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Executive Summary

The complex interdependencies of cyber systems (sensors and communications), physical

grids and associated electricity market operations make protecting electric power grids a

significant challenge. The energy sector is constantly under new, targeted, advanced and

dangerous cyber-attacks that have the potential to result in the loss of human life. These

threats are further exacerbated by our need to modernize the grid. One focus of cyber

security research in smart grids is the securing of the SCADA system through advanced

intrusion detection systems (IDS) and bad data detection algorithms in state estimation.

These methods either require full knowledge of the system topology and parameters or fail

to understand the physical behaviors under attack.

WISP (Watching grid Infrastructure Stealthily through Proxies) is designed to provide

additional protection to the power grid using only publicly available data. In particular,

WISP exploits the spatio-temporal nature of the real time locational marginal prices (LMPs),

in conjunction with other information such as bids, weather, outages and load data to analyze

anomalous power pricing behaviors and then correlate those observations to localize regions

of interest and identify potential cyber events. WISP is non-intrusive as the tool is deployed

as a service in the Cloud or on premise and provides reliable information to system operators

for enhanced situational awareness, without impeding energy delivery functions.

The WISP technology comprises three modules: the data-driven anomaly detection core,

the vulnerability and risk analysis and the root cause analysis. The data-driven anomaly

detection core performs the tasks of feature selection, anomaly detection and attack region
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localization. The vulnerability and risk analysis module provides system level information

of the vulnerable variables and times, assisting the operators in selecting monitoring and

protection nodes. The root cause analysis module takes the detection results and identifies

potential operational conditions that contribute to the detected anomalies.

In Phase I, we have demonstrated the feasibility and effectiveness of WISP. We developed

a realistic electricity market simulator capable of generating normal and attack market data

under various operational conditions. We developed a series of cyber-attack detection and

analysis algorithms and evaluated them under multiple data sources. Finally, we integrated

all modules into an end-to-end software, providing functions for data management, data

analytics and visualization. Specifically, we have achieved: (i) real-time data acceptance

from external utility interfaces with >99% acceptance rate; (ii) high performance anomaly

detection algorithms with >98% detection accuracy and <0.1% false alarm rate; and (iii)

ultra-low computing delay <50 milliseconds. Additionally, our team developed algorithms

to identify the vulnerable variables in electricity market operations and root cause analysis

functions to identify major contributors to the price spikes. These ancillary modules are

necessary when deploying WISP in real world industry environment.

In Phase II, we have demonstrated the effectiveness of WISP software on realistic large-

scale power systems. We performed red team testing for the Phase I WISP software and

identified software vulnerabilities and implemented corresponding mitigation solutions. We

adapted the electricity market simulator for the Texas synthetic 2000-bus system and gen-

erated datasets for the false data injection attacks. We created database and visualization

interfaces for the Texas system and the ISO New England system. We performed software

optimization in terms of operation efficiency, computing speed and detection accuracy. Fi-

nally, we tested the software on the Texas system and the ISO New England system and

evaluated the detection performance. Overall, we achieved above 89% detection rate, below
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3% false alarm rate and below 37 seconds of end-to-end detection delay.

In conclusion, we have accomplished the objectives for WISP research and successfully

demonstrated the WISP software on large-scale systems.
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Chapter 1

Introduction - Phase I

The complex interdependencies of cyber systems, physical grids and associated electric-
ity market operations make protecting electric power grids a significant challenge. Recent
reports and surveys show that the energy sector is constantly under new, targeted, advanced
and dangerous cyber-attacks that have the potential to result in the loss of human life. Ex-
amples include advanced cyber intrusions such as the BlackEnergy, Havex, and Sandworm
malware variants that targeted critical electric power infrastructure cyber assets, including
Supervisory Control and Data Acquisition (SCADA) systems. The threats against critical
infrastructure from criminal groups, hackers, disgruntled employees, nation states and terror-
ists, whether targeted or opportunistic, are evolving and growing (see incidents reported by
the Industrial Control Systems Cyber Emergency Response Team (ICS CERT)). The cyber
security threat to the energy sector is not new as the U.S. Department of Energy (DOE) has
led strategic road mapping activities to address cyber security threats and improve cyber
resilience since 2004. The energy sector has also made significant strides in protecting the
critical cyber assets at power generation facilities through the development and enforcement
of standards such as Critical Infrastructure Protection (CIP) by the North American Electric
Reliability Corporation (NERC).

The threat to the electric sector is exacerbated by our need to modernize the grid. As
current power systems advance from a macro utility-centric model to a distributed structure,
driven by the energy revolution, several new schemes such as smart metering, real-time
pricing, managing demand side flexibility and distributed renewable energy resources, shall
come to fruition. Such technologies will no doubt improve the operations of the grid and
the efficiencies of the associated markets. On the other hand, it will also increase system
exposure, providing newer entry points for hackers to disrupt grid operations. In this chapter,
we review the related work in protecting electricity grids against cyber-attacks and introduce
the general framework and research goals of WISP.

1
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1.1 Related Work
One focus of cyber security research in smart grids is the securing of the SCADA sys-

tem. Since the legacy system in SCADA cannot be updated or patched through traditional
IT security technologies, a series of intrusion detection systems (IDS) are introduced as a
countermeasure. One IDS design is statistic-based anomaly detection which identifies misbe-
haviors in network traffic by inspecting the headers of the packets under industry standard
protocols [6]. Another category is the SCADA-specific IDS which relied heavily on domain
knowledge, such as state-based IDS [7], model-based IDS [8], rule-based IDS [9] and behavior-
based IDS [10]. The performance of the IDS is limited due to the following reasons: (1) the
unaddressed false alarms in statistic-based IDS (2) the need for expert knowledge of the
system and the tailoring of the IDS for different systems, and (3) the lack of well-considered
attack models.

A few efforts have been explored to defend against false data injection attacks. In [11],
efforts have been made to develop computationally efficient heuristics to detect these false
data attacks against state estimation. For data injection attacks in the state estimation layer,
one major approach is to harden the physical layer: either protect the basic measurements
or introduce state validation through installation of advanced meters, such as PMUs. Since
securing all meters is not cost-effective, efforts have been done to strategically select a subset
of critical meters to keep network observability and minimize the attack effort. Algorithms
are also developed to decide minimum deployment of PMUs to validate the critical states.
Another technology to defend against data injection attacks is to design a historian-based
detector. Instead of the estimation residue based bad data detector, a likelihood ratio test
detector can be used taking advantage of the prior information to preserve and trace the
likely states in the system. Data analytical approaches such as Neural Networks have been
introduced to mitigate false data injection attacks [12]. The drawbacks of existing protection
technologies include: (i) high cost and intrusive techniques prohibiting faster adoption of
physical layer protection; (ii) potential compromise of the defenses such as GPS spoofing for
PMUs; (iii) complicated algorithms that requires full knowledges of the system topology and
parameters; and (iv) new attacks designed to bypass the data-driven detectors via studying
the statistical behavior of the measurements.

In summary, there are almost no efforts that focus on system-level cyber defense against
multiple attack vectors, nor on using market layer observation to detect attacks at physical
layer. WISP will bridge this gap by providing a novel non-intrusive anomaly detection
solution that leverages publicly available market data. WISP will analyze the advertised
locational electricity price data with other information such as load patterns and system
outages to detect and distinguish cyber-attacks from normal system events and also localize
the region of disturbance.
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1.2 WISP
The core focus of WISP is to observe publicly available prices to identify and explain

the cause of anomalous pricing behaviors, whether it is due to intentional or non-intentional
acts on the underlying power system and market interfaces. Phase I of WISP is executed as
follows. The initial task is to delineate the attack landscape for energy markets, including
intentional and non-intentional attacks and use power system and market simulation tools
to generate locational marginal prices (LMPs) for various IEEE bus structures to assist the
development of unique signatures corresponding to attacks and normal disturbances.

Subsequently, machine learning algorithms, using power system and market knowledge,
are developed and then tested and evaluated for their ability to detect and flag anomalous
events by observing variations in real time prices and other external information. The
knowledge gained in the simulation environment are used to develop a real-time energy
market monitoring tool that learns correlations between prices for different locations, in the
presence of congestions and use it to detect and alert system operators, when anomalous
deviations are observed. The end output of Phase I is an anomaly detection software that
detects and alerts operators on identification of anomalous price deviations. Confidence
scores and adaptive thresholds are derived to reduce the impact of false alarms.

The Phase I of the report is organized as follows. Chapter 2 presents the study of the
threat and attack landscape in energy systems. Chapter 3 presents the electricity market
simulator including power system operational functions, cyber-attack implementations, case
study and signature derivations. Chapter 4 presents the anomaly detection algorithms and
evaluation results on various datasets. Chapter 5 presents the algorithms of the vulnerability
and risk analysis module. Chapter 6 presents the algorithms of the root cause analysis
module. Chapter 7 presents WISP software architecture design and software development.
Chapter 8 presents the commercialization plan. Chapter 9 concludes Phase I. The overview
of the key objectives and achievements of WISP Phase I are presented below.

The key objective of WISP is to research and develop:

• A non-intrusive cyber-attack monitoring tool that uses readily accessible market data
(LMPs) to detect and reason over anomalous pricing behaviors in order to provide
insights to utilities/ISO about potential cyber events

• A library of LMP-based signatures to distinguish natural grid events from intentionally
induced cyber events (e.g., corrupted grid measurements)

• Optimal detection thresholds that forces an adversary to induce minimal perturbations
to the measurements or market information, thereby leading to minimal system losses

The major accomplishments of the WISP Phase I are:
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• Published results in leading conferences and journals (5 papers)

• IP on "Systems and methods for anomaly detection in electric power grids using elec-
tricity market data" filed on March 2021

• Outreach via on-site and remote presentations to ISO-NE and PJM in 2020

• Completed the milestones and submitted required deliverables

• Completed DOE peer review in 2020 and live demonstration in 2021

• Developed algorithms for WISP data-driven detection core, vulnerability and risk anal-
ysis module and root cause analysis module

• Integrated data downloading, simulation, query, and storage functions with data ana-
lytics and visualization platform to a market monitoring tool capable of:

– detecting anomalies with > 98% detection rate and < 0.1% false alarm rate
– accepting real-time utility data with > 99% acceptance rate
– making real-time detection with delay less than 50ms



Chapter 2

Threat and Attack Classification for Energy
Markets

The increasing frequency of cyber intrusions in the modern power grid is becoming a
nationwide concern and challenge. The new trend of malware attacks makes large scale
cyber attacks possible in the industrial control system (ICS) environment. The adoption of
advanced smart grid technologies introduces new access points for threat agents. Electricity
market, as one of the core power system components, interacts with all domains ranging from
entities of power generation to consumption. Electricity price is a synthesized reflection
of the physical system, market strategy, customer behavior and weather conditions, etc.
Impactful attacks, either target on the market or physical system, will compromise the input
of the market machine and lead to unpredictable and undesirable shifting and spikes in
electricity price. This chapter depicts the details of these threats and attacks classified by
their technology areas and attack interfaces.

2.1 Introduction
Electric distribution infrastructure, powering communication, transportation, health, wa-

ter treatment, etc., is at the heart of all critical public serving facilities. It is an urgent
task [13–15] to enhance grid resilience against the ongoing and emerging advanced cyber
intrusions at the energy sector as shown in Figure 2.1. Malware, malicious software, is an ef-
fective and most frequently reported manner to compromise industrial control systems (ICS)
as proven by cyber incidents all over the world. Successful attacks involve combined exploits
of multiple vulnerabilities spread across all information technology (IT) and operational tech-
nology (OT) components. Among these exploits, phishing and watering hole are frequently
used in the first stage of cyber intrusion and malware is often deployed to take control of the
victim system [13]. Denial of service (DOS) is another popular and continuously reported
attack revealed by the data from the Industrial Control Systems Cyber Emergency Response
Team (ICS CERT).

5
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Figure 2.1: Recent Trend of Cyber Attacks in Energy Sector

In the battle against cyber threats, one major accomplishment is the establishment and
promotion of the North American Energy Reliability Corporation (NERC) Critical Infras-
tructure Protection (CIP) guidelines, which are mandatory for bulk power systems. However,
as of year 2015, only an estimate of 10%-20% grid assets are covered by CIP [16] since most
distribution companies are under state or local regulations. Meanwhile, the Department of
Energy (DOE)’s grid modernization effort has further advanced the automation and dig-
italization of the bulk power grid and elevated the utilization of latest distribution grid
technologies, such as distributed energy resources (DER), advanced metering infrastructure
(AMI), and demand response (DR). Though this movement enables great efficiency and
flexibility, it also opens additional access points to power grids accompanied by the new vul-
nerabilities and attack vectors. This chapter will discuss the details of these vulnerabilities
in section 2.3 in category of their technology areas.

The adversary activities in power systems also affect the energy market since the market
machine (a set of algorithms that generates electricity prices and generation dispatch deci-
sions) is highly coupled with the underneath operational and physical systems. Information
extracted from the electricity market data can be used to indicate the operational conditions
of the power system and detect malicious cyber incidents. Currently, there is a lack of effort
in evaluating the market impact of the cyber attacks and using market data as an indicator.

To fill the gap, we developed a market monitoring tool, WISP, to analyze anomalous
power pricing behaviors and then correlate those observations to localize regions of interest
and identify potential cyber events. In WISP framework shown in Figure 2.2, we consider the
baseline system as a three-layered model including power system layer, energy management
layer and market management layer. Under this model, three classes of cyber attacks are
considered: (1) the false data injection attacks that compromise data integrity of the mea-
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surements, (2) the physical response attacks that intrude the grid edge devices and power
users, (3) the market interface attacks that exploit the bids and offers.

Figure 2.2: Overview of the WISP framework

The remainder of this chapter is organized as follows. Section 2.2 presents baseline energy
market model and the supporting technologies. Section 2.3 presents common vulnerabilities
and threats in energy systems and the attack scenarios that impact the energy market.
Section 12.3 concludes this chapter.

2.2 System Model
The operation of electricity market, specifically the wholesale market, depends on the

cooperation of five major participants: generation, transmission, distribution, customer and
service provider [17]. The operation center (OC), i.e. Regional Transmission Organization
(RTO) or Independent System Operator (ISO), maintains the power balance using energy
management modules, e.g. security constrained economic dispatch (SCED), unit commit-
ment and contingency analysis, and market management modules, e.g. day-ahead market
and real-time market. The bulk power plants (generation) join the market as suppliers.
They submit their offers (quantity and price) to OC and receive dispatch decisions from
OC. The transmission system moves power from generation to distribution usually in high
voltage and long distance. Transmission system is monitored, controlled and protected via
sensors, relays, and circuit breakers, leveraging technologies such as Supervisory Control
and Data Acquisition (SCADA) and Phasor Measurement Unit (PMU). The measurements
from transmission lines and substations are sent to the OC in real-time to support dynamic
dispatching and pricing through remote connections. The distribution system delivers power
to the customers. Small commercial and residential customers only join the retail market
while the large industrial customers can directly participate in the wholesale market. The
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service providers, utilities or third party providers, report the aggregated demand to the
OC and bid for the suppliers’ offers. They provide wide range of services such as billing,
accounting, communication and control of energy use. The concept and interactions of the
market participants are illustrated in Figure 2.3.

Figure 2.3: Technologies Supporting Power Grid and Electricity Market

In the system model, we consider several critical and vulnerable technology areas that
support smart grid and electricity market. In particular, the information and communication
technologies (ICT) refer to all networking and computing devices, firmware, software and
protocols that enable two-way information transmission, logging and storage. ICT is the
fundamental infrastructure that serves all smart grid applications, of which we focus on
SCADA, AMI and DR since they directly contribute to electricity pricing.

SCADA system mainly consists of three elements: the remote terminal unit (RTU), the
master terminal unit (MTU) and the human-machine interface (HMI). RTUs are widely
installed in substations as data acquisition equipment for field sensors, and executors of
commands from MTU. MTUs, located in master stations, gather data from RTUs and report
to the operators through a graphic interface, HMI. MTUs are responsible for data logging,
alarming, trending and reporting, and also provide control interface to the field devices,
such as circuit breakers and switches. Two major protocols used for the remote connection
of RTUs and MTUs in power grids are distributed network protocol V3 (DNP3) and IEC
61850. Traditional SCADA system does not measure synchronous phasor signals, thus the
state estimation is needed to calculate power system states for power planning, contingency
analysis, economic dispatch and marketing.
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While SCADA provides monitor and control for industrial systems (power plants, trans-
mission and distribution systems), AMI is designed for commercial and residential envi-
ronments and is responsible for two-way communication between customers and service
providers. AMI consists of (1) smart meters which collect hourly or more frequent user
power consumption data, (2) headend server which aggregates user data and performs data
analytics, and (3) communication network. AMI enables more accurate load measurement
and load forecasting for electricity market.

Electricity market leverages price incentives to maintain power balance. One recent
marketing technology is the demand response (or demand-side management) program which
changes consumption patterns in response to price of electricity. DR can be (1) incentive-
based scheme where the service providers schedule, reduce or disconnect the loads at high
price, or (2) price-based scheme where the service providers distribute the varying prices and
the customers individually adjust their power usages [18].

2.3 Adversary model
The U.S. power grid is a complex cyber-physical system incorporating vast volume of

distributed devices, which by nature results in a large attack surface. Malicious attacker,
targeting on local outages, equipment damages, grid instabilities or individual financial gains,
can compromise the power devices, communication and control facilities or market interfaces
(web service to the customers and suppliers), as shown in Figure 2.2. For such complicated
system, single exploit can hardly succeed in conducting effective cyber intrusions and a series
of steps must be taken. These steps, also called ICS Cyber Kill Chain [19], contains two
stages: stage one is to conduct reconnaissance, exploit attack vectors, deliver payloads and
escalate privileges; stage two is to explore the ICS environment and create ICS effects. The
starting point of all adversary activities is to understand the target environment and its
vulnerabilities. We have introduced briefly the system model in the previous section. In
this section, we will first review the common vulnerabilities in the focused technology areas,
followed by a detailed delineation of the attack scenarios and their impacts.

2.3.1 Vulnerabilities and threats in smart grid
Vulnerabilities introduced from the supporting technology areas are elaborated in the

Table 2.1, referring to [20–24].
Threat agents can exploit these vulnerabilities to conduct sophisticated attacks with the

objectives of loss, denial or manipulation of view, control or safety of the target system.
Popular exploits, to name a few, include malware (viruses, worms, Trojan horses, etc.)
attacks, denial of service (DOS) attacks, man-in-the-middle (MITM) attacks, reply attacks,
jamming channels, popping the HMI, data integrity and privacy violations. In particular, in
the MITM attack, the threat agent inserts a relay device (hardware or software) between two
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Table 2.1: System Vulnerabilities categorized in technology areas

Communication and Networking Software and Firmware

SCADA

lack of bounds checking, buffer overflow possible,
weak authentication and no encryption in network protocols,
lack of network segmentation, weak protection of user credentials,
access to ports not restricted,
potential remote access through virtual private network (VPN)

unpatched operation system,
unauthorized directory traversal allowed,
services running with unnecessary privileges,
use of potentially dangerous functions in the code

AMI

inadequate protection for Internet access, easy physical access,
weak or no cryptography on internal bus,
wide use of symmetric key, insecure key storage,
insufficient integrity protection,
inadequate network segmentation, commands replayable,
lack integrity protection in cellular network,
weak or no authentication to home area network (HAN),
poor time synchronization check

weak or no authentication to install firmware/software,
no detection of unauthorized installation,
weak authentication and security configuration
to database software,
weak credentials in meter settings,
shared passwords and credentials

DR
easy physical access, wide use of the same cryptographic key,
lack of data source validation, unnecessary open ports,
lack of network monitoring

inadequate access control to configuration files,
out-of-date patches and anti-virus signatures,

legitimate parties and interferes with the traffic between them. Authors in [25] investigated
the vulnerabilities in DNP3 protocol and performed experimental MITM attacks to alter
the DNP3 payload encapsulated in a TCP/IP packet between the RTU and MTU. Based on
the likelihood and severity analysis in [26], malware attacks and DOS attacks are the two
high-impact-high-probability cyber incidents in smart grids, consistent with the findings in
ICS CERT reports [27].

2.3.2 Attack Scenarios
For this project, we consider three attack scenarios categorized by their attack targets as

shown in Figure 2.2. For each scenario, we explain below the attack objective, attack design
and attack impact, supported by a review of related work.

False Data Injection Attacks (FDIA)

Attack Objective: The objectives of the FDIA attack include (1) market manipulating
and (2) operational disturbances. The attacker could create false load estimation or trans-
mission congestion limits to mislead the real-time electricity pricing algorithms in producing
biased locational marginal prices (LMP). The attacker then takes advantage of the biased
LMP to gain monetary profits using bids and offers via the market interface. The FDIAs,
aiming at disrupting the system operation, is often state funded or terrorist activities, which
intend to break down the critical infrastructure of the target region. The adversary could
inject bad measurement to deceive the SCED to make insecure dispatch decisions where
transmission lines are overloaded such that relays are triggered and local power outages or
equipment damage occur.

Attack Design: The theory behind FDIA is based on the power system state estimation
which estimates state variables through real-time measurements provided by SCADA and
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grid network models. The mathematic formulation of FDIA is shown as Eq. 2.1.

x̂bad = (HTWH)−1HTW · zbad
= (HTWH)−1HTW · (z + a)
= (HTWH)−1HTW · z + (HTWH)−1HTW · a
= x̂+ c

(2.1)

Eq. 2.1 maps the injected false measurements (zbad), e.g. voltage magnitude and power
generation, to the state variables (x̂bad), e.g. voltage angle and power flow. The grid topology
and parameters are incorporated in the Jacobian matrix H and the measurement errors are
depicted in W . The attack design is to craft an attack vector a so that the state variables
will be shifted by a desired value, c.

The FDIA requires two assumptions: (1) attacker has knowledge of the target power
system and (2) attacker can compromise a large amount of measurements. For the first
assumption, the attacker could use estimated topology results or partial information to
derive a close estimation of H. One way is to use public available LMP to identify grid
topology [28]. For the second assumption, it is hard to compromise a large number of
measurement devices since they are geographically scattered. There are efforts focusing on
optimal attack design to reduce the attack effort by carefully select vector a. Another group
of attack design targets on the topology meters, such as the circuit breaker status sensor. The
ON/OFF status of the transmission lines will restructure the H matrix. In the sophisticated
attacks, tampering with topology meters can also influence power system operation.

