameworks like PyTorch and Horovod, to
understand how the data loaders within the frameworks access
the files. HVAC is built using an LD_PRELOAD mechanism
for intercepting I/O related function calls. The LD_PRELOAD
mechanism avoids the necessity of forcing applications to
modify their code bases to support HVAC. This is important
for large-scale HPC supercomputer DL application runs, where
having to modify large applications to use HVAC presents a
huge burden on the application developers. With the DL data
loading frameworks, traditionally written in python, it was
initially unclear if this would be a viable strategy. Our initial
tests on ResNet50 using PyTorch and Horovod show that the
framework use POSIX <open, read, and close> calls
to access the underlying file system. The profile from the DL
application - ResNet50 show the pattern of open, a single
16MB read, and a close per file and files were all read in prior
to each iteration of the framework. This pattern is successfully
intercepted by HVAC.

G. Cache Eviction and Replacement

The DL training job reads a dataset repeatedly, so caching
the dataset in the compute node-local storage increases the
read performance significantly. HVAC partitions the complete
dataset among the compute nodes. However, in cases where
dataset is larger than the aggregate capacity of all node-local
storages of compute nodes, cache eviction and replacement can
be performed. Currently, HVAC is designed to perform evic-
tion and replacement randomly and various cache-eviction and
replacement policies can be considered. However, HVAC is
designed to run at scale, i.e., 1,024 compute nodes. Therefore,
in real scientific usecases, we do not observe any dataset which
can outgrow the aggregate capacity of node-local storages of
the compute nodes.

H. Future Work

The initial prototype for HVAC simplifies the design space
to enable focus on the important underlying primitives of
the library. However, there are several underlying design



choices that need to be investigated to improve performance,
scalability, and reliability. The current implementation of the
home location calculation assumes that a file is only resident
in a single location within the allocation. This can lead to
one-to-many lookup issues that may imbalance the access
and more importantly, if the node-local NVMe fails, lead to
a failed training run. With over 7PB of node-local NVMe
storage on Summit, for many datasets it is reasonable to enable
data replication within the allocation. This would allow for
local grouping within the allocation to distribute accesses and
improve performance and enable the calculation of fail-over
locations in the case of a failed HVAC server.

IV. EVALUATION

In this section, we investigate and evaluate the scalability
of the proposed HVAC caching system.

A. Experimental Setup

1) Testbed: We used Summit supercomputer for large-scale
evaluation of HVAC. Summit [39] is based upon IBM AC922
system and deployed at the Oak Ridge Leadership Computing
Facility (OLCF). It consists of 4,608 compute nodes. The
description of compute node is shown in Table I. Summit is
connected to Alpine, a 250 PB IBM Spectrum Scale (GPFS)
file system. Summit can access Alpine at 2.5 TB/s in aggregate
under a large, sequential write I/O access pattern. Alpine is a
center-wide file system and is directly accessed by all other
OLCF resources.

Attribute Description
Supercomputer Summit
CPU 2 x IBM POWER9 22Cores 3.07GHz
GPU 6 x NVIDIA Tesla Volta (V100)
Memory Capacity 512 GB DDR4
Node-local Storage 1.6 TB Samsung NVMe SSD with XFS
Network Interconnect Family Dual-rail Mellanox EDR Infiniband

TABLE I: The compute node specification of Summit.

2) Benchmark and Applications: We use a mix of deep
neural networks and scientific deep learning applications from
MLPerf-HPC benchmark [19] to evaluate the scalability of the
proposed caching framework.

• DNNs: We use two DNNs for our experiments namely,
ResNet50 and TResNet M. We used ImageNet21K
dataset to train the models with PyTorch and Horovod
for distributed training. ResNet50 is a large network with
228 layers and 25.6M parameters.

• CosmoFlow [36]: is a highly scalable deep learning
application from MLPerf HPC v0.5 benchmark suite [19].
It involves training a 3D convolutional neural network on
N-body cosmology simulation data to predict physical pa-
rameters of the universe. We use cosmoUniverse dataset
to train CosmoFlow application. It uses cosmoflow model
and includes more than 51K parameters.

• DeepCAM [33]: is a PyTorch implementation for the
climate segmentation benchmark, based on the Exascale
Deep Learning for Climate Analytics. DeepCAM is also
part of MLPerf HPC v0.5 benchmark suite and was

awarded the ACM Gordon Bell Prize in 2018 [33],
[19]. DeepCAM is trained on images with 768 × 1152
pixels and 16 channels, which is substantially larger than
standard vision datasets like ImageNet, where the average
image is 469 × 387 pixels with at most 3 or 4 channels.

3) Datasets: We use two different large-scale datasets
for our experiments. The first dataset we used is the Ima-
geNet21K [6]. This dataset contains 11,221 classes, where
the training set has 11,797,632 data points and the test set
has 561,052 data points. The average sample size in dataset
is approximately 163KB (total dataset is 1.1TB). The second
dataset is cosmoUniverse containing preprocessed TFRecord
files generated from simulations runs by the ExaLearn group
at NERSC [36]. There are 524,288 samples for training and
65,536 samples for validation (total dataset is 1.3TB). All
the datasets are stored on IBM Spectrum Scale GPFS. Note
that, all the datasets we used are large enough to introduce
significant I/O challenges in scale-out environments, which
expose GPFS performance limitations. All experiments were
repeated three times, unless otherwise noted, and we report an
average with a 95% confidence interval.

We compare our approach with the following systems:
• GPFS: is the large-scale IBM Spectrum Scale shared PFS

hosting the complete dataset. Each epoch and iteration
touches the file system to read the dataset.

• XFS-on-NVMe: An ideally optimized scenario, where
the complete dataset is staged to compute node-local
NVMes formatted with XFS file system prior to appli-
cation run and no GPFS is involved. This is upper I/O
bound for all of our experiments.

• HVAC (i x 1): The proposed caching system with i
instance(s) running on each compute node. The dataset
is read from GPFS only in the first epoch and for
rest of training epochs, the dataset is accessed from
HVAC cache. We run multiple HVAC servers on a single
compute node to show its flexibility, portability and
ease of deployment. Further, such multiple instances also
demonstrate a multi-threaded version of HVAC and to
show performance improvement.

B. Effect of Scaling the Number of Compute Nodes

First, we show the effect of scaling the number of compute
nodes on training performance in terms of training time
(Figure 8 (a) - (d)). We compare the training performance
of each of the four DL applications and scale the training job
from a single node to 1,024 compute nodes of Summit and
measure the training time of two concurrently running DL
training jobs per node using the entirety of training dataset
for each application. For Figure 8(a) and (b), we observe a
notable reduction in training time (averaging 20%) by HVAC
compared to GPFS with small number of nodes, i.e., 32 nodes.
However, when we scale the number of nodes incrementally
from 32 to 1,024, the high-bandwidth GPFS is insufficient
as the bottleneck does not lie in bandwidth, but instead small
metadata I/Os becomes a bottleneck for huge number of small
files. Additionally, we also see that in Figure 8(a) and (b),
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Fig. 8: Among the four DNN models explored in our study, we see that HVAC outperforms the GPFS with scaling the number of nodes.
BS, Eps, and nProcs/node denote batch size, epochs and number of application processes per node. Y-axis shows training time in minutes.

GPFS training time is much higher than (c) and (d). As, the
dataset used for cosmoflow and deepcam contains larger file
sizes compared to (a) and (b), thus stressing the metadata
servers on GPFS. Surprisingly, we notice that, at 1,024 nodes,
GPFS performance saturates and show a little higher training
time compared to the peak performance of GPFS gained
at 450 nodes. On the contrary, all HVAC variant results
imply that the proposed caching scales fairly-well and provide
consistent improvement in training time, which is critical
to DL application performance. While, all HVAC variants
show large performance improvement compared to GPFS at
scale, and for larger datasets, there is still a gap between its
performance and XFS-on-NVMe performance. All the results
in Figure 8 show that HVAC fails to meet the XFS-on-NVMe
training time. With HVAC(4x1), we see an average of 9%
lower performance compared to upper I/O bound, i.e., XFS-
on-NVMe,. This lower performance against XFS-on-NVMe
is attributed to several factors, i) implementation overhead
incurred by HVAC for cache loading/allocations, ii) accessing
files from remote compute nodes, and iii) performance drop in
first epoch, for copying files from GPFS to node-local storage.