Related Work: A number of papers along the lines of attacking state estimation exist.
In [29], the scheme of false data injection attack against power state estimation was first
introduced, under the assumption that the attacker can access the current power system
configuration information and manipulate the measurements of meters at physically pro-
tected locations such as substations. By leveraging the knowledge of the power network
topology, it was shown that one could construct false data that could bypass the bad data
detection in today’s state estimation system. Following this seminal paper, many efforts
were proposed to quantify the efforts required to implement such a class of attack with least
effort, that is derive the attack strategies in terms of the type of the meters attacked, the
minimum number of meters required and also the minimal knowledge of the power network
topology. For instance, the load redistribution attacks in [30] defines a special type of data
injection attacks in which the load bus injection measurements and line power flow measure-
ments are attacked. These attacks assume limited access to measurement meters and the
effect is to increase load at some buses and reduce loads at other buses while maintaining
the load unchanged. As a special case of false data injection attacks, the load redistribution
(LR) attacks can mislead the state estimation process without being detected by any of the
existing techniques for bad data detection.
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Figure 2.4: Demand response attacks targeting the real-time pricing (RTP) and real-time
measurement (RTM) feedback loop

Very few efforts have devoted their attention to study the effect of cyber-attack on fi-
nancial markets. Xie et.al [31] first presented the impact of false data injection attack on
electricity markets. Leveraging the false data injection in state estimation, the electricity
market can be manipulated to fulfil some malicious financial tasks. [32] proposed using vir-
tual bidding at selected buses to achieve continuous financial arbitrage. The LMP of these
chosen buses are influenced by the strategically crafted attack vector in state estimation
in the way to gain financial benefits during virtual bidding. [33] presented a sophisticated
attack aiming at making profit for the generator at a specific bus by fabricating a biased
transmission congestion pattern and thus manipulating the price at a certain bus. [34] fur-
ther proved that by fabricating a fake transmission congestion pattern, false data injection
attacks can manipulate the real-time price at an arbitrary target bus.

Physical Response Attacks

Attack Objective: In physical response attacks, attackers leverage the vulnerabilities
and easy access of grid edge devices to create certain power usage patterns, with the objective
to destabilize the system operation or marketing. The maintenance of power balance relies
on accurate load forecasting which is used for real-time generation dispatch. The physical
response attacks compromise the load control system and deviate load from its historical
behavior. Such unpredictable changes, when designed against system regulations, could
drive the states to exceed stability boundaries and disrupt system operation.

Attack Design: There are multiple pathways to conduct physical response attacks
and we focus on the malicious demand response program as shown in Figure 2.4. In the
incentive based DR scheme, such as direct load control, the attacker could compromise
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the service provider’s server or the network connection with the customer side devices, e.g.
smart meter or load controllers, to send malicious control signals. In the price based DR
scheme, the attacker could inject falsified price data or install malware in load controllers.
The assumption of this attack is that the adversary can compromise a large amount of
load so that the attack is sufficiently severe to disturb system operation. Examples include
inserting a delayed or scaled price signal to create sudden demand peak, planting malware
in load controller to shift load to a certain time interval, and sending disconnect signal from
management server to massive loads to create abrupt load-generation gap. These attacks are
in the commercial or residential environment and are relatively easier to achieve compared
with the well-guarded industrial environment.

Related Work: The security of demand response algorithms with real-time electricity
pricing has been the subject of recent research efforts. Most of those works focus on integrity
attacks where the adversary manipulates the real-time prices through for example scaling or
delay of prices in an attempt to destabilize the market price or to shift the clearance price
to regions that lead to a wider gap between supply and demand. Roozbehani et al. in [35]
model the real time pricing process as a control model and analyze its stability conditions.
Giraldo et al. in [36] study attacks on real time price under robust control theory framework
to design a sequence of add-on items that causes the maximum generation-demand gap in
the grid. Tan et al. in [37] study the stability of prices under real time pricing attack with
price scaling and delay attacks. Li et al. in [38] show that even with a random backoff
scheme, in which each power consumer chooses a random time to change its power response,
the attacker can cause significant change in the clearance price hence maximizing the gap
between the demand and supply. Yang et al. in [39] propose a new distributed real-time
pricing algorithm and analyze the real-time prices under compromised power generation and
baseline prices. Barreto et al. in [40] provide mitigation measures to data integrity attacks
that compare consumption with historical user consumption. Under integrity attacks, it
is possible to manipulate prices to gain economic advantage. Barreto et al. in [41] study
dynamic price control schemes to guide the dynamic real-time price toward the attackers
best profits. Liu et al. in [42] allow attacker to change the guideline price that mislead other
customers so as to benefit the attacker under a demand-response mode. Similarly, Wei et al.
in [43] apply a similar technique tailored to buildings as opposed to houses in [42].

While integrity attacks can potentially impact the stability of the grid, their effect is
indirect and is largely influenced by the robustness of the ISO pricing measures. Load altering
attacks, on the other hand, aim to directly destabilize the grid with circuit overflow or other
adverse effects through compromising certain unsecured controllable loads. Mohsenian-Rad
et al. in [44] provide direct and indirect attacks that leverage grid information to decide cost-
effective portion of protected load. Amini et al. in [45] leverage frequency information as a
feedback to calculate the load increase that can cause grid instability. Ryotov et al. in [46]
mitigate the risks of load altering attacks by providing a policy-based anomaly detection
algorithm that relies on the smart meter data to show alerts whenever abnormal or unsafe
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operation conditions, low power quality conditions, or violation in customer policies are
detected.

Market Interface Attacks

Attack Objective: Market interface refers to the web services provided by the operation
centers (OC) to publish prices to and receive bids/offers from the market participants. The
objective of the market interface attack is to manipulate the electricity market to gain
financial profits or generate social chaos with sharp price changes and even widespread
outages.

Attack Design: With the trend of open market, small power plants are allowed to
participate in wholesale electricity market. In two-settlement markets, financial entities can
also join the market as virtual traders who buy electricity from day-ahead market and sell
the same amount in real-time markets, or vice versa. Attackers could first register as a
legitimate market player and then strategically trade in the virtual market to arbitrage on
the price differences. Market interface attack can be combined with the FDIA as introduced
in [32]. Another example of market interface attack is the malicious modification of the
bids [47] in the day ahead market in order to create transmission congestions in real time
market and gain desired high LMPs for certain suppliers. Electricity market manipulation
is a big concern and could diminish social welfare and affect people’s daily life as proven by
the California energy crisis in 2000 [48].

It should be noted that the market monitors closely observe all market related activities.
For instance, the true generation cost, based on prevailing fuel cost, is well-known to market
monitors, and hence, they closely monitor participants’ bids to make sure those are within
some tolerance bands. Hence, the market manipulation opportunities based on just strategic
bidding are fairly limited under stringent market regulations. To make the bidding modifi-
cation effective, the attacker could first identify the current marginal units and modify just
the bids of these units. The major challenge to the market monitors comes with increasing
wind and solar generation, where there is no fuel cost, and hence, the conventional methods
to assess the exercise of market power don’t work. One way that these resource owners
can influence market outcomes is through physical withholding, i.e., under/over forecasting
day-ahead relative to actual generation potential. Such a strategy can be leveraged by the
threat agents to reshape market prices toward a desired pattern.

Related Work: There are very few publications related to this topic which have been
mentioned above.

2.3.3 Attack Impact
Cyber attacks on power grids induce both market impact and operational impact. Most

of the papers focus on the operational impact of cyber events, such as power outages, volt-
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Figure 2.5: Market Impact of Cyber Attacks

age/frequency violations, line overload, and system instability (cascading failure). Specif-
ically, for the FDIA, false data will lead to a false SCED solution that may harm power
system operation in two steps. First, it may lead the system into a non-optimal generation
dispatch; which at worst case can lead to load shedding. Second, it may lead the system into
an in-secure operating state, i.e., power flows on some transmission lines may actually exceed
their capacities. Without immediate corrective actions, the outage of these overloaded lines
will cause wider load shedding in a delayed time. The physical response attacks, on the other
hand, directly interfere with the power consumption devices on the grid edge to create large
demand-generation gap and push the system to its stability boundaries.

The market impact of the cyber attacks is often underestimated and not well discussed
in the literature. Figure 2.5 lists all the elements that contribute to the electricity price
and maps them to the three classes of attacks. Whether the adversary intends to affect
the market or not, the electricity price will change patterns since it is sensitive to and easily
affected by any power grid or business disturbances. The impact of attacks depends on "when
and how" the attack is conducted, i.e. is the grid weakly operated now? are the affected
devices, single or aggregated, significant enough? These questions can be answered by the
attack scenario design mentioned above. A successful attack should be stealthy, effective,
and persistent, which is often achieved by national advanced persistent threat (APT) teams.

2.4 Conclusion
The power grid is moving towards an intelligent, automated and sustainable smart grid

scheme, integrated with advanced applications such as SCADA for grid monitoring and con-
trol, AMI for real-time load monitoring and DR for market balancing. These applications
oversee large scales of sensors and actuators through remote connections which inevitably
opens entry points for intruders. Threat agents can target on the end users, the grid facilities
or the market interface. Based on this, we categorize the potential attacks into three classes:
the false data injection attacks, the physical response attacks and the market interface at-
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tacks. To monitor, detect, and reason these attacks, we developed a non-intrusive market
monitoring tool: WISP-Watching Grid Infrastructure Stealthily through Proxies. WISP
will have a broad impact in the electricity industry in solving the long-term challenges of
system-level cyber defense.



Chapter 3

Dataset Generation and Signature Derivation

Generating realistic datasets and deriving event signatures are critical to the success
of data-driven algorithm development and evaluation. This chapter delineates the theory
and procedure of establishing a practical electricity market simulator, consisting of major
functions in real-world systems, such as state estimation, economic dispatch, reserve market
and demand response. Additionally, we implemented three types of cyber attacks, i.e., load
redistribution attack (LRA), price responsive attack (PRA) and false data injection attack
(FDIA), and analyzed their long-term and short-term impacts to the electricity market. We
compared the system response under cyber attacks and under operational events to identify
the unique cyber attack indicators. Test results and observations are detailed in this chapter.

3.1 Introduction
In Chapter 2, we researched the threats and vulnerabilities of smart grids and investigated

the three groups of cyber attacks, i.e. the physical response attacks, the false data injection
attacks and the market interface attacks. Task 3 is launched based on the findings of Task
2 with the clear goal of providing practical and representative datasets and signatures for
Task 4. To achieve this goal, we addressed three major challenges: (1) the lack of time
series full-cycle electricity market simulators; (2) the lack of cyber attack impact analysis
on long term simulation; and (3) the lack of comparison between normal operational events
and cyber attacks.

The evolution of modern power systems is largely reshaping the research and field prac-
tice of the power industry. One example is the electricity restructuring which introduces the
competitive market mechanism to encourage energy efficiency and innovation. Nevertheless,
this transformation led to the California Energy Crisis in 2000, which necessitated the market
regulations and pre-testing of market decision-making algorithms through accurate simula-
tion models. Great effort has been invested to develop models of the restructured electricity
market. A comprehensive list of power system analysis software is provided in [49] and the
open source software is especially given in [50] for research, teaching and training purposes.

17



18

Table 3.1: Comparison of Open Source Electricity Market Simulator
State

Estimation OPF IED Bidding
Strategy

Network Model
Modification

Optimization Constraints
Modification

IEEE
Test Case

Large-scale
Test Case

AMES [51] - - X X - - X -
MASCEM [52] - - X X - - - -

MATPOWER [53] X X X - X X X -
PSAT [54] - X - - X - X -

In the interest of WISP, we compared a group of actively maintained open source software
in their capability of supporting both standard and customer defined functions, shown in
Table 3.1.

Both Agent-based Modeling of Electricity Systems (AMES) and Multi-agent Simulator
of Competitive Electricity Markets (MASCEM) are agent based simulators which model
all market participants as "agents" and market activities as interactions between agents.
They focus more on the bidding and pricing strategies while simplifying the physical system
models. Thus, the agent-based simulators cannot support the implementation of cyber
attacks which requires full or partial knowledge of the system topology and critical sensor
data. On the other hand, both MATPOWER and Power system analysis toolbox (PSAT) are
Matlab based software supporting detailed physical models. MATPOWER is more powerful
in steady-state and market-related functions, while PSAT is featured by its transient-state
simulation. Both provide modularized and callable functions. Due to these merits, we chose
MATPOWER as our base library and built our simulator upon it. Note, there is currently
no simulator that offers cyber attack modules.

To generate time series operational data, the first step is to integrate the standalone
functions into a full-cycle pipeline. In this Chapter, we built multiple interfaces and wrappers
for the major elements in market operation, including state estimation, economic dispatch,
demand response and optimal power flow. We used an AC/DC hybrid model to minimize
the inaccuracy caused by system loses. With the baseline simulator, we then implemented
three cyber attack models, i.e. the load redistribution attack (LRA), the price responsive
attack (PRA), and the false data injection attack (FDIA). These attacks are profit motivated
but could cause system instability and even blackouts. Their impacts are studied through
short-term and long-term simulation using different parameters. Cyber attacks are easily
mixed with the power system outage events considering both create dramatic changes in the
system response. To understand their differences, we extended our simulator with outage
management functions and reserve market interactions. This effort is to make sure the system
runs continuously without being forced to downgrade its power supply services. This is also
aligned with the industry standard practices. Using the simulator, we were able to create
datasets with/without cyber attacks, with/without outages and compare these scenarios to
derive signatures of malicious activities in the grid. The numerical results and analysis are
elaborated in this chapter.

The remainder of this chapter is organized as follows. Section 12.1 presents the electricity
market simulator framework and its major components. Section 3.3 presents the implemen-
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tation of generator/line outages and reserve market. Section 12.2 presents the cyber attack
algorithm and simulation models. Section 3.5 illustrates the experiments on IEEE test cases
and the result analysis. Section 12.3 concludes this chapter.

3.2 Electricity Market Simulator
Among all the open source power grid simulation tools, MATPOWER prevails in the

research of economic dispatch, optimal power flow (OPF) and unit commitment. It provides
a stable version of major power system functions and supports interface modifications and
customized applications. However, MATPOWER’s function modules are designed indepen-
dently for certain power flow snapshots. There is no capability to integrate these modules
and generate time series power system states and electricity market data. As the first step
of dataset generation, we built an electricity market simulator which takes load profile data
and generates serial power measurements and marginal prices.
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Figure 3.1: The baseline electricity market simulator.

The flow chart of different modules in this simulator is presented in Figure 3.1. For
the reason of clarification, we did not include the logical modules in the figure, e.g., the
module used to start or terminate the simulator according to the given simulation duration.
Following the scheme of PJM and ISO-NE, we adopted a hybrid structure, where both AC
and DC formulation are used. This flow chart presents the basic elements in the simulator,
such as getting different measurements from available sensors and meters, and subsequently
using them to estimate state variables which represent the operating condition of power
systems. Based on the current status, an incremental economic dispatch (IED) model is
solved with the next five-minute load forecast, to provide the dispatch plan and locational
marginal prices (LMPs) for the next operation interval. The details of each module in Figure
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3.1 are further explained in the following subsections.

3.2.1 Initialization
The initialization block in Figure 3.1 sets up the necessary environments for the simula-

tion, such as the parameters to control the simulation length. The initial state variables are
determined by solving a DC-OPF model with day-ahead hourly load forecast at the starting
time of the simulation.

This module is also responsible in normalizing the input load forecast data for different
test cases. For example, PJM publishes the hourly load forecast and five-minute load forecast
for 25 transmission zones. These 25 sets of data are used in the simulator for the IEEE-
39 system, after scaling and matching the load data to the original load bus parameters
carefully. Specifically, we firstly rank the given loads in IEEE-39 system and the PJM zonal
daily total load separately. We then map the PJM zonal load to the load buses according
to their rankings. If a target network has more than 25 load buses, for example, with 35
load buses, we will duplicate the last ten zones in PJM. We used constant power factor to
get the reactive power. By scaling the PJM data, we guarantee the power flow stays within
meaningful values and not deviate much from its original solution.

3.2.2 AC Power System
The physical power system is represented as an AC power flow module in the simulator.

This module takes the load measurement and generation dispatch data as input and calcu-
lates power flow (PF) for each time step. These PF results serve as the basis for incremental
dispatch. The AC power system block illustrates how the power grid responds to the IED
results. Specifically, we consider two factors: (1) the LMP results will be used to modify
the price responsive load and thus impact the load measurement data; (2) the generation
dispatch results will be used to adjust the generator power output and reallocate the system
resources.

3.2.3 AC Measurements
The Create AC Measurement block in Figure 3.1 presents the step to simulate the mea-

surements used by the control center. In practice, these measurements are obtained from
remote terminal units (RTUs), or other sensors such as Phasor Measurement Units (PMUs).
These data are considered proprietary and confidential to the ISO/RTO entities, which
requires us to use public available test cases and create artificial measurements. In the
simulator, we take the AC power flow solution from the AC Power System block, and add
small random perturbations to represent the measurement noises from the sensors at each
five-minute time step.

The measurements include the real and reactive power flow rate, real and reactive power
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generation, voltage angle and voltage magnitude. Note that in practice, not all the measure-
ments are available, e.g., missing of meter on a particular transmission line. This issue will
be handled by the next module.

3.2.4 AC State Estimation
The state estimator is a standard power system operation tool used to provide a com-

plete and reliable model of actual operating conditions. It uses actual operating conditions
based upon available observations, e.g., from metered measurements, along with the network
topology and parameters to calculate the remaining variables that are not metered [55,56].

This module is usually implemented in a control center equipped with a SCADA system.
Since inaccurate data measurements can lead to significant errors in state estimation, SCADA
uses bad data detection (BDD) to test if the measurements are reliable. BDD can be
implemented in a variety of algorithms, and finding a reliable and robust algorithm is a
hot research topic. Since WISP focuses on the cyber attacks in power systems, not the
BDD and state estimator, we adopted the existing state estimator from MATPOWER and
implemented a popular BDD strategy [57,58].

The states of an AC power system are usually defined as the voltage magnitudes and
phase angles at all the buses. However, the measured data typically incorporate the active
and reactive power flow at transmission lines, active and reactive power injections and some
voltage magnitudes at certain buses. The relation of state variables and measurements
follows this mathematical representation:

~z = h(~x) + ~e (3.1)

where
~z: measurements;
~x: state variables;
~e: measurement errors;
h(~x): nonlinear equations used to establishes the relationship between ~x and ~z in the AC
model.

The state estimation problem is to find the best estimate ~̂x of state variables ~x, given all
the observables ~z. This can be modeled as an optimization problem

min
~x

(~z − h(~x))TW(~z − h(~x)) (3.2)

where W is a weight matrix used to control the accuracy preference of the individual mea-
surements. Usually the measurement errors ~e are unknown, but their distribution can be
obtained, e.g., from the user manual of the measurement equipment. Therefore, one popular
choice of the weight matrix ~W is to set W := Cov−1, where matrix Cov is the co-variance
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matrix of the measurement errors ~e. Unlike the DC state estimation, equation (3.2) is clas-
sified as a nonlinear least-square optimization problem, and it does not have a closed-form
solution. In practice, the AC state estimation problem is solved by Newton-type iterative
methods, which only guarantee a local minimum.

The meter measurements corresponding to the best estimate is denoted as ~̂z = h(~̂x).
Hence we can define the residual ~r as

~r = ~z − h(~̂x) = ~z − ~̂z (3.3)

The value of this residual is often used as test criteria in BDD, which tries to identify
faulty measurements caused by malicious attacks or equipment failures. The idea is that
legitimate measurement residual ~r can bypass the residual test

‖~r‖2 ≤ τ (3.4)

where τ is a given threshold. If this condition holds, the measurements are used and the
corresponding state estimation is trusted; otherwise we assume that at least one bad mea-
surement exists and measurements at this time step will be discarded while that of previous
step will be reused.

3.2.5 Interface to DC
DC power flow model is widely used by industry practitioners in their daily work [59]. The

reason is that, for large power systems, solving nonlinear AC economic dispatch problem,
or AC-OPF, is computationally expensive and only local optimal solution can be found
by Newton-type iterative methods. On the other hand, the DC model is more attractive
in practice. It linearizes the nonlinear non-convex AC power flow equations, with mild
assumptions such as voltage magnitude are constant and the phase angle differences are small.
As a result, the outcome DC formulation only contains real power, and the transmission loss
can be ignored. The use of such a model leads to significantly simplified linear expressions,
and state variables can be reduced to only the phase angles. Computationally speaking, the
DC formulation can be solved and optimized much more efficiently, and a unique solution is
guaranteed. This advantage is significant for the contingency analysis, when an enormous
number of power flow equations need to be solved. Last but not the least, the linearized
model with unique solution fits the economic theory much better than the AC model. The
definition of LMP is based on the shadow price of DC-OPF, which is the kernel of the
real-time energy market.

Therefore, we use DC formulation to plan the power dispatch for each time step. In
order to use the AC state estimation for DC dispatch, we need a module to transfer the
AC power flows into the DC ones. Compared to the AC formulation, one big difference is
that the transmission loss is absent from the DC formulation. Hence the total real power
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generation in AC formulation is larger than that in DC formulation in each time step. When
we solve an AC power flow, this loss is reflected in the power generation at the reference
bus (swing bus), i.e., the reference bus will generate additional power to cover the loss while
keeping the other power generation fixed to their own dispatch plan. In order to use the AC
state estimation results in DC model, one straightforward way is to shift all the transmission
losses to the reference bus as an extra load. However, this approach will introduce a big bias
to the reference bus power output, especially for large networks where the accumulated loss
is huge. Therefore, we adopt the idea of Loss Factor and Delivery Factor from [60], which
distributes the total transmission loss to all the load buses, proportionally to their original
load values. As a result, the bias can be flattened in the full DC network.

3.2.6 DC Dispatch
As mentioned in the previous subsection, the DC formulation is less accurate, but much

simpler to derive and much computationally easier to solve than the AC formulation. There-
fore it is widely adopted in industry, such as ISO New England and PJM [61].