Overhead Analysis: To clearly demonstrate performance
improvement in training time against GPFS, we present the
performance improvement normalized with GPFS in Fig-
ure 9(a). Notably, for aggregate training time of 10 epochs,
the improvement factors lies around 7-25% till we reach
256 nodes. However, there is high performance gain, when
we scale to 512 and 1,024 nodes, the average performance
improvement is over 50% for all HVAC variants. This shows
HVAC’s strong scaling property. Next, we show HVAC train-
ing time overhead normalized with XFS-on-NVMe in Fig-
ure 9(b). We observe that HVAC(1x1) shows higher overhead
averaging around 25% compared to other HVAC variants, i.e.,
HVAC(2x1) 14% and HVAC(4x1) with 9%. We see that this
performance overhead is consistent as we scale the number of
nodes. Therefore, we attribute it to HVAC’s implementation
overhead.
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Fig. 9: HVAC performance gain and drop normalized with GPFS
and node-local NVMe-SSDs.

C. Effect of Scaling the Number of Epochs

Next, we study the effect of varying number of epochs
on training performance in terms of training time (Figure 10
(a) and (b)). We perform experiments with ResNet50 and
CosmoFlow DL applications on 512 compute nodes. Note that,
with smaller epochs at 2 and 4, the performance of all variants
is comparable and not much training time overhead has been
noted. However, the DL application model fails to converge at
such small number of epochs. Therefore, epochs plays a key
role in DL application models. For both models, we scale the
epochs linearly and see that the results confirm our findings
from Figure 8. As expected, HVAC shows a strong scaling
efficiency with increasing number of epochs.

Per Epoch Analysis: It is critical to show and analyze
the per epoch analysis of GPFS, HVAC variants and XFS-
on-NVMe. Figure 11 shows different epoch experimental
results. The epoch-1 refers to the first training epoch, whereas,
R epoch denotes best random epoch (excluding the first
epoch) and avg epoch shows average epoch time contributed
in training by each variant. As expected, all HVAC variants
compared to GPFS show nearly same training time for the
epoch-1. It is because in the first epoch, every HVAC servers
reads the file from GPFS and then caches it. In HVAC, other
nodes can only benefit from cache, if any of the nodes in
the job has previously cached the file. Therefore, in the first
epoch, nearly each server touches GPFS. However, subsequent
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Fig. 10: Effect of increasing Epochs on training time. nNodes denote
number of compute nodes.
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Fig. 11: Training performance with different epochs. Epoch 1,
R and Avg refer to first training epoch, random epoch (excluding
first epoch), and average epoch training time. [BS=4, Eps=10, nN-
odes=512]

random epoch shows performance improvement compared to
GPFS and we see that, once the dataset is fully cached,
the training time has reduced to a factor 3x per epoch by
HVAC(4x1) compared to GPFS. This is highly desirable for
DL models, when number of epochs grow beyond 1000 to
achieve 99% model accuracy. Further, with average epoch, we
see a consistent and similar trend in all HVAC variants and
XFS-on-NVMe as observed in Figure 8. Our future work will
investigate utilizing prefetching techniques to pre-populate the
HVAC cache and reduce the performance overhead of epoch-1.

D. Effect of Increasing the Batch Size

In DL training applications, batch size is another key factor
to effect training performance. Therefore, we show impact of
batch size on training time (Figure 12 (a) and (b)). For this ex-
periment, we use TResnet M and DeepCAM DL application.
For GPFS, we see that the training time of TResnet M over
the course of 80 epochs with increasing batch size from 4 to
128, there is slight improvement in performance of about 2-
4% in training time. This performance improvement is derived
from loading dataset in bigger batches, thus reducing round-
trips to GPFS. However, we observe the similar trend by other
approaches, i.e., HVAC variants and XFS-on-NVMe. Thus,
we conclude that larger batch size may not yield substantial
impact on DL training performed on GPFS, HVAC, and XFS-
on-NVMe as commonly expected in previous results. We claim
that, with all the previous experimental results, HVAC is highly
scalable, robust, and adaptable. Any optimizations applied to
GPFS can be inherently seen and applied to HVAC without
any modifications to application or HVAC system.
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Fig. 12: Impact of increasing batch size. nNodes denote number of
compute nodes.

E. Effect of Cache Size on Training Time

HVAC is a caching system and cache size can highly impact
the performance. Therefore, we also study the impact of dif-
ferent cache sizes on HVAC performance and to spotlight the
implementation overhead for accessing dataset from remote
compute nodes. Figure 13 show the training time with respect
to different cache sizes. For this experiment, we manually
control the datasets resident on local and remote compute
nodes. We treat the compute node hosting the training job
as local and all other compute nodes as remote. We ob-
serve a negligible performance difference with multiple cache
size configurations. HVAC internally uses high-performance
Mercury library for remote communications and bulk data
transfers over the Infiniband network. Therefore, the remote
node communication overhead does not have high impact on
HVAC performance at scale.
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F. Training to Accuracy with HVAC

The most critical outcome of a DL training is the model
training accuracy. To demonstrate this, we train ResNet50
on ImageNet-21K dataset to validate accuracy of GPFS and
HVAC and show accuracy comparison in Figure 14. We
observe that HVAC does not change the shuffling and ran-
domness of DL training I/O at any time during training. The
file lookup via hashing in HVAC does not affect the learning
algorithm to compromise the randomness and avoids model
over-fitting. Figure 14 shows that both GPFS and HVAC
achieve Top 5% and Top 1% accuracy at nearly same iterations
during model training. Moreover, in other words, we can say
that HVAC achieves top 1% and 5% accuracy much earlier
than GPFS due to its lesser training time. The existing sharding
techniques tend to impact the accuracy, if the dataset is not
fully shard on node-local storage.
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Fig. 14: Accuracy analysis for ResNet50 model. We observe that
HVAC does not compromise randomness of SGD algorithm by
introducing hashing-based file lookups. Note that, we observe same
accuracy for XFS-on-NVMe but due to space limitation, we do not
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G. Fairshare and Load Distribution Analysis

Figure 15 shows the utilization ratio of each server with
scaling number of compute nodes in training job. We define
utilization ratio as distribution of files across the compute
nodes. We observe from Figure 15 that HVAC shows fairly
well-balanced file distribution across the compute nodes for
ImageNet21K datasets. However, HVAC shows a little devia-
tion from CDF when number of compute nodes are less than
128. This deviation is attributed to random sizes of file in
the datasets. Note that, in our future work, topology and fail-
over will also be considered when calculating the location of
a given file and balanced distribution of files across the subset
of HVAC servers will be an important metric.

V. RELATED WORK

DL techniques are becoming more popular in HPC for
solving problems in human health, high-energy physics, mate-
rial discovery and other scientific areas [50], [15], [16], [54],
[52]. There is a spurt of recent works on optimizing DL
applications, which we broadly classify into three categories.

Dataset Prefetching and Caching: FanStore [58],
DIESEL [53], Hoard [42], and Quiver [32] proposed a caching
middle-layer to accelerate DL application performance. Other
caching and pipelining techniques include DeepIO [59],
GPipe [27], CoorDL [38]. In DeepIO [59], data servers store
subsets of the training dataset in an in-memory cache and
prioritize reuse of data from the in-memory cache. While this
reduces the accesses to the storage system, the mechanism
can change the mini-batch sequences and impact the model
accuracy. MinIO in CoorDL [38] avoids replacement of cached

items between epochs, without affecting the random ordering,
so that at least some fraction of data for an epoch is always ac-
cessible from the cache. GPipe [27] and Mini-epoch Training
(MET) [55] are focused on overlapping communication and
data loading to minimize the training time via mini-batching
approach. NoPFS [18] the most recent study discussing and
solving the I/O challenges of loading large-scale datasets from
PFS and proposed a near optimal prefetching and caching
approach by analyzing ML/DL application access patterns.