The generic lossless DC-OPF model can be modeled as an optimization problem, which
minimizes the total real power generation cost subject to DC power flow balance and trans-
mission flow limits. There are different mathematical formulations for this optimization
problem [55, 60–62] based on different usages. However, they share the same definition of
LMP, i.e., LMP is composed of shadow prices from the optimization problem. In our simu-
lator, we used the PJM incremental linear programming formulation [55], with the popular
concept of generation shift factor [60], for the dispatch problem and computed LMP from it.
This incremental economic dispatch problem is presented as follows:

min
∆G

N∑
i

ci(∆Gi) (3.5a)

s.t
N∑
i

∆Gi =
N∑
i

∆Di (3.5b)

∆Fminj ≤
N∑
i

GSFj,i × (∆Gi −∆Di) ≤ ∆Fmaxj ,

∀j ∈ L (3.5c)
∆Gmini ≤ ∆Gi ≤ ∆Gmaxi , ∀i ∈ B (3.5d)

where
B: the set of buses;
L: the set of lines;
N : total number of buses;
M : total number of transmission lines;
ci(∆Gi): incremental generation cost at bus i;
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GSF : generation shift factor matrix; it is an M ×N matrix where the {j, i}th element presents the
generation shift ratio to line j from bus i;
∆Gi: incremental real power generation at bus i;
∆Di: incremental load at bus i;
∆Fmaxj : maximum incremental real power flow at line j;
∆Fminj : minimum incremental real power flow at line j;
∆Gmaxi : maximum incremental real power generation at bus i;
∆Gmini : minimum incremental real power generation at bus i.
λ: dual variable for constraints (3.5b).
~µ−, ~µ+: dual variables for constraints (12.2c).

Based on the state estimation results, IED (3.5) only focuses on the difference between
the current state and the next five minute status. The incremental real power generation
∆~G is the only optimization variable in (3.5), and therefore this linear optimization problem
can be expected to have a quick and robust solution. The incremental load ∆ ~D is a constant
parameter computed as the difference between the current load and next five-minute load
forecast. The boundary constraints ∆~Gmin, ∆~Gmax, ∆~Fmin and ∆~Fmax are computed from
current estimated state and the default boundary limits. For instance, if the last state
estimation returns that Gi = 100 MW and the total generation capacity at the ith bus is
120 MW, we have ∆Gmin

i = 0 − 100 = −100 MW and ∆Gmax
i = 120 − 100 = 20 MW.

This constraint guarantees that the new dispatch Gi + ∆Gi is within the range of [0, 120].
When considering ramp speed, ∆Gmin

i and ∆Gmax
i will then be further constrained by the

maximum/minimum ramp values. Similarly, if the estimated power flow exceeds the flow
limits, then the corresponding transmission line is considered to be congested. Constraint
(12.2c) is used to correct the flow rate, by moving the power flow at the next five minute
to the range of [−~Fmax, ~Fmax], where ~Fmax is the default real power flow limit on the
transmission lines and the negative sign shows the potential reversed flow direction.

After solving (3.5), based on the optimization theory, we can obtain the corresponding
optimal values of the dual variables λ, µ− and µ+. Note that dual variables are also known
as Lagrangian multipliers, which are defined on each constraint, respectively. Their values
at the solution point of the original linear optimization problem are known as the shadow
prices. The LMP on bus i is defined as a linear combination of these shadow prices as follows:

LMPE = λ (3.6a)

LMPC
i =

M∑
j

GSFj,i × (µ−j − µ+
j ), (3.6b)

LMPL
i = λ× (−LFi), (3.6c)

LMPi = LMPE + LMPC
i + LMPL

i , (3.6d)
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where LMPE, LMPC and LMPL are marginal energy price, marginal congestion price and
marginal loss price, respectively; LFi is the marginal loss factor at bus i. To compute this
loss factor, we adopt the equation from [60], as follows:

LFi =
M∑
j

2×Rj ×GSFj,i×

(
N∑
k

GSFj,k × (Gj −Dj)), ∀i ∈ B (3.7)

where Rj represents the resistance at transmission line j.

3.2.7 Other Features
Aside from the above mentioned functions, we also enhanced the simulator with several

other features to approach the real-world implementation.

Ramp Rate

Generation ramp rate is used to set a limitation on the changes that a power generator
can achieve during a given time period. In the dispatch problem (3.5), without introducing
a redundant constraint, ramp rate is implicitly implemented in the computation of ∆~Gmin

and ∆~Gmax. By default, we set ramping rate to 10%, which means the maximum generation
change within five minutes is 10% of generator’s capacity.

Generation Cost

We set multiple options for incremental generation cost ci(∆Gi) in (3.5). The naive
option is the linear cost function ci = ai ∗∆Gi which is seldomly used in practice but still
popular in research. A more accurate model is the quadratic model where ci = ai∗((∆Gi)2 +
2Gi ∗∆Gi)+ bi ∗∆Gi. Obviously, the computing complexity of the quadratic model is bigger
than linear model and it is more sensitive to the minor changes in generation. Another
option which is widely used in industry is the piece-wise linear model. Compared with the
linear model, the parameter ai changes with the current generation Gi. During our testing,
the piece-wise linear model is the most often used.
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Price-Responsive Load

The introduction of smart metering infrastructure enables two-way communication be-
tween power consumers and suppliers, leading to the thriving of demand-side management
technologies [63]. One example is the price responsive load control which shifts the power
consumption based on the electricity prices. The reshaped load curve will then affect the
trend of real-time electricity prices. This process is described in [64] as a close-loop feedback
control model. We used a similar model in the simulator to capture the price responsive
behavior. Specifically, the real-time load ~D is the sum of the baseline demand and the price-
responsive demand, which are denoted by ~Dbase and ~DPR, respectively. The implementation
of price-responsive load is summarized as follows:

1. Obtain the base LMP λ̂, e.g., from the day-ahead market or using the LMP from the
first time step of simulation.

2. Check if λ̄, the average LMP over the last n̂ steps, is greater than the sum of λ̂ and
a given threshold τPR. If not, terminate this process and use the five-minute load
forecast as it is. Otherwise, continue the next steps.

3. (Optional) Given a predefined parameter γ, which quantifies the delay effect of the
price responsive control or deferrable load, we update the time steps that requires load
modification. For example, if the index of current time step is t, we mark t + γ as
the time step when price-responsive load will be applied. If current time is marked,
continue; otherwise, terminate. In our simulator, the default value of γ is 1.

4. Given a predefined parameter β, which denotes the ratio of loads that cannot be
affected by LMP, we have

~Dbase = β ~D (3.8)

~DPR = (1− β) ~D
(
λ̄

λ̂

)κ
(3.9)

≈ (1− β) ~D +
(
κ

λ̂

)
(1− β) ~D(λ̄− λ̂) (3.10)

~D = ~Dbase + ~DPR (3.11)

where κ is a parameter used to control how fast the load can respond to the price
change, and its default value is set as −0.8. Equation (3.10) is the first order approxi-
mation from Taylor expansion. By default, β = 0.9.

5. Use the adjusted demand ~D in IED, instead of the original forecast data.
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3.3 Outage and Reserve Market
Equipment outages, e.g. line failure, generator trip or load loss, are common events in

power grid operation. The scheduled outages are planned for maintenance or construction
purposes and the unscheduled outages are mainly caused by equipment aging/overheating,
relay tripping or extreme weather. To mitigate the impact of these outages, power grid
regulation entities enforce a certain level of generation reserve for emergency control and
quick recovery. This section introduces how the simulator incorporates dynamics caused
by outages and reserve market. The flow chart in Figure 3.2 illustrates the switching be-
tween regular market and reserve market and their interactions with the outage events. The
following subsections explain the details.
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Figure 3.2: The electricity market simulator enhanced with outage management and reserve
market.

3.3.1 Outage Management
To insert outages in the time series simulation, we first define the outage features in the

parameter file, including the outage type (generator/line), location (which bus/line), start
time, end time, and percentage of generation loss. During simulation, after each IED, the
simulator will check if there is an outage event. If yes, the system will further verify if such
outage can be absorbed by the current system condition using flexible generation on the
reference bus. If yes, then the system continues to run on regular market with modified
network topology or generation outputs. If no, the system will switch to reserve market and
leverage the reserve capacity to cover the generation gap.
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This process is marked as red blocks in Figure 3.2. Note we used two blocks to jointly
judge if there is an outage at current time step. This is because we only defined the start
and end time of the outage, corresponding to the Outage Status Change? block. During
outage period, we use Is reserve currently used? block to check if simulator should continue
with the reserve market or regular market.

3.3.2 Reserve Market
As stated above, under two conditions will the simulator switch to the reserve market:

(1) there is currently an outage and (2) the reference bus does not have enough capacity
to cover the generation loss. In reserve market, the simulator is almost a duplicate of the
regular market except that the IED module is now a DCOPF module that co-optimizing
both reserve and regular generation. The mathematical formulation is shown in 3.12.

min
G

N∑
i

ci(Gi) + cRi (Ri) (3.12a)

s.t
N∑
i

Ri +Gi =
N∑
i

Di (3.12b)

Fminj ≤
N∑
i

GSFk,i × (Gi +Ri −Di) ≤ Fmaxj ,

∀j ∈ L (3.12c)
Gmini ≤ Gi ≤ Gmaxi , ∀i ∈ B (3.12d)
Rmini ≤ Ri ≤ Rmaxi , ∀i ∈ B (3.12e)

where
ci(Gi): generation cost of regular generators at bus i;
cRi (Ri): generation cost of reserve generators at bus i;
Gi: regular real power generation at bus i;
Ri: reserve real power generation at bus i;
Fmaxj : maximum real power flow at line j;
Fminj : minimum real power flow at line j;
Gmaxi : maximum non-reserved real power generation at bus i;
Gmini : minimum non-reserved real power generation at bus i.
Rmaxi : maximum reserved real power generation at bus i;
Rmini : minimum reserved real power generation at bus i.
λ: dual variable for constraints (3.12b).
~ν−, ~ν+: dual variables for constraints (3.12c).
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Using formulation (3.12), the definition of LMP can be carried over and expressed as
(3.6a)-(3.6d). Note that when the reserve market is first activated, i.e. when an outage starts
and reference bus fails to handle it, the regular generation Gi has already been dispatched
by regular IED and will not join the co-optimization. This means we treat Gi in (3.12) as
constant numbers in the first step and then treat them as variables in the following steps
until the reserve is not needed for this outage event. Specifically, in the first step, we set
both ~Gmax and ~Gmin to the same values decided by regular IED so as to fix ~G to the regular
dispatch plan. In the following steps, similar to the regular IED, the boundary conditions
~Gmax and ~Gmin are determined by the ramp rate and maximal capacity. Once (3.12) is
solved, we check if ~R 6= 0, i.e. if reserves are still needed, and if not, we will move back to
the regular market simulation, i.e., the left-hand-side of Figure 3.2.

In our simulator, we use the same ramp rate for the reserved real power generation, and
their maximum capacity is 60% of the standard capacity, respectively. We set the cost cRi (Ri)
as a linear function of Ri, but with a higher cost rate. By default, we use the cost from the
highest segment of the piece-wise linear function, multiplied by two.

3.4 Cyber Attacks
Among the three groups of attacks defined in Chapter 2, the False Data Injection Attacks

(FDIA) and Physical Response Attacks are of special interest for dataset generation. This
is because they are relatively more realistic and harmful to the system stability, compared
to the Market Interface Attacks. The target of FDIA in this chapter is the SCADA system,
responsible for data collection and remote control, and its interface to the central energy
management system (EMS). By injecting falsified sensor data, the attacker aims to mislead
the system control and dispatch functions to make non-optimal or even unstable decisions.
In the Physical Response Attacks, the attacker tries to manipulate the behavior of physical
devices in an aggregated manner such that the gathered impact can be sufficient enough to
damage the system operation. One example is to shift the demand making it deviate from
the forecast data and invalidate the generation plan. In our simulator we refer to such attack
as Price Responsive Attack (PRA). A special case of the FDIA is Load Redistribution Attack
(LRA) which modifies only the load forecast data rather than the metered measurements.
This attack is more subtle and harder to detect. The implementation of the FDIA, PRA
and LRA is demonstrated in Figure 3.3 on the baseline simulator model. The details are
introduced in the following subsections.

3.4.1 LRA
LRA was first introduced by Yuan et al [30] followed by other researchers [65]. LRA

tailors the load distribution in the target area strategically to tilt the dispatch results in favor
of certain buses. LRA is hard to detect since it does not tamper with the well-protected
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Figure 3.3: The electricity market simulator with different attacks.

generation buses nor affect the current state estimation results [30]. Meanwhile, LRA can
undermine system stability by tricking ISOs to make erroneous dispatch decisions, which
may overload certain transmission lines causing line outages.

In our simulation, LRA is implemented to redistribute the 5-min load forecast. It tries
to increase the load prediction of the target buses so that their corresponding LMP will also
be increased. In the meantime, to keep the total load and total generation unmodified in
IED, the load forecasts of the non-target buses need to be decreased. Finding the optimal
redistribution solution is out of scope for this chapter. Here, we simplified this process by
decreasing the load at non-targeted buses proportionally to their original load forecasts.
Additionally, to maximize the financial benefits, LRA is only activated during the critical
hours, e.g., during the peak hours, when it is highly likely that LRA will increase the LMP
at the target buses.

LRA is added by the following procedures:

1. Check if we have already applied enough attacks in a window of time period. If the
number of existing attacks is greater than the maximum allowed attacks, terminate.
By default, we allow no more than 12 attacks in the previous 2 hours.
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2. Increase the load of the target bus i by the desired value ∆DLRA
i , so that

DLRA
i = Di + ∆DLRA

i , i ∈ Btarget (3.13)

where Btarget is the set of all the target buses; Di is the actual next five-minute load
forecast at bus i, while DLRA

i is the falsified load forecast introduced by LRA.

3. Proportionally reduce the load at the non-target bus according to their next five-min
load forecast. Note that we assume the adjusted load is greater than or equal to zero.
That is

DLRA
j =Dj −Dj ×

∑
i∈Btarget ∆DLRA

i∑
k∈Bnon−target Dk

,

∀j ∈ Bnon−target (3.14)

4. The forged load forecast is then passed to IED to obtain a wrong incremental dispatch
plan ∆~GLRA and manipulated LMP results.

5. Using the actual load forecast ~D and price responsive load to create the load measure-
ment data. These data are fed into the AC Power System block, to get the power flow
for next time step.

3.4.2 PRA
PRA is a type of load alternating attack [66], targeting on direct load control. It is

inspired by the real-time pricing attacks [64], and MAnipulation of Demand attack (MAD)
[67], which changes the load behaviors to damage the power grid. The motivation of our
PRA is that the quick growth of smart grid foresees the wide usage of demand management
technologies, which can reshape the load curves based on the real-time LMP information.
Unlike the well-protected power grid infrastructure, the load controllers are located in the
user end with much less security to defend against cyber attacks. The PRA is designed to
inject false price signal to the load controllers so as to inverse the control logic, to use more
power when LMP is high. Consequently, it may introduce additional line congestions at the
peak hours.

Our implementation of PRA is summarized as follows:

1. (Optional) Check if we have already applied attacks in the previous steps. If the
number of existing attacks is greater than the maximum allowed attacks in the given
time period, terminate. For example, we can check if 5 continuous attacks happened
during the last 2 hours.
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2. Obtain the base LMP λ̂, e.g., from the day-ahead market or using the LMP from the
first time step of simulation.

3. Check if λ̄, the average LMP over the last n̂ steps is greater than the sum of λ̂ and
a given threshold τPR. If not, terminate this process and use the five-minute load
forecast as it is. Otherwise, continue the next steps.

4. Given a predefined parameter β, which denotes the ratio of loads that cannot be
affected by LMP, we have

~Dbase = β ~D (3.15)
~DPR ≈ (1− β) ~D +

(−κ
λ̂

)
(1− β) ~D(λ̄− λ̂) (3.16)

~Dmod = ~Dbase + ~DPR (3.17)

5. Use the adjusted demand ~Dmod in IED, instead of the original forecast data.

Compared with the standard procedure used in creating price-responsive load in Section
3.2.7, in PRA, the controller logic is altered, by replacing the decreasing rate κ in (3.10)
with increasing rate −κ in (3.16).

Similar to LRA, PRA does not modify the sensor measurement data or the state estima-
tion results, and hence it can bypass the SCADA detection system. However, unlike LRA,
which aims to get a wrong dispatch without changing the real load in the power system,
PRA actually changes the load behavior and such change is unexpected and unplanned in
the power grid.

3.4.3 FDIA
FDIA is the third attack we implemented in the simulator. Unlike the other two attacks,

FDIA needs to be well-designed to bypass BDD, and hence it is actively researched, both
for design a successful realistic attack and for finding the defense countermeasure to protect
the power system [29,56,65,68,69].

Based on the most practical state estimator and BDD scheme, as presented in Section
3.2.4, let ~a, ~za = ~z + ~a and ~̂za denote the false data injection vector, fake measurements
and state estimation results from the fake measurement, respectively. Without carefully
constructing the malicious data ~a, the residual ~ra = ~za− ~̂za can break the residual test (3.4)
and hence be easily detected by BDD.

In order to successfully hide the malicious attack, the attack vector ~a must satisfy the
condition

~a = h(~̂xa)− h(~̂x), (3.18)
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where ~̂xa is the estimated state under FDIA. This can be proven by the following equations:

~ra = ~za − ~̂za = ~z + ~a− h(~̂xa) (3.19)
= ~z + ~a− (~a+ h(~̂x)) (3.20)
= ~z − h(~̂x) (3.21)
= ~r. (3.22)

Therefore, if the original measurements and state estimation can bypass BDD, i.e., satisfies
the condition (3.4), it implies ‖~ra‖2 ≤ τ , too.

In order to construct ~a satisfying (12.1) in AC formulation, we follow a similar strategy
proposed by [56], to minimize the changes in the states while lunching a successful attack.
We can formulate this optimization as

min
∆~V ,∆~θ

‖∆~V ‖2
2 + ‖∆~θ‖2

2 (3.23a)

s.t P inj
i (~V , ~θ) = P inj

i (~V + ∆~V , ~θ + ∆~θ),∀i ∈ B (3.23b)
Ftarget(~V + ∆~V , ~θ + ∆~θ) ≥ Fmax

target, (3.23c)
∆V min

i ≤ ∆Vi ≤ ∆V max
i ,∀i ∈ B (3.23d)

∆θmini ≤ ∆θi ≤ ∆θmaxi ,∀i ∈ B (3.23e)

where
∆~V : changes happened to the bus voltage;
∆~θ: changes happened to the bus phase angle;
∆θmaxi : maximum changes in phase angle at bus i;
∆θmini : minimum changes in phase angle at line i;
∆V max

i : maximum changes in voltage magnitude at bus i;
∆V min

i : minimum changes in voltage magnitude at bus i.
Ftarget(.): the real power flow on the targeted line;
P inj
i (.): the power injection at bus i; ;
The idea of this optimization problem is to find the minimum changes to the states,

subject to (1) keeping the same power injection at all the buses, and (2) creating congestion
at the targeted line. It is worth mentioning that this optimization problem is hard to solve,
and there is no guarantee to find a solution. This is due to the fact, that if the flow on
the targeted line is far away from its limit, there is no such solution that can make this line
congested while keeping all the power injections unchanged. Therefore, we only apply this
attack when the flow on the target line is close to its limit.

Solving this problem gives us the attack vectors to the state c = (∆~̂
V,∆~̂θ). We can then
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get the full attack vector by setting

~a = h(~̂x+ ~c)− h(~̂x) (3.24)

This FDIA can successfully push the target line flow to the limit and make it look
congested in the state estimate. Therefore, the following IED, which uses this fake state
estimation, cannot assign any more flow to the target line, and has to shift the flow onto
other routes if needed. Note that the incremental results from IED are then added to the
real states without FDIA. Consequently, this wrong dispatch plan increases the chance that
some non-target line can get congested. However, we need to highlight that it is still possible
that FDIA fails to create any impact. For example, if there is a big increase in the load in
the next five minutes, the IED may have to use full capacity of the targeted line, regardless
of the FDIA. On the other hand, if there is a big decrease in the load, the IED will remove
the fake congestion on the target line introduced by FDIA. As a result, this FDIA fails to
create any impact in the dispatch results, even though it is well-structured and can create a
fake congestion.

Our implementation of FDIA is summarized as follows:

1. (Optional) Given a time window. Only apply FDIA if current time-stamp is within
the given window. Otherwise, terminate.

2. Given a target line for FDIA, where the attackers would like to create a fake congestion
in the corresponding state estimation results.

3. Check if the flow rate on this target line is close to the limit. In our simulator, we have
two triggers: (1)Ftarget >= `r ∗ Fmax

target and (2) Ftarget >= Fmax
target − `c. If one trigger is

denied, terminate. (In our test case, `r = 0.75 and `c = 100.)

4. Compute state estimation ~̂x from the real measurements ~z. See Section 3.2.4 for details.

5. Solve the optimization problem (12.2) to get ~c and fake state estimate ~̂xa = ~̂x + ~c. If
it fails to converge, terminate.

6. Create attack ~a by equation (3.24), and get the false measurement ~za = ~z + ~a.

7. (Optional) Get fake state estimate from false measurement ~za according to Section
3.2.4. Verify it with ~̂xa. If the error is out of the given tolerance, terminate.

8. (Optional) Continue to the next module IED to compute two dispatch plans. One is
with FDIA, and the other is from the original state estimation without FDIA.

9. (Optional) Check if FDIA can alter the congestion pattern. If yes, the simulation found
a successful FDIA and use it in the current step; otherwise, abort FDIA and use the
real measurements, state estimation and corresponding IED in current step.



35

Since the state estimation uses a Newton-type iterative method which only guarantees local
convergence, we can use the optional step 6 for verification to guarantee the solution of (12.2)
is in a local region of interest. We mark step 7 and 8 as optional as well, since these two
steps require using the IED for post-fact verification to guarantee a successful FDIA that
can change the congestion pattern as designed.

3.5 Numerical Experiment
We tested the simulator on the PJM 5-bus system, IEEE 14-bus, 39-bus and 118-bus

system. For easy interpretation and reasonable complexity, we explained in detail the results
on the IEEE 39-bus system, shown in Figure 3.4. We used 21 load forecast data downloaded
from PJM Data Miner 2 [70]. The day-ahead hourly load forecast and 5-minute real-time load
forecast from Oct. 17th to Oct. 24th 2019 were used in initialization and IED, respectively.
The aim of numerical experiments is to demonstrate the system responses with/without
cyber attacks and with/without outages. The dataset generated will be used in Task 4 for
algorithm development and evaluation. The signatures of normal/abnormal events will be
used for feature selection and root-cause diagnosis.

LRA Target Bus

L33

L32

L26

FDIA Target Line

L27

L3

Line outage Generator outage

L37

L41
1

L1

L2

L4L5

L6

L7

Figure 3.4: IEEE 39-bus system.

Note that some slight modifications were added in the MATPOWER case file "case39.mat".
These include:

1. Using different generation cost parameters aiG2
i + biGi + ci for bus i. Instead of using

the default uniform cost parameter where a = 0.01, b = 0.3 and c = 0.2, we used
parameters in Table 3.2. By setting different cost profile, the IED can have a unique
solution for each generator.
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Gen ID a b c
1 0.1 30 2
2 1 300 2
3 0.1 35 2
4 0.1 40 2
5 0.1 50 2
6 0.1 60 2
7 0.1 70 2
8 0.1 80 2
9 0.1 90 2
10 0.1 100 2

Table 3.2: Generation cost for IEEE 39-bus system

2. Setting different flow limit to lines. Instead of using the default values, we first removed
all the flow limits and did an N-1 contingency analysis. From each contingency case,
we calculated the average flow on each line over the simulation period. Then we used
the maximum average flow over all the contingency analysis, as the flow limit in IEEE
39-bus system. These values are provided in Table 3.3.

We focused on the 24-hour simulation, which has 288 time steps all together. The power
generation plan over all the power generators is presented in Figure 3.5, while the corre-
sponding 24-hour LMP is presented in Figure 3.6. We can observe that the total demand
varies from 4200 MW to 5500 MW.

In the following subsections, we first illustrate the system responses under three cyber
attacks, respectively. We then show system operation conditions under line and generator
outages. Finally, we test scenarios when both attack and outage happen simultaneously. For
each test case, we analyze the results and explain in detail the impact and signatures.

3.5.1 LRA
For LRA, we used bus 20 as the target bus and set the attack period as 5 AM to 7

AM, i.e. the morning demand peak time. During LRA, we increased the demand at bus
20 by 50MW, roughly 1% of the total demand. The LMP with/without LRA are compared
in Figure 3.7, which zooms in the period from 4 AM to 9 AM, to better present the LMP
behaviors under LRA.

We can see LMP of bus 20 starts increasing earlier than the one without LRA. This
is because the attacked dispatch shifts the line congestion from line 27 to line 33 when
LRA is applied. For these two lines, we plot the flow rate from DC dispatch results in
Figure 3.8 where the black curve Flow represents the flow without LRA; the blue dash curve
Flow_pred_LRA represents the dispatch results using the fake load profile and the green
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Line ID Flow Limit Line ID Flow Limit
1 597.61 24 534.43
2 511.16 25 803.51
3 787.59 26 804.11
4 329.80 27 633.19
5 836.53 28 709.40
6 638.97 29 677.94
7 450.60 30 577.81
8 643.61 31 298.85
9 751.90 32 304.04
10 572.62 33 652.00
11 723.80 34 508.00
12 719.37 35 941.57
13 751.20 36 594.70
14 425.19 37 647.94
15 544.37 38 940.05
16 580.80 39 571.29
17 566.55 40 454.28
18 719.77 41 538.71
19 676.22 42 364.05
20 725.00 43 162.62
21 191.23 44 191.93
22 198.51 45 315.16
23 667.86 46 727.90

Table 3.3: Flow limit for IEEE 39-bus system

dash curve Flow_LRA represents the dispatch results using the real load profile. When an
LRA happened, operators use the falsified load in IED and expect to see the flow behave
as the blue curve. However, the real load will adjust the dispatch result and have the flow
acting as the green curve, and hence overheat the transmission line.

We also present flow rates for line 26 and line 32 in Figure 3.9. From these figures, we
observe that LRA can successfully redistribute the power flow to overload the transmission
line 27, and also make line 33 get congested earlier. However, it does not affect the flow rate
on line 32. This is because the evolving of power flow is driven by the demand. Since the
actual power demand doesn’t change under LRA and line 34 is always congested, line 32 is
the only route to deliver the required power to bus 20 and hence LRA cannot change the
congestion pattern of line 32.

We observe that the impact of LRA disappears after 6 time-steps though we applied 12
continuous attacks. The reason is that the load at bus 20 is increasing after 5 AM. When
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Figure 3.5: Power generation and total demand for a 24-hour simulation of IEEE 39-bus
system

this load reaches a certain value, the local generators need to deliver more power to bus 20
instead of delivering cheap power to the rest of network through line 27. As a result, the
congestion on line 27 is cleared. This shows that the impact of LRA depends on the trend
of actual load.

We also observe that there is a big jump in flow rate from Figure 3.8 and Figure 3.9,
whenever we activate or deactivate LRA. However, we can observe similar behavior in flow
rate during the 24 hour simulation without attacks, from Figure 3.10. Therefore, LRA is a
stealthy attack and can be hidden in the system dynamics.

3.5.2 PRA
To perform a PRA, we set τPR = 20, n̂ = 6 and γ = 1. That is, when the average LMP

over the last 30 minutes (6 steps) is above the sum of initial LMP and τPR, we mark the
next step as the time price-responsive load is activated.

We present the total power demand with/without PRA in Figure (3.11a) and their cor-
responding maximum LMP over the 39 buses in Figure (3.11b). From the red curve, which
represents the case without PRA, we can observe that LMP reaches the peak value around
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Figure 3.6: LMP for a 24-hour simulation of IEEE 39-bus system

$198 due to the increase in demand. This figure also shows that whenever LMP is above
around $180, the load curves start to differ. The load in blue dash line is higher than the
load in red since PRA increased the load by reversing the control logic of demand response
program. When the price-responsive load is not activated, the load is set back to the default
value ~D obtained from the five-minute load forecast.

Unlike LRA, PRA actually changes the load behavior and the entire dispatch results,
including flow rates on the transmission lines and power generation. Thus, it is able to
manipulate both energy cost LMPE and congestion cost LMPC . In this test case, the given
PRA successfully changes the congestion pattern in line 37 and line 41, shown in Figure
3.12. Additionally, the increases in flow occurred when attack is activated or deactivated are
slightly smaller than those caused by LRA. This is because in PRA the same load is used in
solving IED and creating measurements, i.e. no fake load data are involved.

3.5.3 FDIA
For FDIA, we used line 27 as the target line where we created fake congestion by injecting

false data into measurement. We applied 9 successful FDIA during the period between 4
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Figure 3.8: Power flow on line 27 and line 33 with/without LRA.

PM and 9 PM, scattered at time steps 192, 195, 214, 223, 224, 231, 233, 236 and 246. The
measurements and state estimation results for line 27 are presented in Figure 3.13, where
we can see 9 attacks successfully move the target flow above the limit. Therefore, in the
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Figure 3.9: Power flow on line 26 and line 32 with/without LRA.
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Figure 3.10: 24-hour power flow on line 27 and line 33 without attack.

following IED module, no more incremental flow can be assigned to line 27. In fact, the
solution from IED will remove the over-limit flow to make sure the new dispatch is under
the flow limit. Consequently, power flows on other transmission lines will be increased, in
order to deliver the necessary power to supply the demands in the network.

Due to the optional step 8 in Section 3.4.3, these 9 attacks can successfully change the
congestion pattern after dispatch, resulting in some spikes in the LMP curve shown in Figure
3.14. Note that the changes are not dramatic, compared with the other two attacks. This
is expected since the objective of nonlinear optimization problem (12.2) is to minimize the
change of the states. Consequently, even though the attacks are successful, the changes in
state estimation are subtle.

Without verifying through step 8 in Section 3.4.3, FDIA cannot guarantee the change of
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Figure 3.11: Total demand and maximum LMP with/without PRA.
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Figure 3.12: 24-hour power flow on line 37 and line 41 with/without PRA.

congestion patterns, since we cannot foresee the dispatch results for the next step. If we add
more constraints into this optimization problem, it can easily become an over-determined
problem as discussed in [56]. For example, asking for 2 specific congested lines may make the
problem infeasible. The attacker also needs to know more real-time information about the
power grid, in order to create an attack that can bypass BDD and also create a big impact.

Last but not least, through all three attacks, we notice that the impact of attacks can be
quickly absorbed by the power system. In other words, once the attack is discontinued, the
power system can rapidly recover to the normal operation status in a couple of steps. This
means to achieve a big gain the attacks must either (1) have a huge impact in the current
step; or (2) continuously attack the system for a while. In the following cases, we will show
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Figure 3.13: Measurement and state estimation at line 27 with/without FDIA.
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Figure 3.14: LMP with FDIA

how cyber attacks can damage the power grid during outages.
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3.5.4 Line Outage
In this test case, we assume there is an unexpected line outage on line 3, from time 17:55

to 18:55. Note that when the line outage happens, the topology of power grid changes and
hence we need to recompute a new GSF matrix and use it in the IED formulation (3.5).

We present the power generation in Figure 3.15a and LMP in Figure 3.15b during line
3 outage. The line flow on line 3, and the lines nearby are presented in Figure 3.16. From
these figures, we can see the flow on line 3 suddenly decreases to 0, and hence there is a flow
surge in line 7, in order to cover the demand on bus 3.
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(a) Power generation with line outage.
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(b) LMP with line outage.

Figure 3.15: IEEE 39-bus system with line outage at line 3.

If we switch on the PRA during line 3 outage, we can see a big surge in LMP from Figure
3.17. This is because the congestion is removed from line 41, while three new congestions
are introduced at line 37, 40 and 42, when the line outage happens.

If we apply one FDIA during line 3 outage, at time step 208, we can observe the maximum
LMP changes slightly, from Figure 3.18. However, without line outage, the FDIA will not
impact the system at all, shown as the black dot curve.

To test the impact of LRA during line outage, we tested LRA with different amounts
of load shift. We can observe the larger load shifts from LRA, the more LMP deviates
from the no-attack case in Figure 3.19, where the curves LMP_Lout, LMP_Lout_LRA_50,
LMP_Lout_LRA_100 and LMP_Lout_LRA_200 represent the LMP without attack and
with 50/100/200 MW load shift, respectively.

3.5.5 Generation outage
In the last cases, we tested the most complex scenarios, where unexpected generation

outage and reserve market are activated and different attacks are applied simultaneously.



45

0 50 100 150 200 250 300

time step (5-minutes)

0

100

200

300

400

500

600

700

800

P
ow

er
 (

M
W

)

Line Flow

Line_1
Line_3
Line_4
Line_5
Line_6
Line_7

Figure 3.16: Power flow with line outage.
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(a) Power generation with line outage and PRA.
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(b) LMP with line outage and PRA.

Figure 3.17: IEEE 39-bus system with line outage and PRA.

For comparison, we started with only one generation outage, which occurs on generator
1 (G1) at bus 30, from 12:00 PM to 12:30 PM. Without outage, G1’s power generation
during this period is fixed to 780 MW. We consider three different scenarios: (1) the power
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Figure 3.18: Max LMP with/without line outage and with/without FDIA.

generation reduces to 728 MW (93% of the original value); (2) the power generation reduces
to 572 MW (73% of the original value); and (3) the power generation reduces to 416 MW
(53% of the original value). The changes in power generation are demonstrated in Figure
3.20.

In the first scenario shown as Figure 3.20a, we observe that the outage can be covered
by the reference bus since the generation loss is small. Therefore, no reserve generation is
required. From the next time step, new dispatch can reallocate the regular power generation
to balance the system. As a result, generator 6 and generator 3 need to generate more during
G1 outage. When the outage is cleared, G1 returns to its default generation value, 780 MW.

In the other two scenarios, we can see the reserve is required in Figure 3.20b and Fig-
ure 3.20c, since the reference bus cannot cover these big losses due to its ramp rate limit.
However, in the 2nd scenario, the system is able to return to the regular market in the next
step, where IED can find a feasible dispatch plan without using the reserves. In contrast, in
the 3rd scenario, the loss is too large and it cannot be resolved in one step due to the ramp
limit. Hence it requires the usage of reserves for 2 sequential time steps, until the regular
generators can replace the reserves. The corresponding LMP is shown in Figure 3.21. Note
that due to the surge in LMP when reserve is required, the price-responsive load is activated
and hence we can observe a load decrease during this period in Figure 3.21.
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Figure 3.19: LMP under different LRA with line outage.

If we apply PRA attacks during the generation outages in scenario 2 and scenario 3, we
can see that the LMP reaches roughly $500 during the outage in scenario 2, from Figure
3.22. For scenario 3, the PRA and generation outage overload the power system, and hence
there is no dispatch plan that can satisfy the demand. This case demonstrates cyber attacks
can destabilize power grids when applied at critical time.

3.5.6 Summary
The major findings from the numerical experiments are summarized as follows:

• Signatures of LRA are:
(1) misalignment between the load measurement trend and LMP dynamics (congestion
patterns);
(2) misalignment between the load measurement trend and the predicted load trend
from solving the dispatch problem;
(3) overload on unexpected transmission lines due to erroneous dispatch;
(4) more impact at peak load hours or during outages.

• Signatures of PRA are:
(1) no reaction with meter measurement and state estimator, thus harder to detect;
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(b) Maximum G1 is 572 MW during the outage.
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(c) Maximum G1 is 416 MW during the outage.

Figure 3.20: IEEE 39-bus system with generation outage at G1.

(2) misalignment between the historical load trend and load measurement;
(3) delay effect due to demand response time;
(4) more impact at peak load hours or during outages.

• Signatures of FDIA are:
(1) more stealthy thus harder to detect;
(2) overload on transmission lines due to erroneous dispatch;
(3) more accurate in creating desirable congestions in measurements and state estima-
tion results;
(4) unexpected change in LMP and damage to the power system.
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Figure 3.22: IEEE 39-bus system with generation outage and PRA.

• Signatures of line outages are:
(1) sudden dip of power flow on one transmission line;
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(2) sudden dramatic change in LMP (congestion patterns and different generation shift
factor);
(3) flow pattern changes dramatically, e.g., flow changes direction.

• Signatures of generation outages are:
(1) reserve market response during severe generation loss;
(2) sharp spikes in LMP;
(3) misalignment between the historical real generation trend and the run-time real
generation trend.

• Cyber attack creates bigger impact on power grids when applied (1) at critical time;
or 2) during outages.

• The attack impact can be accumulated to destabilize the system when cyber attack is
applied continuously.

3.6 Conclusion
This chapter presented results from the effort on creating realistic simulation dataset

and deriving event signatures. An electricity market simulator was built with multiple in-
novations in supporting time series simulation and cyber attack implementation. Using this
simulator, the team tested scenarios in long/short terms with/without cyber attacks and
with/without outages. It is demonstrated that cyber attacks can be easily disguised in sys-
tem dynamics and early detection of stealthy cyber attacks is essential in preventing further
damage to the power grid.



Chapter 4

WISP Algorithms: Anomaly Detection

Information and communication technologies have been widely used in smart grid ap-
plications for efficient operation. However, these technologies are vulnerable to malicious
cyber attacks, which may lead to severe reliability and economic issues. Recently, a variety
of data-driven anomaly detection approaches have been explored to detect potential cyber
attacks in smart grids. In this chapter, we present research on the electricity market data
aiming to identify anomalies from the locational marginal prices (LMPs) and provide a new
indicator for potential cyber attacks in power grids. Specifically, a novel data-driven anomaly
detection framework is proposed for electricity market, which consists of three major compo-
nents: (1) real-time point-wise anomaly detection, (2) real-time locational anomaly detection
and (3) price spike anomaly detection. The following sections will introduce the algorithms
and evaluation results on multiple data sets. Specifically, Section 4.1 presents the proba-
bilistic anomaly detection framework focusing on an optimization based algorithm. Section
4.2 presents deterministic anomaly detection framework with novel threshold optimization
method. Section 4.3 presents ensemble results of deterministic algorithms on the simulation
dataset. Section 4.4 presents locational detection algorithms tested on PJM dataset. Section
4.5 presents locational detection algorithms tested on the simulation dataset. Section 4.6
presents price spike detection algorithms evaluated on PJM and ISO-NE datasets. Section
4.7 concludes the chapter.

4.1 Real-time Point-wise Anomaly Detection - Part I
Probabilistic Methods

4.1.1 Introduction
The U.S. power grid is a complex cyber-physical system incorporating a vast volume of

distributed devices, which by nature results in a large attack surface. Malicious attackers
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can compromise the power devices, communication and control facilities or market interfaces,
leading to local outages, equipment damage, grid instabilities or individual financial gains.
A promising cyber defense approach, which is non-intrusive to the operational system and
adds additional protection is physical response based anomaly detection. For cyber-physical
systems, evaluating physical performance from sensor data is a common practice, but using
these data to detect cyber attacks is under-developed. A few anomaly detection technologies
have been presented in the literature with power systems applications. For example, Wang et
al. [71] presented a power consumption anomaly detection method based on long short-term
memory (LSTM) point forecasts and error pattern. In [72], Krishna et al. adopted Principal
Component Analysis (PCA) and density-based spatial clustering on noise pattern to detect
the anomalies which are deviations from the normal electricity consumption behavior. Kim
et al. [73] presented a framework which utilizes spatial and temporal correlation between
multiple solar farms to defend against data integrity attacks and learns the inter-farm/intra-
farm correlation between measurements to perform anomaly detection. However, most of
the existing anomaly detection applications for power systems are deterministic and thus
insufficient to characterize the uncertainties of cyber attacks. Probabilistic approaches that
provide quantitative uncertainty information associated with cyber attacks are therefore
expected to better assist power system operations.

To address the aforementioned limitations, in this section, a data-driven probabilistic
anomaly detection methodology is developed to provide reliable defense strategies against
various cyber attack scenarios. First, a deep neural network, LSTM, is used to model the
temporal dependencies within the LMP profile and correlations with explanatory variables.
Then, a parametric probabilistic forecasting model is adopted to convert the LMP point
forecasts to probabilistic forecasts, which is used for anomaly detection. Our major con-
tribution is to formulate the anomaly detection problem as a probabilistic forecasting task
and implement this approach to the publicly available electricity market data. The proposed
probabilistic anomaly detection algorithm utilizes prediction interval to reveal the underlying
structures within normal behavior and detect unexpected events.

The rest of the section is organized as follows. Subsection 4.1.2 describes the proposed
probabilistic anomaly detection method, which consists of a deep-learning based determin-
istic forecasting model and a parametric probabilistic forecasting model. Subsection 4.1.3
applies and validates the developed probabilistic anomaly detection method to two types of
cyber attack scenarios. Concluding remarks are discussed in Subsection 4.1.4.

4.1.2 Methodology
The overall framework of the proposed probabilistic anomaly detection methodology is

illustrated in Fig. 4.1. It consists of three major steps:

1. Step 1 (gray blocks): Feed the historical data into an LSTM based forecasting machine
to predict LMP.
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Figure 4.1: The Overall framework of the probabilistic anomaly detection model for electric-
ity market data

2. Step 2 (orange blocks): Convert the point forecasts to prediction intervals (PIs) using a
parametric probabilistic forecasting method based on designated predictive distribution
shapes and pinball loss optimization.

3. Step 3 (blue block): Detect anomalies based on the threshold confidence and evaluate
the performance.

The details are explained in the following content.

Multi-input Long Short Term Memory

Due to data availability, it is impractical to collect all explanatory variables (e.g., tem-
perature and humidity, etc.) to build an ideal LMP forecasting model. In this section, we
select the energy cost, congestion cost, forecast load, and their corresponding lagged vari-
ables to train the LSTM model, since they are published in real-time for most electricity
market operators.

LSTM is a special recurrent neural network (RNN) architecture for time series modeling
and forecasting, which has the capability of learning and memorizing long-term dependencies
within the time-series data. The basic topology of standard RNN is shown in Fig. 4.2,
where X denotes input, Y denotes output. h is the hidden state, Whx, Wyh, and Whh

are the weight matrix among inputs, outputs, and hidden state itself, respectively. The
standard RNN has one hidden layer, which could only trace back to a few time steps due
to the vanishing gradient effect [74]. To better capture the long-term dependencies, LSTM
introduces different gates which could regulate the gradient flow of the network. Following
the work of [75], the inner structure of the LSTM unit is illustrated in Fig. 4.3 and described
in Eq.4.1.
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it = σ(xtWix + ht−1Wih + ct−1Wic + bi)
ft = σ(xtWfx + ht−1Wfh + ct−1Wfc + bf )
ct = ct−1ft + it · tanh(xtWxc + ht−1Wch + bc)
ot = σ(xtWox + ht−1Woh + bo)
ht = ot · tanh(ct)

(4.1)

where i(·), f(·), and o(·) are the input gate, forget gate, and output gate, respectively. σ
denotes the sigmoid activation function, ht is the state at t, xt denotes input, ot is the cell
output, and ct is the memory state. LSTM updates its hidden state ct by using the current
input xt and the previous state ct−1. The final state ht is determined by ct and ot. The
weights are optimized by minimizing the difference between the LSTM outputs and training
samples. In this study, the input vector of the multi-input LSTM can be expressed as:

xt = [yt−1,Φt] (4.2)

where Φt denotes the feature vector of the time step t, y denotes the observation at time
step t.
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Probabilistic Anomaly Detection

Once the deterministic LMP forecasts are generated, a multi-distribution database is
formulated to model the possible shapes of the LMP predictive distribution. These four
distributions, characterized by mean value (µ) and standard deviation (σ), are Gaussian,
Gamma, Laplace and non-central-t distributions. The mean value is approximated by the
deterministic point forecast and the standard deviation σ is calculated by minimizing the
pinball loss of the quantile function at each time step. Based on the optimal pinball loss
values, we select the best predictive distribution. The pinball loss value of a certain quantile
Lm is expressed as:

Lm,t(qm,t, yt) =


(1− m

100)× (qm,t − yt), yt < qm,t

m

100 × (yt − qm,t), yt ≥ qm,t
(4.3)

where yt represents the tth observation, m represents a quantile percentage from 1 to 99, and
qm represents the predicted quantile. For a givenm percentage, the quantile qm represents the
value of a random variable whose cumulative distribution function (CDF) is m percentage.
Pinball loss is one of the most popular metrics for evaluating probabilistic forecasts [76].
Smaller pinball loss values indicate better probabilistic forecasting.

The process of probabilistic anomaly detection is described as follows:

1. Parameterizing the quantile in terms of µ and σ, where µ assumes to be the point
forecast. The mth quantile of the tth point forecast, qm,t is expressed as:

qm,t = F−1( m100 , ŷt, σt) (4.4)

where, ŷt and yt are deterministic forecasts and observations, respectively. F−1(·) is
the inverse CDF function. The corresponding pinball loss is expressed as Eq. 4.3.

2. Calculating the unknown parameter σ at each time step by minimizing the averaged
sum of pinball loss through genetic algorithm (GA) [77]:

σ∗t = arg min
σt

1
Nm

Nm∑
m=1

Lm,t(σt, yt, ŷt,m)

subject to σl ≤ σt ≤ σu (4.5)

where σ∗t is the optimal standard deviation of the tth time step; Nm = 99 is the number
of quantiles; σl and σu are the lower and upper bound of σ, which are set as 0.01 and
80, respectively.

3. A support vector regression (SVR) surrogate model [78] is used to fit the point fore-
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cast and σ∗ in the training stage, which is used to generate unknown pseudo optimal
standard deviations, σ̂∗, in the forecasting stage.