PFS Optimizations: PFS is one of the most essential build-
ing blocks of the persistent storage stack in large-scale HPC
environments [16], [30]. When conducting training on an HPC
cluster, PFS is commonly used for storing the large volume
of datasets. The DL frameworks, such as TensorFlow [14],
Caffe [2], and Pytorch [11], invoke highly random small
read requests to PFS and form mini-batches of the dataset
required for successful training. Therefore, many research
attempts have been made for I/O performance analysis of
different PFSs for their capabilities to handle the workloads
posed by DL applications [16], [35], [43], [46], [22]. BGFS
BeeOND [1] is used to aggregate the performance and capacity
of internal SSDs in compute nodes for the duration of a
compute job to provide an elegant way of burst buffering.
Lustre persistent client caching (LPCC) [44] provides a read-
write cache on the local SSD of a single client; and a read-
only cache over the SSDs of multiple clients. The limitations
of LPCC with in-node storage cache is limited to the size of
a single NVMe and the performance of the single NVMe.
HVAC can distribute a dataset much larger than a single
NVMe and performance from a client perspective is distributed
across multiple NVMes. Other solutions such as LROC/ILM
on IBM Spectrum Scale (GPFS) [3] or UnifyCR [13] enable
applications to use node-local storage as burst buffers for
shared files. CHFS [51] an adhoc parallel file system that
utilizes the persistent memory of compute nodes. The design
is based entirely on a highly scalable distributed key-value
store with consistent hashing. HFetch [17] adopts a segment-
level hierarchical caching to optimize scientific workflows,
for datasets stored on PFS. These optimizations are intended
to create full-fledged write and read access mechanisms for
applications.

In-Memory Stores and Memory-mapped IO: In-memory
stores choices like Memcached [9] and LMDB [34] provide
scalable I/O for datasets and are used to improve DL work-
flows. Memcached is an in-memory, key-value store that uses
a distributed hash table to store keys up to 250 bytes and
value objects up to 1 MB, and places the burden on the
application to manage mapping larger files onto multiple key-
value pairs. LMDB is memory-mapped DB and relies on map
to perform in-memory data access. Mmap is a generic Unix
system call that maps the layout of a file on the file system to
the virtual address space of a process, thus giving an illusion
to the process that the entire file is in memory. However,
both Memcached and LMDB have non-POSIX interface that
requires application modification. Atop, Mmap interface is not
suitable to complex ML/DL application access patterns, such



as strided access of batches of data [43].

VI. CONCLUSION

In this paper, we presented High-Velocity AI Cache
(HVAC), which has been demonstrated to remove I/O bot-
tleneck for large-scale DL applications running on leadership
scale HPC systems. HVAC exploits the node-local storage on
compute nodes and builds an aggregate cache layer atop to
accelerate the DL application read performance. We discussed
the motivation for building HVAC and the limitations of the
current systems based on scalability or application and tool
portability. We deploy and evaluate HVAC on 1,024 nodes
(with over 6000 NVIDIA V100 GPUS) of the Summit super-
computer. In particular, we evaluate the scalability, efficiency,
accuracy, and load distribution of HVAC compared to GPFS
and XFS-on-NVMe. With four different DL applications, we
observe an average 25% performance improvement atop GPFS
and 9% drop against XFS-on-NVMe, which scale linearly and
are considered the performance upper bound. We envision
HVAC as an important caching library for upcoming super-
computers such as Frontier. Future works include comparison
with existing caching and prefetching techniques, investiga-
tions of client/server aggregation ratios, data layout options for
large files across multiple nodes, and job topology partitioning
enabling redundancy for reliability and performance.
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