4. During probabilistic forecasting, both the deterministic forecasts, i.e. µ, generated by
LSMT and the estimated pseudo optimal standard deviation σ̂∗ generated by SVR are
used to determine the prediction interval (PI) [79].

5. For each time step, the observation falls into a certain PI, which is used to estimate the
likelihood of it being anomaly (outliers). The deterministic prediction decides the best
estimate of next step LMP, while the probabilistic prediction quantifies the uncertainty
of all possible observations. The larger PI denotes further deviation from its nominal
value. In this section, we assume an anomaly is spotted whenever the observation falls
out of the 70% PI. This detection threshold can be further tuned through a sensitivity
study which is out of our scope.

4.1.3 Case Study

Data Description

For data preparation, we first built an electricity market simulator based on Matpower
[53] using a combined model of day-ahead economic dispatch (ED) and real-time incremental
economic dispatch (IED). We then run the simulator on the IEEE 14 bus system with 11
loads selected from PJM load profiles. The day-ahead hourly load forecast and 5-minute
real-time load forecast from Sept. 19th to Oct. 17th 2019 were used for ED and IED,
separately. The simulated 5-minute real-time LMP, energy cost, congestion cost and the
5-min load forecast were used for training and testing. The ratio of the number of training
samples to testing samples was 3:1. The LSTM deterministic forecasting model has two
hidden layers of 50 and 30 neurons and the weights were optimized with Adam.

Cyber Attack Scenario Design

Two kinds of attacks are implemented in the simulator: Load Redistribution Attack
(LRA) and Price Responsive Attack (PRA).

LRA was first introduced by Yuan et al [30], as a kind of FDIA attack where only the
measurements related to some load bus power injection are attacked. LRA redistributes
the load by increasing/decreasing certain loads at some buses while keeping the total load
unchanged [65]. Since no attacks happened on the well-protected generation buses and LRA
can bypass bad data detection, LRA can be hard to detect in real-time. The damage of
LRA is that it can lead to a wrong dispatch result, i.e., fake solution from the economic
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dispatch problem, which may overload certain transmission lines and raise LMPs. The LRA
was added to the simulator before solving the IED problem to redistribute the 5-min load
forecast. It tries to increase the load prediction in the targeted bus, while decreasing the
load prediction in the non-targeted buses. To maximize the gain of the attacks, LRA is only
activated in the simulator during the critical hours, i.e., when LMP has a big change in the
historical data. In our case, we observed that LMP changes dramatically during 11:00 to
13:00, when LMP increases due to line congestion, and 20:00 to 22:00, when LMP decreases
due to the removal of congestion. Therefore, we only add attacks during these two time
periods, to extend the time of line congestion. LRA is added by the following procedure:

1. Within the time period 11:00 to 13:00, check if we have already applied attacks in the
previous steps. If the number of existing attacks is greater than the maximum allowed
attacks, terminate.

2. Check if the next total load prediction is greater than the current total load by 5%. If
yes, we reduce the load increasing rate at the non-targeted bus where its corresponding
load is increasing, and make the load decreasing rate higher at the non-targeted bus
where its load is decreasing. We then apply the adjusted load to the targeted bus to
increase its incremental load and accelerate the LMP ramping.

A similar procedure is applied to the time period 20:00 to 22:00, where we aim to slow down
the load decreasing rate at the targeted bus, in order to extend the period of line congestion.

PRA is a type of LAA, inspired by the real-time pricing attacks [64], and Manipulation
of Demand attack (MAD) [67], which change the load behaviors to damage the power grid.
The motivation of our PRA is that the quick growth of smart grid foresees the wide usage
of load management technologies, which can change the load behaviors based on the current
LMP information. For example, the controller of a smart appliance can switch to the full-
power mode when the price is low, and keep in energy saving mode when the price is high.
Unlike the infrastructures of power grid, which are well-protected, the load controllers are
located in the user end with much less security to defend against cyber attacks. The PRA is
designed by injecting false price signal to the load controllers so as to inverse the controller
logic, to use more power when LMP is high and there is a high opportunity of line congestion
in the power grid. By increasing the load demand at such a critical time period, we expect
it can possibly change the LMP by introducing more congestion.

Assuming there is a delay in the control of price-responsive demand after LMP changes,
e.g., the load change happens 30 minutes after the price change. Our implementation of
PRA is summarized as follows:

1. Check if we have already applied attacks in the previous steps. If the number of
existing attacks is greater than the maximum allowed attacks in the given time period,
terminate. (In our test case, we check if there are 5 continuous attacks happened
during the last 5 time steps.)
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2. Check if LMP has a big increase, compared to the LMP from last step. (In our test
case, we checked if it had an increase over 10%.) If yes, adjust the price-responsive
load by the following equation

PDadjusted = PDbase + PDpr ∗ (λcurr/λpred)β (4.6)

where PDbase and PDpr are the base load and the price-responsive part of the load, similar
to the definition given in [64]. In our test case, we set PDbase = 90% ∗ PDpred, i.e., 90%
of the load forecast, and the rest of the load are the price-responsive load. The decreasing
factor β is set to be -0.8. Note that our formulation is slightly different from the one used
in [64], since we use day-ahead LMP prediction λpred as a base line. If the current LMP is
equal to the predicted one, the above equation becomes PDadjusted = PDpred.

Deterministic LMP Forecasting Results

Three evaluation metrics are used to assess the deterministic forecasting accuracy, which
are the normalized root mean squared error (nRMSE), normalized mean absolute error
(nMAE), and mean absolute percentage error (MAPE). For these metrics, a smaller value
indicates better forecasting performance. Deterministic LMP forecasting results are sum-
marized in Table 4.1. In this study, the persistence method (PS) is adopted as the baseline
since it is superior for a shorter forecast horizon [80]. Overall, the accuracies of the LSTM
deterministic LMP forecasts are better than those of persistence forecasts under both cases
with or without attack. It is mainly because the LMP data is highly temporally correlated,
and the LSTM model outperforms in capturing long-term dependencies.

Table 4.1: 5-min ahead LMP forecasting performance

Model Metric Scenario
w/o attack LRA PRA

LSTM NMAE(%) 1.07 5.20 5.96
NRMSE(%) 1.35 6.10 6.83
MAPE(%) 2.28 7.99 8.43

PS NMAE(%) 3.80 6.40 6.66
NRMSE(%) 6.50 7.86 8.42
MAPE(%) 4.71 9.13 10.27
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Probabilistic Anomaly Detection Results

This section evaluated the performance of the proposed probabilistic anomaly detection
method. Laplace distribution was selected as the predictive distribution based on its minimal
pinball loss in the training process. Therefore, the LSTM model with Laplace distribution
(LSTM-Laplace) was chosen as the final anomaly detection model. The performance skill
scores were calculated based on Table 4.2, where The true positive (TP) denotes the number
of detected attacks; false negative (FN), i.e., type II error, denotes the number of missed
detection of attacks; False positive (FP), i.e, false alarm or type I error, denotes the number
of normal data treated as attacks; true negative (TN) denotes the number of normal data
correctly identified. Ns is the total number of test samples. Among these indexes, the FP
can cause false alarms, which may add redundant work to system operators, while the FN
missed by the detection model may bring loss to market end users.

Table 4.2: Contingency table of attack detection

Attack (Yes) Attack (No) Total

Detected (Yes) TP (hit) FP (miss) TP+FP

Detected (No) FN (miss) TN (hit) FN+TN

Total TP+FN FP+TN Ns=TP+FP+FN+TN

Evaluation Metrics
We calculated the true positive rate (TPR), false positive rate (FPR), and F1 score of the
anomaly detection results. The mathematical expressions of the three metrics are expressed
as:

TPR = TP

TP + FN
(4.7)

FPR = FP

FP + TN
(4.8)

F -1 = 2TP
2TP + FP + FN

(4.9)

where the TPR measures the proportion of actual attacks that are correctly identified, the
FPR measures the portion of normal data mistakenly categorized as attacks, and the F-1
score is the harmonic mean of the precision and recall. For the TPR and F-1 score metrics,
values approaching 1.0 indicate better performance, while for FPR metric, a value closer to
0 indicates better performance.

To show the effectiveness of the proposed LSTM-Laplace model three baseline models
were selected for comparison: LSTM model with Gaussian distribution (LSTM-Gaussian),
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LSTM model with Gamma distribution (LSTM-Gamma), and quantile regression (QR).
The reasons for choosing these baseline models are: (i) QR is a widely used non-parametric
probabilistic method [81]. Since the proposed LSTM-Laplace model is a parametric method,
the QR baseline allows us to explore the performance between parametric method and non-
parametric method; (ii) the LSTM-Gaussian and LSTM-Gamma model allow us to explore
the detection performance based on different predictive distribution types.

The evaluation metrics of different models are compared and summarized in Table 4.3.
Overall, the proposed LSTM-Laplace anomaly detection method has a higher TPR, F-1
Score, and lower FPR compared with other anomaly detection methods, which shows the
effectiveness of the proposed probabilistic anomaly detection algorithm. Note also that the
models of LSTM-Gaussian, LSTM-Gamma, and LSTM-Laplace perform similarly and better
than the QR method, which indicates that the optimization can help achieve better detection
performance with different predictive distribution types in parametric methods. In addition,
it is shown that the scores of LRA is better than that of PRA. It is mainly due to the larger
LMP magnitude change under LRA and higher PRA attack frequency.

Table 4.3: Probabilistic Anomaly Detection Results

Method Attack Scenario Metrics
TPR FPR F-1 Score

LSTM-Laplace LRA 0.91 0.19 0.89
PRA 0.86 0.23 0.86

LSTM-Gaussian LRA 0.89 0.24 0.87
PRA 0.85 0.24 0.88

LSTM-Gamma LRA 0.86 0.23 0.87
PRA 0.85 0.24 0.86

QR LRA 0.79 0.33 0.84
PRA 0.71 0.35 0.65

Note: The best TPR, FPR, and F-1 score among different models are marked in boldface.

Results Analysis
To better visualize the probabilistic anomaly detection results, the PIs of selected time period
under LRA and PRA are illustrated in Fig. 4.4 and Fig. 4.5, respectively. It is observed
that for most of the no attack periods, the LMP reasonably lies within the PIs. When the
observation in the attack period falls out of the 70% PI , it is defined as a truth positive
detection. It is seen that the PRA frequency in Fig. 4.5 is higher than that of LRA in
Fig. 4.4, and the magnitude change of LMP under LRA is higher than that under PRA.
However, under both scenarios, the high detection accuracy shows the robustness of the
proposed method. The width of the PI varies with the LMP variability. When the LMP
fluctuates more frequently, the PI tends to be wider, and thereby the uncertainty under PRA
is relatively higher.
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Figure 4.4: PIs of LMP under LRA attack
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Figure 4.5: PIs of LMP under PRA attack

4.1.4 Conclusion
Results of the case study under different attack scenarios showed that the probabilistic

anomaly detection method was able to effectively detect both LRA and PRA from electricity
market data.
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4.2 Real-time Point-wise Anomaly Detection - Part II
Deterministic Methods

In this section, we explore the deterministic anomaly detection methods based on point-
wise prediction. Unlike the probabilistic methods, deterministic methods will not predict
the distribution of the next observation, rather, it produces a value closest to the true value
based on historical data trends and other relevant features. The detailed implementation
and testing are described below focusing on the IEEE 39-bus New England system.

4.2.1 Detection Algorithms and Detection Threshold
The deterministic detection starts with a one-step forward prediction on LMP data. It

then compares the prediction with the true observation to learn the "normal" level of the
system conditions. When under attack, the prediction error will surpass the predefined
tolerance threshold since the attacked LMP data has never been observed in the historical
trend. Hence, the deterministic anomaly detection algorithms contain two steps in general:

• Step 1: Predict the next step LMP and calculate the prediction error

• Step 2: Compare the prediction error with the detection threshold and report the
anomalies

For Step 1, an accurate prediction algorithm can capture the correlations between the
input features and the outcome predictions using both temporal connections and physical
connections. The team started with the state-of-the-art deep learning algorithm, LSTM,
and further compared with the transitional machine learning algorithms: Random Forests
(RF), Gradient Boosting (GB), Support Vector Regression (SVR), Neural Network (NN) and
Persistent Model (PS). Depending on the dynamics of the LMP data, each algorithm has its
merits. Test results show that for the simulation dataset with piece-wise linear generation
cost, the decision tree based algorithms (RF and GB) perform better since these LMPs are
step-like signals. Meanwhile, the LSTM performs better on the PJM dataset and simulation
data with quadratic generation cost function.

For Step 2, we consider a few parameters to calculate the best detection threshold. First
is the confidence interval of the "normal" prediction defined by the quantile pair (upper and
lower bound) of the errors. When a prediction error is outside of the quantile pair, we then
consider the anomaly score (AS) defined below:

AS = Perror · exp (decay ∗ state) (4.10)

where Perror, representing the prediction error, is the difference of prediction and observation;
state is an integer number that records the position of the current detection in its successive
appearance after previous attacks. We keep track of state in half hour intervals which means
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Figure 4.6: Data segmentation for deterministic anomaly detection algorithms.

for five minute LMP data, state ranges from 0 to 6. For example, state is 0 if Perror falls
inside the quantile pair; it is 1 if Perror falls outside the quantile pair at the first time; it is
2 if Perror falls outside the quantile pair at the second time; and so on. decay is the decay
factor that controls how fast the AS reduces with increasing state. We observed one single
attack could produce long-term impact in the system which leads to high prediction errors
even after attack is cleared. To reduce false alarms caused by such post-attack influence,
we introduce a decay function defined as the exponential of the current attack state (i.e.
state)regulated by a decay factor(i.e. decay), shown in Eq. 4.10. This formulation helps
reduce the weight of the anomaly score when the attack is continuously following previous
ones. decay can be selected from [−0.1,−0.5,−1− 10] covering full range of decaying speed.

The final detection result is determined by comparing the anomaly score (AS) with a
selected threshold (short for AS thred). The threshold selection is carried out by searching
through the three key parameters: quantile pair, decay and AS thred. Quantile pair defines
the stringent level of initial filtering which creates the attack state. decay controls how fast
AS decays and thus eliminates certain false alarms. AS thred is the final gate that decides
the severity of the anomalies to be presented to the operators.

4.2.2 Evaluation Results

Test Setup

The team implemented the previously introduced three categories of attacks (FDIA,
LRA and PRA) on the IEEE 39Bus system, a standard system extracted from New England
Power Grid. The simulator is driven by the time series load data downloaded from PJM
website. The details of the dataset generation were illustrated in Chapter 3. To implement
the deterministic algorithms, we first segmented the data into four volumes. The first data
chunk is used for training the prediction algorithms. The second chunk is for validation of
the prediction. The third one is for testing and selecting the best quantile pairs and AS
threshold. The last one, which is the only one that contains attacks, is used for final testing.
This process is shown in Figure 4.6.

The input features for all algorithms are selected as the load features, LMP statistics,
LMP laggings and time features, shown in Figure 4.7.
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Figure 4.7: Features for deterministic anomaly detection algorithms.

Figure 4.8: Time series plot of LMP and Anomaly Score at Bus 1 under FDIA.

Test Results on False Data Injection Attacks (FDIA)

The six algorithms are first tested on the FDIA. The total valid test data points are 2496
with 97 attack data points. The detector is applied on Bus 1 where we observe the LMP
deviations under attacks (shown in Figure 4.8).

To better understand the detection results, we compared both prediction and detection
performance of the six algorithms. The prediction performance is evaluated using root mean
square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE),
normalized root mean squared error (nRMSE), and normalized mean absolute error (nMAE).
The key parameters for the prediction step are:

1. LSTM epochs = 100; batch_size = 128; drop_out=None; lr=0.0003
2. RF max_depth=10
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Table 4.4: Prediction Performance Evaluation of Deterministic Methods on FDIA.

Algorithm RMSE MAE MAPE nRMSE nMAE
LSTM 4.543493 1.682319 0.971247 0.018931 0.00701
RF 4.045376 1.364551 0.787229 0.016856 0.005
GB 4.401633 1.744481 1.00833 0.01834 0.007269
SVR 4.401106 1.418052 0.807473 0.018338 0.005909
NN 4.209041 1.811934 1.044549 0.017538 0.00755
PS 4.428706 1.202245 0.683726 0.018453 0.005009

Table 4.5: Detection Performance Evaluation of Deterministic Methods on FDIA.

Algorithm Decay Quantile Pair AS thred DR FAR
LSTM 10 (0.03,0.97) 5.5 0.831 0.011
RF -1 (0.06,0.94) 6 0.859 0.006
GB 10 (0.03,0.97) 6 0.803 0.012
SVR 10 (0.03,0.97) 6 0.845 0.011
NN 10 (0.03,0.97) 6 0.803 0.011
PS 10 (0.03,0.97) 6 0.831 0.014

3. GB random_state=0
4. SVR Kernal=‘rbf’; gamma=0.001; degree=5; epsilon=0.001
5. NN hidden_layer_sizes=(100, ), activation=’relu’, solver=’adam’

Performance results for the two cases are shown in Table 4.4 and Table 4.5, respectively.
The FDIA test results show the best performance algorithm is the RF with a detection

rate (DR) of 85.9% and false alarm rate (FAR) of 0.6%.

Test Results on Load Redistribution Attacks (LRA)

LRA is applied only when system load is at its peak level and is greatly impacting system
operation. This condition is very rare in normal operation, thus we only had 42 LRA attack
data for testing. The Bus1 LMP and anomaly scores are shown in Figure 4.9.

Under the same parameters, the prediction and detection performance results are shown
in Table 4.6 and Table 4.7, respectively.

For LRA attacks, the RF still keeps high prediction accuracy. However, the FAR of all
algorithms increased significantly. This is because the LRA attacks cause much less impact
on LMP than FDIA. This means to achieve a high detection rate, the detection threshold
has to be decreased to identify the subtle changes in LMP. This can be observed from the
low AS thred values in Table 4.7.
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Figure 4.9: Time series plot of LMP and Anomaly Score at Bus 1 under LRA.

Table 4.6: Prediction Performance Evaluation of Deterministic Methods on LRA.

Algorithm RMSE MAE MAPE nRMSE nMAE
LSTM 3.581589 1.206153 0.684184 0.014908 0.005021
RF 3.099357 1.042749 0.60247 0.012901 0.00434
GB 2.997857 1.047453 0.606068 0.012479 0.00436
SVR 3.816473 1.143128 0.638875 0.015886 0.004758
NN 3.701501 1.445421 0.832996 0.015407 0.006017
PS 3.22407 0.761086 0.432574 0.01342 0.003168

Table 4.7: Detection Performance Evaluation of Deterministic Methods on LRA.

Algorithm Decay Quantile Pair AS thred DR FAR
LSTM -1 (0.04, 0.96) 1.5 0.857 0.0599
RF -10 (0.05, 0.95) 1 0.81 0.042
GB -0.5 (0.07, 0.93) 2.5 0.881 0.034
SVR -10 (0.03, 0.97) 1.5 0.833 0.047
NN -10 (0.03, 0.97) 2.5 0.81 0.0456
PS -1 (0.05, 0.95) 2.5 0.833 0.0387
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Figure 4.10: Time series plot of LMP and Anomaly Score at Bus 1 under PRA.

Table 4.8: Prediction Performance Evaluation of Deterministic Methods on PRA.

Algorithm RMSE MAE MAPE nRMSE nMAE
LSTM 2.543518 0.645792 0.373003 0.012252 0.003111
RF 2.234067 0.795726 0.466811 0.010762 0.003833
GB 2.263343 0.909256 0.538206 0.010903 0.00438
SVR 2.632484 0.626418 0.360789 0.012681 0.003017
NN 2.511591 1.13822 0.670077 0.012099 0.005483
PS 2.678541 0.594861 0.343866 0.012903 0.002865

Test Results on Price Responsive Attacks (PRA)

Further, we tested the algorithms on PRA attacks. The applicable conditions for PRA
attacks are more restricted. The successful implementation of a PRA attack depends on
load dynamics, as it compromises the feedback loop of demand response controllers. The
more incremental/decremental demands, the more severe the PRA attacks can be. Using
the PJM load profile, we were only able to produce 7 PRA attacks, shown in Figure 4.10.
Under the same parameters, the prediction and detection performance results are shown in
Table 4.8 and Table 4.9, respectively.

Similar with the LRA attack, we observe a higher FAR for PRA. The reason is because
the sample number is too small and the distribution is highly biased. Among 7 attacks, all
algorithms can detect 6, but to achieve this, the FAR has to be increased. The persistent
model shows a better performance in this test.
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Table 4.9: Detection Performance Evaluation of Deterministic Methods on PRA.

Algorithm Decay Quantile Pair AS thred DR FAR
LSTM -0.1 (0.03, 0.97) 8 0.857 0.0237
RF -0.1 (0.04, 0.96) 4.5 0.857 0.0377
GB -0.1 (0.03, 0.97) 7.5 0.857 0.0188
SVR -0.1 (0.04, 0.96) 6.5 0.857 0.0261
NN -0.5 (0.03, 0.97) 2.5 0.857 0.0506
PS -0.5 (0.04, 0.96) 9 0.857 0.0176

4.2.3 Conclusion
In this section, we tested the deterministic algorithms on the simulation dataset under

FDIA, LRA and PRA attacks. The anomaly detection is designed to be a two-step process
where step 1 is to predict the next time step LMP and step 2 is to compare the prediction
error with a pre-defined threshold. We proposed a novel definition of the anomaly score to
minimize the influence of single attack on multiple time steps. The test results on FDIA
achieved the Milestone with best performance of 85.9% DR and 0.6% FAR. Testing on LRA
and PRA are biased due to lack of valid attack data. However, under both attacks, we
observe a trade-off between DR and FAR can be taken based on the requirement of system
operations. All detectors in this section show ultra-low detection latency (<1ms) because
the detection focuses on one node and the structure of the trained model is relatively simple
(e.g. fewer neural network layers in LSTM or fewer trees in RF).

4.3 Real-time Point-wise Anomaly Detection - Part III
Algorithm Ensemble

In the previous section, we observed the decision tree type of detectors perform better on
LMP data using piece-wise linear generation cost. In this section, we extended the test on
more of such detectors and generalized the performance evaluation to datasets with varying
severity of FDIA attacks. An ensemble model is also developed to leverage the strengths of
individual detectors. The details are elaborated in the following content.

4.3.1 Data Overview
We used the simulated FDIA dataset described in Section 4.2. In addition, we created

two more datasets that contain more severe attacks. All detectors tested in this section used
3 months of training data and two weeks following for testing with the exception of dataset
3 which used 4 weeks of testing duration. The following figures show an example of Node 1
LMP from the 3 datasets with Figure 4.11 having the least severe FDIA out of the 3 sets,
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Figure 4.11: Dataset 1 example of LMP price at 1 node containing the least severe FDIA
attacks with 63 attacks (green vertical lines) within a 2-week window.

Figure 4.12: Dataset 2 example of LMP price at 1 node containing the average severity FDIA
attacks with 24 attacks (green vertical lines) within a 2-week window.

Figure 4.12 average severity and Figure 4.13 the most severe. Within the 2 week testing
window, dataset 1 has 63 attacks and dataset 2 has 24 attacks. Dataset 3 has 30 attacks in
4 week testing period.

4.3.2 Models & Hyperparameter Tuning
We first performed hyperparameter tuning for the four individual detectors: Random

Cut Forest, Isolation Forest, K-Nearest Neighbor and Random Forest. To assess our models
in a robust way we used K-fold cross-validation. Cross-validation is a statistical technique
of evaluating model performance that is more stable than using a traditional splitting of
a training set and a validation set. With each model we used 5 folds to achieve a robust
accuracy performance, as shown in Figure 4.14.

In combination with k-fold cross validation, Scikit-Learn’s RandomizedSearchCV [82]
method was used, which allows us to define a grid of hyperparameter with a range of values,
and randomly sample from the grid, while performing K-Fold cross validation with each
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Figure 4.13: Dataset 3c example of LMP price at 1 node containing extreme severity FDIA
attacks with 30 attacks (green vertical lines) within a 4-week window.

Figure 4.14: 5-fold cross-validation for assessing model performance.

combination of values. RandomizedSearchCV uses a method similar to Scikit-Learn’s Grid-
SearchCV which is an effective method for adjusting the hyperparameters of models and to
improve the generalization performance of a model. With GridSearchCV, we try all possible
combinations of the parameters of interest and find the best ones.

For each model we specify the hyperparameters we want to search and Scikit-Learn’s
RandomizedSearchCV performs all the necessary model fits. Traditional GridSearchCV is
good when we work with a small number of hyperparameters. However, if the number
of hyperparameters to consider is particularly high and the magnitudes of influence are
unbalanced, the better choice is to use the RandomizedSearchCV which is what has been
used with our models. In contrast to GridSearchCV, not all parameter values are tried out,
but rather a fixed number of parameter settings is sampled from the specified distributions.
The number of parameter settings that are tried is given by n_iter. n_iter parameter trades
off runtime vs quality of the solution and in our case we used 10 iterations, totaling 50 fits
given the 5 fold cross validation used. In the following content, we provide the results of
hyperparameter tuning for each model.

Random Cut Forest
Random Cut Forest (RCF) [83] is an unsupervised algorithm for detecting anomalous data
points which diverge from otherwise well-structured or patterned data. Anomalies can man-
ifest as unexpected spikes in time series data, breaks in periodicity, or unclassifiable data
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points. They are easy to describe in that, when viewed in a plot, they are often easily dis-
tinguishable from the "regular" data. Including these anomalies in a dataset can drastically
increase the complexity of a machine learning task since the "regular" data can often be
described with a simple model.

The main idea behind the RCF algorithm is to create a forest of trees where each tree
is obtained using a partition of a sample from the training data. For example, a random
sample of the input data is first selected. The random sample is then partitioned according
to the number of trees in the forest. Each tree is given such a partition which organizes that
subset of points into a k-d tree. The anomaly score assigned to a data point by the tree
is defined as the expected change in complexity of the tree as a result of adding that point
to the tree; which, in approximation, is inversely proportional to the resulting depth of the
point in the tree. The random cut forest assigns an anomaly score by computing the average
score from each constituent tree and scaling the result with respect to the sample size.

Hyperparameter Tuning:
The primary hyperparameters used to tune the RCF model are:

1) The number of trees indicated by num_trees parameter.
2) The number of samples per tree indicated by the num_samples_per_tree parameter.

Increasing num_trees has the effect of reducing the noise observed in anomaly scores since
the final score is the average of the scores reported by each tree. During the random grid
search cross validation:

1) The number of trees parameter values used: 10, 25, 50, 100, and 150.
2) The number of samples per tree parameter the values used: 64, 256, 512 and 1024.

The optimal parameters determined were:

1) The number of trees parameter 50 (default is 100).
2) The number of samples per tree parameter 512 (default is 256).

An example of the anomaly scores generated by RCF for a 2 week duration is shown in
Figure 4.15.

Isolation Forest
Isolation forest [1] is an unsupervised learning algorithm for anomaly detection that works
on the principle of isolating anomalies, instead of the most common techniques of profiling
normal points. Isolation forest (IF), like any tree ensemble method, is built on the basis
of decision trees. In these trees, partitions are created by first randomly selecting a feature
and then selecting a random split value between the minimum and maximum value of the
selected feature. In principle, outliers are less frequent than regular observations and are
different from them in terms of values (they lie further away from the regular observations in
the feature space). That is why by using such random partitioning they should be identified
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Figure 4.15: RCF anomaly score example for a 2 week duration.

Figure 4.16: Identifying normal (more partitions) vs. abnormal observations (less partitions)
[1].

closer to the root of the tree (shorter average path length, i.e., the number of edges an
observation must pass in the tree going from the root to the terminal node), with fewer
splits necessary.

The idea of identifying a normal vs. abnormal observation can be observed in Figure 4.16.
A normal point (on the left) requires more partitions to be identified than an abnormal point
(right).

Hyperparameter Tuning:
The primary hyperparameters used to tune the IF model are:

1) The number of base estimators in the ensemble indicated by parameter n_estimators.
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2) The number of max samples indicated by parameter max_samples.
3) The amount of contamination of the data set, i.e. the proportion of outliers in the data

set. Used when fitting to define the threshold on the scores of the samples indicated
by parameter contamination.

4) The number of features to draw from X to train each base estimator indicated by
parameter max_features.

5) Whether the individual trees are fit on random subsets of the training data sampled
with replacement or without replacement is performed indicated by parameter boot-
strap.

6) Whether the number of jobs to run will be in parallel or not for both fit and predict
indicated by parameter n_jobs.

During the random grid search cross validation:

1) The number of base estimator parameter values used: 50, 100, and 150.
2) The number of max samples parameter values used: 64, 256, 512 and 1024.
3) The amount of contamination of the data set parameter values used: 0.1, 0.15 and 0.2.
4) The number of features to draw from parameter values used: 1, 3 and 5.
5) Individual trees sampled with replacement or without replacement.
6) Run in parallel or not for both fit and predict.

The optimal parameters determined were:

1) The number of base estimator parameter values used: 100 (default is 100).
2) The number of max samples parameter values used: 256 (default is ‘auto’).
3) The amount of contamination of the data set parameter values used: 0.15 (default is

‘auto’).
4) The number of features to draw from parameter values used: 1 (default is 1).
5) Sampling without replacement. (default without replacement).
6) Not running parallel. (default not parallel).

An example of the anomaly scores generated by IF for a 2 week duration is shown in
Figure 4.17 on the left. The anomaly score of an input sample is computed as the mean
anomaly score of the trees in the forest. An example of the prediction of outliers generated
by IF is shown in Figure 4.17 on the right. For each observation, IF detector tells whether
or not (+1 or -1) it should be considered as an inlier according to the fitted model.

K-Nearest Neighbors (KNN)
K-nearest neighbors (kNN) [84] is a supervised machine learning algorithm that can be used
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Figure 4.17: IF example for a 2 week duration of the anomaly score on the left and prediction
score on the right.

to solve both classification and regression tasks. The principle behind nearest neighbor
methods is to find a predefined number of training samples closest in distance to the new
point and predict the label from these samples. The number of samples can be a user-defined
constant which will be determined by computing the prediction errors. The distance can, in
general, be any metric measure: standard Euclidean distance is the most common choice.
The steps the model goes through in order to determine a class are as following:

1) Initialize the K value determined by the user.
2) Calculate the distance between test input and K trained nearest neighbors.
3) Check class categories of nearest neighbors and determine the type in which test input

falls.
4) Classification will be done by taking the majority of votes.
5) Return the class category.

Hyperparameter Tuning:
The primary hyperparameters used to tune the KNN model are:

1) The number of neighbors indicated by n_neighbors parameter.
2) The weight function used in prediction indicated by the weights parameter. Most

common are uniform and distance.
3) Algorithm used to compute the nearest neighbors indicated by the weights parameter.
4) Leaf size indicated by the leaf_size parameter.
5) The distance metric for the tree indicated by the metric parameter.

During the random grid search cross validation:
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Figure 4.18: KNN distance score example for a 2 week duration.

1) The number of neighbors parameter values used was determined by computing the
error rate of the model over a range between 1 and 40.

2) The weight functions used: uniform and weighted.
3) Algorithm used: ball_tree, kd_tree, brute and auto. Auto will attempt to decide the

most appropriate algorithm based on the values passed to fit method.
4) Leaf size parameter values used: 10, 20, 30 and 40.
5) The distance metric used: Euclidean distance, Manhattan distance and Minkowski

distance.

The optimal parameters determined were:

1) The number of neighbors parameter: 10 (default is 5).
2) The weight function parameter: uniform (default is uniform).
3) Algorithm parameter: auto (default is auto).
4) Leaf size parameter: 30 (default is 30).
5) The distance metric parameter: Minkowski distance (default is Minkowski distance).

An example of the distance scores generated by KNN for a 2 week duration is shown in
Figure 4.18. The more negative value indicates more chance that the sample is considered
to be an anomaly.

Radnom Forest (RF)
Random forest (RF), [85], like its name implies, consists of a large number of individual
decision trees that operate as an ensemble. Each individual tree in the random forest spits
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out a class prediction and the class with the most votes is the final prediction.
Hyperparameter Tuning:
The primary hyperparameters used to tune the RF model are:

1) The number of trees in the forest indicated by parameter n_estimators.
2) The number of features to consider when looking for the best split indicated by pa-

rameter max_features.
3) The maximum depth of the tree indicated by parameter max_depth. If None, then

nodes are expanded until all leaves are pure or until all leaves contain less than
min_samples_split samples

4) The minimum number of samples required to split an internal node indicated by pa-
rameter min_samples_split.

5) The minimum number of samples required to be at a leaf node indicated by parameter
min_samples_leaf . A split point at any depth will only be considered if it leaves at
least min_samples_leaf training samples in each of the left and right branches. This
may have the effect of smoothing the model.

6) The boolean number indicating whether bootstrap samples are used when building
trees. If False, the whole dataset is used to build each tree.

During the random grid search cross validation:

1) The number of trees in the forest parameter values used: 50, 100, 150, 200, and 250.
2) The number of features to consider parameter values used: auto which is equal to

number of features and sqrt which is the square root of the feature.
3) The maximum depth of the tree parameter values used: 5, 10, 15, 20, and None.
4) The minimum number of samples required to split parameter values used: 1, 2, 4, 5

and 6.
5) The minimum number of samples required to be at a leaf node parameter values used:

2, 3, 5 and 10.
6) Bootstrap samples are used when building trees or not.

The optimal parameters determined were:

1) The n_estimators parameter values used: 250 (default is 100).
2) The max_features parameter values used: sqrt (default is ‘auto’).
3) The max_depth parameter values used: 5 (default is ‘None’).
4) The min_samples_split parameter values used: 5 (default is 2).
5) The min_samples_leaf parameter values used: 2 (default is 1).
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Figure 4.19: RF anomaly score example for a 2 week duration.

6) Bootstrap used when building trees. (default Bootstrap used).

An example of the scores generated by RF for a 2 week duration is shown in Figure 4.19.
More negative values indicate higher levels of anomaly.

4.3.3 Threshold Optimization
Threshold optimization has been described in Section 4.2. With each model a few pa-

rameters were explored to find the optimal threshold needed to achieve the highest DR and
lowest FAR. The parameters are:

1. Quantile pairs: (0.03 , 0.97), (0.04, 0.96), (0.05, 0.95), (0.06, 0.94), (0.07, 0.93)

2. Decay: (-0.1,-0.5,-1,-10)

3. AS thred: 0 to 5 with 0.1 increments and 5 to 30 with 0.5 increments.

Between all 3 parameters each model has 2000 combinations to search through in order to
find the optimal threshold that maximizes the difference between DR and FAR. In Table 4.10,
we listed the threshold parameters used to achieve optimal performance for each detector
under each dataset.

4.3.4 Ensemble Method & Results
A voting ensemble or a "majority voting ensemble" is an ensemble machine learning model

that combines the predictions from multiple models. It is a technique used to improve model
performance, ideally achieving better performance than any single model. There are two
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Algorithm Dataset Decay Quantile Pair AS thred DR FAR

RCF

Dataset 1 -0.1 (0.04, 0.96) 17 98.41 1.54
Dataset 2 -0.1 (0.03 , 0.97) 12.5 100 3.02
Dataset 3a -0.1 (0.03 , 0.97) 26.5 100 0.07
Dataset 3b -0.1 (0.03 , 0.97) 28.5 100 0.05
Dataset 3c -0.1 (0.07, 0.93) 29.5 100 0.73

IF

Dataset 1 -0.5 (0.03 , 0.97) 1 98.41 1.94
Dataset 2 -0.1 (0.03 , 0.97) 0.6 100 3.52
Dataset 3a -10 (0.03 , 0.97) 0.9 100 2.33
Dataset 3b -10 (0.03 , 0.97) 0.9 100 2.95
Dataset 3c 1 (0.03 , 0.97) 0.7 93.33 9.29

KNN

Dataset 1 -0.1 (0.03 , 0.97) 0.7 100 2.32
Dataset 2 -0.1 (0.03 , 0.97) 0.7 100 0.72
Dataset 3a -0.1 (0.03 , 0.97) 0.8 100 0
Dataset 3b -0.1 (0.03 , 0.97) 0.8 100 0
Dataset 3c -0.1 (0.03 , 0.97) 0.6 100 0.16

RF

Dataset 1 -0.1 (0.03 , 0.97) 0.7 100 0
Dataset 2 -0.1 (0.03 , 0.97) 0.7 100 0
Dataset 3a -0.1 (0.03 , 0.97) 0.4 100 0
Dataset 3b -0.1 (0.03 , 0.97) 0.4 100 0
Dataset 3c -0.1 (0.05, 0.95) 0.5 100 0

Table 4.10: Threshold parameters selected for optimal performance.

approaches to the majority vote prediction for classification: hard voting and soft voting.
We used hard voting for anomaly detection where the ensemble machine counts the number
of predictions for each label and the label with the majority vote is the final result.

A voting ensemble may be considered a meta-model, a model of models. As a meta-
model, it could be used with any collection of existing trained machine learning models and
the existing models do not need to be aware that they are being used in the ensemble. In
this section, we used the ensemble model on the aforementioned four detectors.

The model performance on all 3 datasets (low, medium, and high severity of FDIA) are
shown in Table 4.11. The performance results reported are after optimizing the models’
hyperparameters using randomized gride search with k-fold cross validations and optimiz-
ing the thresholds. The ensemble model results are also included in the table showing a
performance of DR = 100% and a FAR < 0.03% with a processing delay time of < 27.5
millisecond.
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Data Set 1 Data Set 2 Data Set 3
DR FAR Delay DR FAR Delay DR FAR Delay

RCF 98.41% 1.54% 27.9 91.67% 1.40% 28.1 100% 0.73% 27.1
IF 98.41% 1.94% 0.03 100% 3.52% 0.03 93.33% 9.29% 0.03

KNN 100% 2.32% 0.35 100% 0.72% 0.31 100% 0.16% 0.35
RF 100% 0.00% 0 100% 0.75% 0 100% 0.16% 0

Ensemble 100% 0.03% 28.3 100% 0.02% 28.4 100% 0.00% 27.5
Confusion
Matrix

3968 1 - 4007 1 - 8034 0 -0 63 0 24 0 30

Table 4.11: Ensemble and model performance with the 3 datasets.

4.3.5 Conclusion
In this section, we presented the hyperparameter tuning and threshold selection for four

individual anomaly detectors: RCF, IF, KNN, RF. We then applied the majority voting
ensemble on the detection results to improve performance. The final results tested on three
datasets show we have achieved the project milestone with > 98% detection accuracy, <0.1%
false alarm rate and < 50ms computing delay.

4.4 Real-time Locational Anomaly Detection - Part I
PJM Dataset

The goal of the point-wise anomaly detection is to identify potential attacks from the
time series data flow. The detection results only indicate when an attack happens but do
not answer where the attack happens. To further localize the attack region, we leverage the
LMP signals at multiple locations to learn from their joint spatio-temporal correlations. This
procedure generally includes two steps: (1) LMP signals are first clustered into smaller groups
with similar dynamic behavior; (2) the nodes that deviate from the "group behavior" are then
identified to describe the potential attack region. Since these nodes are the most sensitive
nodes affected by the cyber-attack events, they indicate a neighbor region with highest
probability to be the actual attack targets. We experimented with the locational anomaly
detection on both PJM dataset and simulation dataset, which are elaborated separately in
Section 4.4 and the subsequent Section 4.5.

4.4.1 Data Overview
The PJM dataset used in this section contains five-minute interval data of real-time

market from September 1, 2019 to October 1, 2019. There are in total 8640 records with
2810 unique node IDs (called pnode ID in PJM database) from five transmission zones:
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LMP Energy Congestion Marginal Loss
Mean 23.70 27.14 -3.11 -3.19
Std 58.61 54.38 27.94 2.64
Min -580.11 4.44 -3.97 -317.22
Max 3,442.86 2,361.2 1,656.72 4,367.60

Table 4.12: Statistics of the PJM dataset.

PECO, BGE, DPL, COMED, and EKPC. The basic statistics of the numeric data (total
LMP, energy cost, congestion cost and marginal loss) are shown in Table 4.12.

4.4.2 Clustering
We first clustered nodes into groups that exhibit similar behavioral patterns that a model

can well represent. Two clustering methods have been explored: Hierarchical and K-means
clustering. One of the evident disadvantages of hierarchical clustering is its high time com-
plexity. Generally it is in the order of O(n* 2* log(n)), n being the number of data points.
For K-means clustering, we can optimize some objective functions, e.g. within cluster Sum-
Square, whereas in hierarchical clustering we do not have any actual objective function.
K-means is determined to be the choice since hierarchical uses a lot of resources and is not
suitable with large sets of data.

K-means is an unsupervised learning algorithm. The user chooses the "K" number of
centroids used to define clusters. A point is considered to be in a particular cluster if it
is closer to that cluster’s centroid than any other centroid. It finds the best centroids by
alternating between (1) assigning data points to clusters based on the current centroids and
(2) choosing centroids based on the current assignment of data points to clusters. This
process is carried out until all clusters remain unchanged.

Clustering Metrics
Two distance metrics were explored for clustering:

• Pearson Correlation
• Dynamic Time Warping (DTW): Designed to compute distance between 2 temporal

sequences

The clustering performance of Pearson correlation and DTW were very similar. The
clustered groups of all the 2810 nodes for one month duration matched by 97.2% with the
transmission zone assignment. Correlation distance was calculated much faster than DTW
and requires less computational resources. DTW has a quadratic time and space complexity
that limits its use to only small data sets. FastDTW was then explored as an approximation
of DTW that has a linear time and space complexity. Pearson correlation was chosen since
it’s still faster than FastDTW.
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Figure 4.20: Elbow method using WSS vs Cluster number to optimize k.

K-means Optimization
A fundamental step for K-means is to determine the optimal number of clusters into which
the data may be clustered. The Elbow Method is one of the most popular methods to
determine this optimal value of k. The Elbow method looks at the total within-cluster sum
of square (WSS) as a function of the number of clusters. Number of clusters are chosen so
that adding another cluster does not improve much on the total WSS.

One disadvantage of the K-means algorithm is that it is sensitive to the initialization of
the centroids. If a centroid is initialized to be a far point, it might just end up with no points
associated with it, and at the same time, more than one cluster might end up linked with
a single centroid. K-means starts with allocating cluster centers randomly and then looks
for "better" solutions. K-means++ starts with allocating one cluster center randomly and
then searches for other centers given the first one. K-means++ provides more speed and
accuracy. This algorithm ensures a smarter initialization of the centroids and improves the
quality of the clustering. Apart from initialization, the rest of the algorithm is the same as
the standard K-means algorithm.

The Elbow method was applied to the 2810 nodes’ LMP for a duration of a month and
the results are shown in Figure 4.20. From the plot, a k of 5 was chosen. The assigned
clusters contained: cluster 0: 457 nodes, cluster 1: 2103, cluster 2: 50, cluster 3: 169 and
cluster 4: 31 as shown in Figure 4.21.

LMP and Congestion costs were both explored as features for clustering. In Figure
4.22, we see 100 node’s LMP and congestion correlations. Results of the elbow method and
centroid centers of both features were plotted in Figure 4.23.

For LMP and congestion cost, a k of 2, 3 and 4 were tested. After examining the clustering
results, it was shown that LMP performed better in separating similar behavior nodes than
congestion cost.

Another aspect that was explored with the correlation is the duration used to determine
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Figure 4.21: Histogram of cluster assignment.

Figure 4.22: Correlation of LMP (left) and Congestion cost (right).

the clustering assignment. In Figure 4.24, we present three correlation plots. From the left
to right each one represents 10 days in time with the left being the beginning of the month
and the right being the end of the month. This shows how the correlation varies across time
and therefore the cluster assignment.

In order to get a better understanding of this correlation variation over time, we compared
9 nodes to 1 reference node and computed the correlation hourly for a day (Figure 4.25).
The plot shows that the node’s correlations vary in time but they vary in a similar way.

We also looked at the distances from the nodes to the centroid center over time. Two
examples are shown in Figure 4.26 and 4.27 for a duration of 10 hours each. We observed
that even though the distance to the center varied over time, the variation happened to
both nodes. Also, the assignment did not change often and when it did both nodes were
reassigned together to a new cluster.
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Figure 4.23: Elbow method and cluster centroids for LMP (left) and Congestion cost (right).

Figure 4.24: correlation over a period of 30 days divided into 3 correlations with 10 days
each.

During the model training stage, we used 100 nodes from each of the 5 zones (i.e. Figure
4.28) as well as from the 5 clusters generated from the K-means process. In both cases we
were able to get highly correlated nodes together and the model’s performances were similar.
Based on this fact, we measured the performance of clustering, by assuming that the 5 zones
can represent the 5 clusters selected from the elbow method. The overlap between the zone
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Figure 4.25: Correlation over time with 10 nodes.

Figure 4.26: Distance between nodes 50545 and 50546 to the cluster center.

Figure 4.27: Distance between nodes 50547 and 50548 to the cluster center.
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Figure 4.28: Example of 100 node’s correlation from the COMED zone.

assignment and clustering assignment was 97.6% matched.

4.4.3 LSTM-Autoencoder
The LSTM network, introduced in Section 4.1, can be organized into an architecture

called the Encoder-Decoder LSTM that allows the model to both support variable length
input sequences and to predict or output variable length output sequences. In this archi-
tecture, an encoder LSTM model reads the input sequence step-by-step. After reading in
the entire input sequence, the hidden state or output of this model represents an internal
learned representation of the entire input sequence as a fixed-length vector. This vector is
then provided as an input to the decoder model that interprets it at each step until the
output sequence is generated.

We first clustered the raw data into small groups. The data used for training was from
a cluster while testing data was a mixture of data from the same cluster and from other
clusters. The idea is to see if the model is able to learn the behavior of the cluster and
detect anomalies from testing data outside the cluster. Training data used was 20 days,
validation data used was 5 days and testing data was 5 days (Figure 4.29). A preliminary
set of hyperparameters was used: adam optimizer with MAE loss function, Relu activation
function, batch size was 128 and epochs was 50.

Comparing the reconstruction errors with a threshold of 1.1 for the testing set within
the cluster, we find 3 anomalies (Figure 4.30). On the other hand, with the same threshold
for the testing set outside the cluster we detect 9 anomalies (Figure 4.31). This indicates
that the model is able to learn the LMP patterns within its cluster. Note that the detected
anomalies only appear at time points when the LMPs show different cluster behavior, i.e.
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Figure 4.29: Training data set (left) and testing data set (right) from same cluster.

Figure 4.30: Reconstruction errors with threshold (left) and testing data set from same
cluster as training data (right) with anomalies.

Figure 4.31: Reconstruction errors with threshold (left) and testing data set from outside
cluster (right) with anomalies.

when new congestion patterns occur.
In order to extend this test to more nodes, a bootstrapping method was used. The

idea is to use 100 nodes from a cluster and during training input 10 nodes at a time with
replacement. This was done 500 times in order to explore all the data while keeping the
inputs for the model set to 10 nodes.

Comparing the reconstruction errors with a threshold of 1.1 for the testing set within
the cluster, we find 5 anomalies (Figure 4.32). On the other hand, with the same threshold
for the testing set outside the cluster we detect 100 anomalies (Figure 4.33). This indicates
that the model is able to learn the LMP patterns within its cluster using the bootstrapping
method.
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Figure 4.32: Reconstruction errors with threshold (left) and testing data set from same
cluster as training data (right) with anomalies using bootstrap.

Figure 4.33: Reconstruction errors with threshold (left) and testing data set from outside
cluster (right) with anomalies using bootstrap.

The bootstrap enhanced LSTM-Autoencoder was further tested on data from 5 zones.
We trained 5 models representing each zone. For each model, the training set was from the
zone itself, and the testing data set was from the zone and the 4 other zones outside the
cluster. The expected outcome is that the number of anomalies from the test set that comes
from the same zone as the training set to be less than all the other test sets.

4.4.4 LSTM-Autoencoder Optimization
After preliminary testing to prove the concept of cluster-based locational detection, we

invested more effort to improve the performance and reduce the false detection. In the
following content, we present the hyperparameter tuning for the LSTM-Autoencoder model.

Bottleneck Layer
In order to find the optimal number of neurons in the bottleneck layer, we tested the bottle-
neck layer from 1-10 and measured the model’s training performance, defined as the number
of anomalies detected. The optimal number of neurons for the bottleneck layer was 5 based
on the searching results in Table 4.13. The same tuning process was further performed on all
the nodes from each trained cluster, with results shown in Table 4.14. The best bottleneck
layer should be able to find minimum anomalies in its own cluster but detect maximum
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Zero One Two Three
Zero Model – [10,1,1,10] 100 2 3 8
Zero Model – [10,2,2,10] 28770 28800 22981 5760
Zero Model – [10,3,3,10] 8 1 9 9
Zero Model – [10,4,4,10] 23 2 6 7
Zero Model – [10,5,5,10] 0 3 7 6
Zero Model – [10,6,6,10] 10 5 10 8
Zero Model – [10,7,7,10] 6 2 3 14
Zero Model – [10,8,8,10] 1 0 3 10
Zero Model – [10,9,9,10] 0 2 11 7

Table 4.13: Number of anomalies detected by different bottleneck values – 100 nodes per
cluster.

Zero One Two Three
Zero Model – [10,1,1,10] 19134 19249 19249 19296
Zero Model – [10,2,2,10] 13 43 37 63
Zero Model – [10,3,3,10] 1817 1453 1663 1381
Zero Model – [10,4,4,10] 8 0 0 16
Zero Model – [10,5,5,10] 76 124 71 229
Zero Model – [10,6,6,10] 9 1 0 13
Zero Model – [10,7,7,10] 17 0 1 9
Zero Model – [10,8,8,10] 14 1 0 8
Zero Model – [10,9,9,10] 39 0 0 12

Table 4.14: Number of anomalies detected by different bottleneck values – all nodes within
cluster.

anomalies outside of the cluster.
Batch size

Batch size is the number of data points used to train a model in each iteration. Typical
batch sizes are 32, 64, 128, and 256. Choosing the right batch size is important to ensure
convergence of the cost function and parameter values, and to the generalization of our
model. Batch size determines the frequency of updates. Using a bottleneck value of 5, batch
values were varied from 32, 64, 128, 256 up to 512. Results in Table 4.15 did not show
significant improvement of model performance with varying batch size.

Concurrent optimization
We then considered concurrent searching of multiple parameters to cover all possible combi-
nations. Bottleneck layer varied between 1 and 5, batch size among 32, 64, and 128, training
data size ranging from 1 day, 2 days, 1 week to 2 weeks, and time steps among 1, 3 and 5 in
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Zero One Two Three
Zero Model – Batch Size = 32 8 2 1 11
Zero Model – Batch Size = 64 36 25 81 23
Zero Model – Batch Size = 128 19 8 31 22
Zero Model – Batch Size = 256 46 5 1 40
Zero Model – Batch Size = 512 9 1 0 11

Table 4.15: Number of anomalies detected by different batch sizes – all nodes within cluster.

Figure 4.34: Losses minimum while varying bottleneck layer, batch size and time steps.

Figure 4.35: Input/ Output from model with training data (left) and its reconstruction errors
(right).

order to form 36 different combinations. The optimal number of neurons for the bottleneck
layer was determined to be 4, the batch size 128 and time step of 1. Figure 4.34 shows the
minimum loss during training for 1 day of data, on the x-axis the first number indicates
the bottleneck number (1-4) and the second number indicates the batch size (64-128). This
allowed us to optimize bottleneck layer, batch size and time steps simultaneously.

Results from the model using the optimal hyperparameters with the training data and
its reconstruction errors are presented in Figure 4.35.

Testing the same model with a different node shows similar performance as the train-
ing data Figure 4.36. Both examples in Figure 4.35 and 4.36 indicate high errors when
reconstructing negative LMP values since they are rarely seen in the training data.
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Figure 4.36: Input/ Output from model with testing data (left) and its reconstruction errors
(right).

4.4.5 Conclusion
In this section, we presented the concept of a two-step locational detection framework and

its implementation on PJM dataset. The first step is to cluster the data into small groups
using Kmeans with a distance defined as their temporal correlations. The results show
K-means clustering matched 97.2% with the transmission zone assignments. The second
step is to train an LSTM-Autoencoder model for each cluster leveraging both temporal and
spatial correlations of the LMP inputs. The trained model is then used to identify anomalies
caused by mixing data from other clusters to the target cluster. The identified anomaly nodes
indicate the potential attack location. Since it is infeasible to obtain PJM cyber-attack data,
we used data that deviated from the "cluster behavior" to mimic the attack impact when new
congestion patterns are introduced. We provide also the procedure to search for the best
hyperparameters to achieve the best performance. Further testing of the locational detection
are carried out and evaluated on the simulation datasets with actual cyber-attacks.

4.5 Real-time Locational Anomaly Detection - Part II
Simulation Dataset

In this section, we provide the evaluation of the locational anomaly detection algorithms
on the simulation dataset. The objective is to identify anomalous pricing deviations which
can possibly be attacks and localize the regions of affected nodes.

4.5.1 Data Overview
As described in Chapter 3, each generated dataset contained 170 days of data at five

minute increments and in total 48960 data points. Figure 4.37 shows and example of 1 day
(288 samples – 5 min intervals) of LMP data for all 39 buses with no attacks. Figure 4.38
shows an example for a duration of 1 day of LMP data with 10 cyber-attacks events. Dashed
lines indicate attack times.
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Figure 4.37: 39 bus system – 1 day of LMP ($/MW) data with no attacks.

Figure 4.38: LMP ($/MW) data under 10 attack events.

4.5.2 K-means Clustering
Following the framework defined in Section 4.4, we first performed the correlation dis-

tance based K-means clustering. Correlations of LMP and its energy component, congestion
component, and marginal loss component were explored over durations of day, week, 2 weeks,
month, and 3 months. When exploring short durations of correlation they are strongly cor-
related and as the duration increases the correlations start to weaken. LMP’s correlation
tends to remain stronger for longer periods of time. Correlations of 39 nodes’ LMPs over a
month are plotted in Figure 4.39.

To confirm that the correlation between nodes does not change over time often we plotted
the correlation between a reference node and 9 other nodes over a day (Figure 4.40). As
shown, the correlation fluctuates over time but these fluctuations are similar with the other
nodes, confirming the validity of this approach.

We then conducted the Elbow searching for the optimal number of clusters, shown in
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Figure 4.39: Correlation of all 39 buses over 1 month.

Figure 4.40: 10 correlations over one day.

Figure 4.41: Elbow method optimization (left) and cluster centroids (right).

Figure 4.41.
Clustering results show the nodes in one cluster have strong correlations which ensures
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Figure 4.42: One day LMP data from a cluster with 16 nodes.

that the detection models will be able to capture the underlying group behavior. An example
of one cluster with 16 nodes for a duration of one day is shown in Figure 4.42 and its
correlations in Figure 4.43.

4.5.3 Data Scaling
Scaling is an essential data pre-processing step which is typically done by removing the

mean and scaling to unit variance. However, outliers can often influence the sample mean /
variance in a negative way. In such cases, the median and the interquartile range often give
better results. This allows the models to converge much faster during gradient decent in the
neural network learning process. We explored a few scalars for this task.

We tested our model using scalars from scikit learn’s open source library: MinMaxScaler,
RobustScaler, StandardScaler, MaxAbsScaler, QuantileTransformer, and PowerTransformer.
Robust scalar produced the lowest RMSE (2.56), which was expected as it scales features
using statistics that are robust to outliers. This Scalar removes the median and scales the
data according to the quantile range defined as Interquartile Range (IQR). The IQR is the
range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile). Centering
and scaling happen independently on each feature/node by computing the relevant statistics
on the samples in the training set. Median and interquartile range are then stored to be
used on later data using the transform method after predictions are done.

4.5.4 Parameter and Hyperparameter Optimization
The performance of neural network models largely depends on the parameters and hy-

perparameters which shape the network structure and determine its accuracy and validity.
Model parameters are internal to the neural network for example, neuron weights. They
are estimated or learned automatically from training samples. These parameters are also



94

Figure 4.43: Correlation of a 16 node cluster.

used to make predictions. Hyperparameters are external parameters set by the operator
of the neural network for example, selecting which activation function to use or the batch
size used in training. There are various ways to optimize hyperparameters, from manual
trial and error to sophisticated algorithmic methods, and there is no consensus on which
works best. In this subsection, we introduce the process for hyperparameter tuning of the
LSTM-Autoencoder model for simulation datasets.

Bottleneck Layer
In general, the bottleneck layer constrains the amount of information that goes through our
auto-encoder, which forces the bottleneck to learn a "good but compressed" representation
of our original input data. There is some work on how bottleneck size affects the overall
quality of the embedding. In order to find the optimal number of neurons in the bottleneck
layer, we tested 10 nodes as input and varied the bottleneck layer from 1-10 and measured
the model’s performance after training. We also examined the minimum training loss for
each model. The optimal number of neurons for the bottleneck layer was determined to be 4.
Figure 4.44 shows the minimum loss during training for one day data. On the x-axis the first
number indicates the bottleneck number (1-4) and the second number indicates the batch
size (64-128). This allows us to optimize both bottleneck layer and batch size simultaneously.
This analysis was repeated with 1 week, 2 weeks, 1 month, 2 months and 3 months of data
to ensure that the parameters can be used for different durations.

Activation Function
Activation function is the function through which we pass our weighted sum of the input, in
order to have a significant output. The activation functions we tested were Sigmoid, Tanh
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Figure 4.44: Losses minimum vs bottleneck layer.

Figure 4.45: Losses minimum vs batch size.

and rectified linear unit (ReLU). The ReLU function is very quick in terms of training, and
produced the best performing models in comparison to others.

Batch size
Batch size determines the frequency of updates. The smaller the batches, the more, and the
quicker, the updates. The larger the batch size, the more accurate the gradient of the cost
will be with respect to the parameters. That is, the direction of the update is most likely
going down the local slope of the cost landscape. Having larger batch sizes, but not so large
that they no longer fit in GPU memory, tends to improve parallelization efficiency and can
accelerate training. Some publications argued that large batch sizes can hurt the model’s
ability to generalize by possibly causing the algorithm to find poorer local optima/plateau.
Based on our results a batch size of 128 was chosen as the optimal size (Figure 4.45).

Epochs
Epochs represent the times that an algorithm trained on the whole dataset. The number of
epochs depends on how the loss or error behaves for the training and validation data. As
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Figure 4.46: Losses MAE vs epochs during training.

long as it keeps dropping, training should continue. If the validation error starts increasing
that might be an indication of over fitting. After experimenting with the different datasets
(1 day, 1 week, etc.) it was shown 50 epochs (Figure 4.46) would be sufficient for training.
We also implemented early stopping during training to avoid any over fitting.

Optimization Algorithm
The choice of optimizer influences both the speed of convergence and whether it occurs.
Several alternatives to the classic gradient descent algorithms have been developed in the
past few years. The Adam optimizer was chosen due to: 1) The hyperparameters of Adam
(learning rate, exponential decay rates for the moment estimates, etc.) are usually set to
predefined values, and do not need to be tuned. 2) Adam performs a form of learning rate
annealing with adaptive step-sizes. 3) Adam compromises of both RMSProp and momentum.
The downside of Adam is it uses the most memory for a given batch size in comparison to
other optimizers. The loss function used was mean squared error.

Time Steps
LSTM takes into account the past data in addition to the current data in order to make
“contextual” and more accurate predictions. Time steps is a parameter defining how many
samples in the past we use to extract short term historical trend. We tested 1, 3 and 5 time
steps as shown in Figure 4.47. In conclusion, we chose 1 time step as increasing the number
of time steps did not improve the model’s performance.

4.5.5 LSTM-Autoencoder for anomalous cluster detection
After fine tuning the hyperparameters, we trained an LSTM-Autoencoder model for

each cluster. The LSTM-Autoencoder model outputs a reconstruction error for each signal
under test. We first experimented the capability of LSTM-Autoencoder model in identifying
anomalous conditions where the averaged reconstruction error of the cluster goes beyond the
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Figure 4.47: Losses minimum vs time steps.

Figure 4.48: Training LMP input/output example node – 3 months.

threshold.
Threshold Optimization

To search for the optimal detection threshold, we need to first create a separate test dataset
for iterative testing under different thresholds. The data set was split into 4 subsets: training
data, training threshold data, testing threshold data and testing data. For each subset we
evaluated the reconstruction errors and for the testing threshold set we tested at different
threshold values while aiming for the highest detection rate and lowest false alarm rate.
Other evaluation metrics were computed as well such as accuracy, recall, precision and F1
score.

Training data set:
Using the training set, we evaluated the model’s ability to fit the none-attacked data and
examined the reconstruction errors in order to form a baseline value for a threshold. An
example of a node’s LMP from the training set is in Figure 4.48.

Reconstruction errors peaked at 12 and 95 percent of them fell below 2.5 as shown in
Figure 4.49.

Training threshold dataset:
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Figure 4.49: Reconstruction error of the training data in Figure 4.48.

Figure 4.50: Training threshold LMP input/output example node – 1 week.

From the training threshold set, we performed the same steps we did with the training
data. We evaluated the model’s ability to fit the none-attacked data and examined the
reconstruction errors in order to form a second baseline value for a threshold. An example
of a node’s LMP from the training set is in Figure 4.50.

Reconstruction errors peaked at 10 and 95 percentage of them fell below 4.9 as shown in
Figure 4.51. From both the training set and training threshold sets we have an approximation
threshold value between 2.5 and 4.9.

Testing threshold dataset:
Using the testing threshold set, we evaluated the model’s ability to fit the attacked data and
evaluate the reconstruction errors. An example of a node’s LMP from the testing threshold
set is shown in Figure 4.52. The blue vertical lines indicate the time when attacks occurred.

Reconstruction errors peaked at 15 and 95 percent fell below 5 as shown in Figure 4.53.
From both the training set, training threshold and testing threshold sets we have an ap-
proximate threshold value of 5. We tested our model with values below and above the 5
baseline and evaluated the DR and FAR metrics. Based on the results shown in Table 4.16
we observe that a threshold of 1 produces the best results when the target is to keep a high
detection rate.
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Figure 4.51: Reconstruction error of the training threshold data in Figure 4.50.

Figure 4.52: Testing threshold LMP input/output example node – 1 week.

We next performed a refined searching near 1 using decimal thresholds. The decimal
thresholds and their model performance are listed in Table 4.17. Based on the larger differ-
ence between DR and FAR, a 0.9 threshold value is considered the optimal value.

Testing data set:
Using the selected threshold, we then evaluated the model’s ability to fit the attacked data
and examined the reconstruction errors. An example of a node’s LMP from the testing set
is in Figure 4.54. The blue vertical lines indicate the time when attacks occurred.

Reconstruction errors peaked at 14 and the optimal threshold was set to 0.9 as shown in
Figure 4.55. The model’s DR and FAR metrics under 0.9 threshold are considered to be the
final performance. Based on the results shown in Table 4.18 we see that a threshold of 0.9
does produce the best results in comparison to the other threshold values.

Model Performance
The final anomaly detection performance for the LSTM-Autoencoder model has a detection
rate of 100% and a false alarm rate of 1.7%. The testing procedure runs on a laptop (Intel
Core i7-6820HQ CPU 2.7GHz) for a total of 40320 data points in 250 ms that is 6.2
microseconds per detection.

The high DR indicates the reconstruction errors can accurately reflect the impact from
cyber-attacks. For real-world implementation, we will use LSTM-Autoencoder models trained
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Figure 4.53: Reconstruction error of the testing threshold data in Figure 4.52.

Threshold Accuracy TP TN FN FP Recall Percision F1 DR FAR
1 0.833135 441 16355 79 3285 0.848077 0.118357 0.207725 0.848077 0.167261
2 0.890129 357 17588 163 2052 0.686538 0.148194 0.243769 0.686538 0.104481
3 0.923313 277 18337 243 1303 0.532692 0.175316 0.263810 0.532692 0.066344
4 0.937897 240 18668 280 972 0.461538 0.19802 0.277136 0.461538 0.049491
5 0.942659 219 18785 301 855 0.421154 0.203911 0.274780 0.421154 0.043534
6 0.951984 203 18989 317 651 0.390385 0.237705 0.295488 0.390385 0.033147
7 0.955556 177 19087 343 553 0.340385 0.242466 0.283200 0.340385 0.028157
8 0.958383 157 19164 363 476 0.301923 0.248025 0.272333 0.301923 0.024236
9 0.96002 149 19205 371 435 0.286538 0.255137 0.269928 0.286538 0.022149
10 0.960913 137 19235 383 405 0.263462 0.252768 0.258004 0.263462 0.020621
11 0.965427 119 19344 401 296 0.228846 0.286747 0.254545 0.228846 0.015071

Table 4.16: Integer value threshold model evaluation.

Threshold Accuracy TP TN FN FP Recall Percision F1 DR FAR
0.1 0.272173 510 4977 10 14663 0.980769 0.033612 0.064997 0.980769 0.746589
0.2 0.487004 496 9322 24 10318 0.953846 0.045866 0.087524 0.953846 0.525356
0.3 0.532887 495 10248 25 9392 0.951923 0.050066 0.095128 0.951923 0.478208
0.4 0.627629 490 12163 30 7477 0.942308 0.061504 0.115471 0.942308 0.380703
0.5 0.674752 478 13125 42 6515 0.919231 0.068354 0.127246 0.919231 0.331721
0.6 0.713938 470 13923 50 5717 0.903846 0.075966 0.140152 0.903846 0.29109
0.7 0.751885 466 14692 54 4948 0.896154 0.086073 0.157061 0.896154 0.251935
0.8 0.759425 459 14851 61 4789 0.882692 0.087462 0.159154 0.882692 0.243839
0.9 0.819395 451 16068 69 3572 0.867308 0.112105 0.198547 0.867308 0.181874
1 0.833135 441 16355 79 3285 0.848077 0.118357 0.207725 0.848077 0.167261

Table 4.17: Decimal value threshold model evaluation for threshold test data.
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Figure 4.54: Testing threshold LMP input/output example node – 2 weeks.

Figure 4.55: Reconstruction error of the testing data in Figure 4.54.

Threshold Accuracy TP TN FN FP Recall Percision F1 DR FAR
0.1 0.395089 63 1530 0 2439 1 0.02518 0.049123 1 0.614512
0.2 0.647073 63 2546 0 1423 1 0.042396 0.081343 1 0.358529
0.3 0.740575 63 2923 0 1046 1 0.056808 0.107509 1 0.263542
0.4 0.944692 63 3746 0 223 1 0.22028 0.361032 1 0.056185
0.5 0.947421 63 3757 0 212 1 0.229091 0.372781 1 0.053414
0.6 0.947421 63 3757 0 212 1 0.229091 0.372781 1 0.053414
0.7 0.978671 63 3883 0 86 1 0.422819 0.59434 1 0.021668
0.8 0.982391 63 3898 0 71 1 0.470149 0.639594 1 0.017889
0.9 0.982391 63 3898 0 71 1 0.470149 0.639594 1 0.017889
1 0.982143 62 3898 1 71 0.984127 0.466165 0.632653 0.984127 0.017889

Table 4.18: Decimal value threshold model evaluation for threshold test data.
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for each cluster to detect anomalous clusters and these clusters point to the attack region.
Meanwhile, the LSTM-Autoencoder model generates a reconstruction error for LMP at each
node. By ranking these errors, we get a list of highly impacted nodes which is used to localize
the attack region within the cluster. This is discussed in the next subsection.

4.5.6 LSTM-Autoencoder for in-cluster localization
In this subsection, we further tested the model’s capability of localizing the most affected

nodes inside one cluster. The idea is to refine the search of the attack region after one cluster
is identified as an anomalous group. For localization tests, we generated datasets with FDIA
at different transmission lines in the IEEE 39Bus system and datasets with LRA at different
buses in the system. Since the 39Bus system is a small system, we used all 39 buses as one
cluster and trained one LSTM-Autoencoder model for this cluster. In the following tests:

1) Reconstruction errors were analyzed only when the model detects an attack.

2) All reconstruction errors were normalized by the number of attacks per bus.

3) Reconstruction errors were ranked from highest value to lowest to determine the most
affected buses in the system.

Localizing FDIA
In order to evaluate the model’s localization capability with FDIA, 46 datasets were gener-
ated with each one attacking a different line of the system. Results of top 5 most affected
buses are shown in Table 4.19 with Column "1" as the most impacted bus. Each row repre-
sents the FDIA attacks applied on one certain transmission line noted as "L# Attack" where
# denotes the line number. Note that any lines that did not have more than 4 attacks were
not included in Table 4.19(i.e., L2 attack)

Location 1 2 3 4 5

L1 Attack LMP_9 LMP_7 LMP_6 LMP_1 LMP_27
0.7628 0.7264 0.5397 0.4958 0.4395

L3 Attack LMP_7 LMP_27 LMP_24 LMP_17 LMP_13
0.7337 0.5153 0.5049 0.4846 0.4816

L4 Attack LMP_7 LMP_27 LMP_17 LMP_26 LMP_6
0.8765 0.8506 0.7195 0.7152 0.6756

L5 Attack LMP_7 LMP_27 LMP_17 LMP_13 LMP_24
0.7629 0.508 0.4919 0.4716 0.4539

L6 Attack LMP_7 LMP_27 LMP_6 LMP_31 LMP_19
0.7579 0.5564 0.5149 0.463 0.4565

L7 Attack LMP_7 LMP_8 LMP_19 LMP_34 LMP_20
0.5998 0.4 0.3814 0.3644 0.3626
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Location 1 2 3 4 5

L8 Attack LMP_7 LMP_9 LMP_8 LMP_19 LMP_34
0.7377 0.564 0.5297 0.4738 0.4686

L9 Attack LMP_7 LMP_27 LMP_6 LMP_17 LMP_24
0.7974 0.7026 0.6398 0.6117 0.5646

L10 Attack LMP_7 LMP_19 LMP_34 LMP_20 LMP_33
0.6441 0.5705 0.5655 0.5606 0.5536

L11 Attack LMP_4 LMP_14 LMP_3 LMP_13 LMP_32
1.9954 1.904 1.8526 1.7847 1.7302

L12 Attack LMP_9 LMP_1 LMP_4 LMP_8 LMP_14
2.9205 2.4487 2.1578 2.132 2.1301

L13 Attack LMP_7 LMP_6 LMP_31 LMP_8 LMP_5
12.2221 11.5013 10.9561 9.2717 5.913

L15 Attack LMP_3 LMP_7 LMP_5 LMP_4 LMP_8
1.3115 1.2659 1.0414 0.987 0.9344

L16 Attack LMP_4 LMP_3 LMP_5 LMP_8 LMP_14
2.529 2.3346 2.2972 2.2802 2.1896

L18 Attack LMP_6 LMP_31 LMP_7 LMP_11 LMP_8
12.5608 12.3309 11.6722 9.8777 8.0906

L19 Attack LMP_7 LMP_6 LMP_31 LMP_8 LMP_18
21.6225 19.8463 16.2226 13.9078 13.7014

L20 Attack LMP_7 LMP_8 LMP_9 LMP_5 LMP_6
3.2338 2.6391 2.5269 2.4952 2.4574

L23 Attack LMP_27 LMP_4 LMP_3 LMP_14 LMP_13
1.6242 1.5567 1.4399 1.3356 1.288

L24 Attack LMP_3 LMP_27 LMP_5 LMP_4 LMP_26
3.1348 2.7685 2.6388 2.5471 2.5372

L25 Attack LMP_1 LMP_9 LMP_30 LMP_2 LMP_25
5.3041 5.0115 3.9135 3.8978 3.343

L27 Attack LMP_9 LMP_1 LMP_3 LMP_26 LMP_2
1.7024 1.4789 1.3091 1.0965 1.0549

L28 Attack LMP_7 LMP_8 LMP_6 LMP_31 LMP_9
2.168 2.0847 1.9083 1.8142 1.8013

L29 Attack LMP_7 LMP_27 LMP_8 LMP_5 LMP_3
1.7363 1.616 1.3814 1.3431 1.3362

L30 Attack LMP_9 LMP_8 LMP_4 LMP_14 LMP_5
2.9417 2.8817 2.7519 2.6314 2.6113

L31 Attack LMP_27 LMP_7 LMP_6 LMP_8 LMP_31
2.5213 1.7568 1.6869 1.5905 1.5074

L32 Attack LMP_7 LMP_27 LMP_8 LMP_9 LMP_31
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Location 1 2 3 4 5
2.0886 2.004 1.8923 1.8012 1.7405

L33 Attack LMP_7 LMP_8 LMP_3 LMP_9 LMP_5
2.7195 2.3938 2.3813 2.3706 2.3141

L35 Attack LMP_7 LMP_6 LMP_31 LMP_27 LMP_18
12.6318 11.1151 10.3826 10.0879 8.6492

L36 Attack LMP_6 LMP_31 LMP_9 LMP_1 LMP_8
2.737 2.3616 2.3021 2.165 2.0631

L37 Attack LMP_9 LMP_1 LMP_2 LMP_6 LMP_30
2.4946 2.0678 1.6222 1.5705 1.5325

L38 Attack LMP_9 LMP_7 LMP_1 LMP_3 LMP_8
3.1097 2.3357 2.2658 2.0941 1.9516

L39 Attack LMP_8 LMP_7 LMP_5 LMP_9 LMP_4
2.6155 2.6049 2.4855 2.4594 2.4265

L40 Attack LMP_26 LMP_28 LMP_29 LMP_38 LMP_27
8.6589 7.3645 6.8644 5.9959 5.6945

L41 Attack LMP_8 LMP_3 LMP_5 LMP_7 LMP_4
1.6447 1.581 1.5514 1.4883 1.4679

L42 Attack LMP_6 LMP_9 LMP_1 LMP_31 LMP_8
2.9191 2.6578 2.5651 2.5482 2.2178

L43 Attack LMP_9 LMP_1 LMP_3 LMP_2 LMP_30
3.2057 3.0527 2.1639 2.1607 2.1507

L45 Attack LMP_26 LMP_28 LMP_29 LMP_27 LMP_38
105.36 96.9464 89.568 83.9417 79.0562

L46 Attack LMP_26 LMP_28 LMP_29 LMP_38 LMP_27
97.6362 85.4361 79.9477 70.4871 66.2189

Table 4.19: Results of top 5 most affected buses for FDIA attacks with average reconstruction
errors.

Form the first 7 rows on Table 4.19, we identified three major attack regions, marked on
the topology diagram in Figure 4.56. The red region is a heavy load area linked to FDIA
applied on lines that transfer power into the area. The green region is another load area
and the yellow region is a local generation zone. The attacks applied on the transmission
lines that deliver power from generator 8 are largely affecting the green region. L10 attack
which blocks the power flowing from the yellow region to the red region affects both areas.
Overall, the red region is the most sensitive region to most of the attacks since the FDIA
creates intentional congestion in the system and the load supply might be interrupted. Two
observations can be drawn from the data: (1) the most sensitive nodes might not be the
direct attack target; (2) the distribution of the sensitive nodes are guided by the power



105

Figure 4.56: FDIA attacks mapped to the attack regions on IEEE 39Bus system.

delivery flow. By searching in the direction of the power flow, operators can find the nearby
region of the attack target.

Localizing LRA
To evaluate the localization performance with LRA, 39 datasets were generated with each
one having attacks at a different bus in the system. Results of top 5 most affected buses are
shown in Table 4.20. The format of the table and its description is similar to Table 4.19.
Note that any buses that did not have more than 4 attacks were not included in the table
(i.e., BUS2 attack).

The LRA test data point to the same three attack regions discussed above. Similar with
FDIA, LRA also introduced local congestion in the system. It is more obvious from Table
4.20 that the LRA attacks are mapped to their closest region.

4.5.7 Conclusion
In this section, we presented the procedure of using LSTM-Autoencoder model to identify

region of interest. Specifically, we first studied the correlation behavior and performed K-
means clustering for the simulation dataset. We then leveraged the cluster behavior to detect
anomalies by comparing the reconstruction error with an optimized threshold. The detector
shows 100% detection for clusters that contain cyber attacks, which achieves the Milestone
goal of 85% detection of attack regions. Further, we explained how the model can localize
the inner cluster sensitive nodes. These nodes can be mapped to potential attack regions
when traced with the power flow directions.
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Location 1 2 3 4 5

BUS 1 Attack LMP_9 LMP_4 LMP_34 LMP_19 LMP_5
2.2948 2.0012 1.8339 1.8244 1.5951

BUS 3 Attack LMP_9 LMP_5 LMP_4 LMP_7 LMP_27
3.6723 3.5212 3.4931 3.0361 2.6855

BUS 4 Attack LMP_9 LMP_5 LMP_4 LMP_7 LMP_8
9.1769 8.9522 8.9122 6.8857 6.6215

BUS 7 Attack LMP_7 LMP_5 LMP_27 LMP_9 LMP_11
2.6983 2.6772 2.5558 2.0859 1.9764

BUS 8 Attack LMP_7 LMP_5 LMP_27 LMP_9 LMP_11
2.3226 2.2751 2.1623 1.9334 1.6931

BUS 9 Attack LMP_5 LMP_7 LMP_11 LMP_27 LMP_6
2.4363 2.4136 2.3362 2.2716 2.1779

BUS 12 Attack LMP_34 LMP_19 LMP_9 LMP_33 LMP_27
7.1756 7.1646 6.7976 6.5123 6.5024

BUS 15 Attack LMP_19 LMP_34 LMP_27 LMP_33 LMP_9
8.4318 8.4202 7.9931 7.6859 7.4392

BUS 16 Attack LMP_27 LMP_34 LMP_19 LMP_9 LMP_33
13.1747 11.2889 11.2474 10.6298 10.2714

BUS 18 Attacks LMP_7 LMP_5 LMP_9 LMP_27 LMP_3
2.238 2.1977 2.033 1.9421 1.6301

BUS 20 Attack LMP_34 LMP_19 LMP_33 LMP_27 LMP_9
10.6361 10.5494 9.579 9.4834 8.7676

BUS 21 Attack LMP_19 LMP_34 LMP_33 LMP_4 LMP_20
8.5072 8.3674 7.6176 7.5254 6.5798

BUS 23 Attack LMP_4 LMP_19 LMP_34 LMP_33 LMP_20
7.7493 7.5597 7.4229 6.7545 5.9138

BUS 24 Attack LMP_27 LMP_34 LMP_19 LMP_9 LMP_33
11.6467 11.2194 11.1975 10.6228 10.0664

BUS 25 Attack LMP_9 LMP_4 LMP_26 LMP_34 LMP_19
2.5674 2.0324 1.8103 1.7655 1.7643

BUS 26 Attack LMP_9 LMP_4 LMP_19 LMP_34 LMP_26
1.7228 1.7094 1.6965 1.6234 1.4872

BUS 27 Attack LMP_19 LMP_34 LMP_4 LMP_9 LMP_33
1.6988 1.6274 1.5648 1.544 1.3203

BUS 28 Attack LMP_19 LMP_34 LMP_33 LMP_4 LMP_20
2.4056 2.345 2.0534 1.9187 1.8242

BUS 29 Attacks LMP_19 LMP_34 LMP_4 LMP_33 LMP_9
2.2974 2.2631 2.102 1.9551 1.7936

BUS 31 Attack LMP_7 LMP_5 LMP_27 LMP_9 LMP_11
3.3061 3.1231 2.6084 2.5574 2.4745

BUS 39 Attack LMP_9 LMP_5 LMP_7 LMP_3 LMP_4
1.8263 1.8212 1.8112 1.3544 1.2875

Table 4.20: Results of top 5 most affected buses for LRA attacks with average reconstruction
errors.
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Table 4.21: Statistics of the PJM LMP dataset.

Stats LMP Energy Price Congestion Price Marginal Loss
Price

Mean 23.70 27.14 -3.11 -3.19
Standard
deviation 58.61 54.38 27.94 2.64

Minimum -580.11 4.44 -3.97 -317.22
Maximum 3,442.86 2,361.2 1,656.72 4,367.60

4.6 Price Spike Anomaly Detection
Price spikes are the short and sharp fluctuations in electricity prices, generally caused by

the sudden occurrence of imbalance between demand and supply. Due to its discontinuity
and uncertainty, price spikes often cause high prediction/reconstruction errors in anomaly
detection leading to false positives. To address this issue, in this section, we performed two
studies: (1) pattern identification based price spike detection tested on PJM dataset and (2)
classification-based price spike detection tested on ISO-NE data.

4.6.1 Pattern identification of LMP spikes
In this subsection, we analyzed the patterns of spikes in the energy component of loca-

tional marginal price (LMP) in PJM data.
Basic Statistics of Spikes

This PJM dataset contains five-minute interval of real-time market data from September 1,
2019 to October 1, 2019. It contains 23,121,223 records for 2810 pnode IDs and 1408 pnode
names, where a pnode is used by PJM to denote a pricing node. The basic statistics of the
dataset is shown in Table 4.21. Note that the highest LMP can exceed $3400 in the PJM
real-time market, which is in sharp contrast to the average value of $23 per MWh.

In order to understand patterns of energy spikes, we examined the location where the
highest energy spike is observed in the entire dataset. Figure 4.57 shows the LMP data of
this particular pnode. Following [86], we employed a threshold of $2000 for spikes. Namely,
a spike is recorded if the LMP is greater or equal to the threshold. Under this definition,
there are 4399 spikes among the PJM dataset. In particular, the spikes are observed in a
wide spread of locations, 2410 pnodes, or 86% of all pnodes. On the other hand, the spikes
highly concentrate in time, 6 timestamps or 0.069% of all timestamps. These observations
indicate if a spike pattern is not in the observed time windows, then it is highly likely to be
due to an attack and if a spike pattern is sparse in a few locations, then it is also likely to
be an attack.

Spike Types
We next considered the characteristics of spikes in order to categorize them in different types,
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Figure 4.57: LMP data of the pnode with the highest LMP

namely, short spikes, sustained spikes, and camel spikes:

• Short: Only one spike index in the window
• Sustained: At least two consecutive spike indices in the window
• Camel: Two spike indices in the window with non-spike index in between

Figure 4.58 shows examples of the three types of spikes. If a spike lasts only one times-
tamp (i.e., five minutes), then it is a short spike. If a spike lasts two or more consecutive
timestamps (i.e., 10 minutes or more), then it is a sustained spike. Finally, a camel spike is
a spike that rises above the threshold, then drops below the threshold, and then rises above
the threshold again. The size of the window for the spike characteristics was chosen to be
10 timestamps before and after the first value that exceeds the threshold.

Under this definition, among the 4399 spikes, there are 196 short spikes, 197 camel spikes,
and 4006 sustained spikes. Table 4.22 categorizes the number of spikes with respect to the
timestamps. Note that there is overlap between sustained and camel spikes at timestamp
2019-09-07 15:20:00 and 2019-09-07 15:25:00. So the number of sustained spikes is calculated
as 1793˘197 + 2410 = 4006.

4.6.2 Temporal and Spatial Characteristics
Time Instance and Location

As previously mentioned, the LMP spikes are concentrated in time and yet wide spread in
location; see Table 4.23. In particular, a spike with LMP greater than $2000 are observed
among 86% of 2810 locations in the PJM data. On the other hand, all these price spikes
happen in a total of 6 time instances, which is only 0.069% over the one-month horizon
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Figure 4.58: Three types of spike observed, short spikes, sustained spikes, and camel spikes

Table 4.22: Spike types and timestamps.

Timestamp Pnode_id Type
2019-09-03 09:40:00 196 short
2019-09-07 15:05:00 197 camel
2019-09-07 15:20:00 1793 camel
2019-09-07 15:25:00 1793 Sustained
2019-09-03 16:55:00 2410 sustained
2019-09-03 17:00:00 2410 sustained

data. To understand the spikes between different time instances, we examined the locations
of the spikes and found that there is a progression of spike locations. For example, LMP
spikes happen in a set of 196 pnodes on 2019-09-03 09:40:00, and in a set of 197 pnodes on
2019-09-07 15:05:00. The former set of pnodes is contained in the latter set of pnodes. This
latter set of pnodes is then a subset of 1793 pnodes with LMP spikes on 2019-09-07 15:20:00
and 2019-09-07 15:25:00. This pattern continues, namely, the set of 1793 pnodes is a subset
of 2410 pnodes with LMP spikes on 2019-09-03 16:55:00 and 2019-09-03 17:00:00. In other
words, the PJM dataset displays a progression of spikes in location, that is, spikes observed
in a smaller set of pnodes are to be observed in a bigger set of pnodes.

Table 4.23: Energy price spikes in time and location.

LMP >$2,000 pnode_id pnode_name Time instance
number of records 2410 926 6

percentage (2410/2810) = 85.76% (926/1408) = 65.76% (6/288/30) = 0.069%
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Figure 4.59: Distribution of LMP spikes among the buses with different voltages.

Spike Distribution
We next considered the voltage, types, zones, and geographic location of the spikes. The
objective is to understand if there are patterns of spikes in other aspects of the system.
Figure 4.59 shows the distribution of spikes among the buses with different voltages. Note
that 138kV, 69kV, and 34.5kV buses rank as the buses with the three largest numbers of
spikes, with a total of 67.5% spikes. In particular, we have 37% (138 KV) + 12.5% (34.5
KV) + 18% (69 KV) = 67.5%.

In terms of equipment, the majority of spikes, 82%, are observed at the load buses. 17%
spikes are observed at the generation buses and less than 1% are observed at the extra high
voltage buses.

For geographic distributions, the PJM dataset in this study consists of five zones, namely,
Commonwealth Edison (ComEd), East Kentucky Power Cooperative (EKPC), Baltimore
Gas and Electric Company (BGE), Dayton Power and Light Company (DPL), and PECO
Energy. The distribution of spikes among these five zones is 58% for ComEd, 18% for
EKPC, 14% for BGE, 5% for DPL, and 5% for PECO. Note that ComEd in the Chicago
metropolitan area experiences a majority of the spikes. The metropolitan area with the next
highest number of spikes is Baltimore (BGE) with 14% of spikes.

Detection of Abnormal Spikes
An anomaly detector was designed based on the temporal and spatial features of LMP
spikes. In particular, if a price spike with a magnitude exceeding $2000 occurs outside of the
timestamps in Table 4.22, or if it occurs outside of the 2410 pnodes, then it is highly likely
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Figure 4.60: Confusion matrix of the logistic regression model for attacks over $2000 (left)
and for attacks below $1500 (right).

to be an attack. Two scenarios were considered:

• Scenario 1: Randomly generate N attacks to LMP by changing LMP to values between
$2000 and $3000, where N = 200, 2000, 20000.

• Scenario 2: Randomly generate N attacks to LMP by changing LMP to values between
$1000 and $1500, where N = 200, 2000, 20000.

For each scenario, the spike, spike time, spike location were used as input features, and the
attack label was the target. A standard logistic regression from Scikit-Learn was employed
for the detection. By training the model with 75% of data and testing it on the remaining
25% of data, the model is able to differentiate 98% of attacks correctly from normal spikes
over $2000. On the other hand, for attacks below $1500, the model fails to differentiate
them. The confusion matrices for both scenarios are shown in Figure 4.60. In summary, the
simple logistic detection based on the temporal and spatial features is capable of detecting
random price attacks effectively.

4.6.3 Price Spike Analysis
In the following, we provide a survey of the literature on price spike prediction, a discus-

sion on real world spike events and the price spike models based on PJM market rules.
Literature Review for Spike Prediction

Forecasting the electricity price is a well-studied topic in the literature. The prediction of
spikes for energy price is quite different as it predicts the volatile spikes rather than the
general price profiles. Recent years have seen approaches based on machine learning tech-
niques to this challenging research problem. In [87], the authors developed a data mining
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approach by using only market data. In particular, a Bayesian classifier was developed to
predict spikes based on demand and supply of the marketplace. In [88], a hybrid model from
wavelet and time domain data were proposed to forecast price spike occurrence. In [89], a
stochastic regime switching model was proposed to predict spikes based on load and reserve
margin. In [90], a number of machine learning approaches were compared for the price classi-
fication problem. It was shown that Bayes classifier outperforms decision tree for simulation
results for the New York, Ontario, and Alberta electricity markets. In a recent report from
Stanford ( [86]), the authors showed that the gradient boosted classifier achieves 99.99%
accuracy for predicting spikes in energy price for ISO New England data. In [91], an auto-
regressive conditional model was demonstrated to outperform memory-less models for spike
forecasting. In [92], a support vector machine was developed for the forecast of price spikes
in the electricity market. In [93], a comprehensive survey was provided for the electricity
price forecasting.

Real World Events for Energy Price Spikes
Three real world events that caused energy price spikes and congestion in PJM area were
reported in the media from 2015 to 2020. The first event happened on April 7, 2015, when the
real-time energy prices in PJM market exceeded $500/MWh in BGE area and $400/MWh
in Pepco area. The problem was traced back to an equipment failure in a transmission line
in Pepco. As a result, 30,000 customers in Washington DC along with areas of Maryland
were affected with a power outage ((Walton, PJM, New York electricity markets experience
price spikes, 2015 [94]).

The second event happened on May 21, 2015, when energy prices in New York ISO’s
western zone jumped past $1300/MWh before 10am and fell back to $20/MWh within 30
minutes. The investigation suggested that the event was due to a change of congestion
pattern with gas prices as the winter ended. In particular, the lower gas prices in Marcellus
production area and more congestion in the eastern portion of New York led to a west-to-east
power flow. While it was an isolated incident without any outages, the price spikes resulted
in the rise of exports from NYISO to PJM [94].

The latest event happened on May 15, 2018, when the real-time energy price spiked above
$600/MWh in PJM market around 4:50pm EDT. Specifically, the real-time price at Duke
Energy Ohio Kentucky Zone spiked to $663.20/MWh and prices in most other PJM zones
were $500/MWh. The cause of the spikes was that the system wide load reached 113,480
MW, which was more than 2% above the forecast peak at 110,650 MW. The temperature in
Cincinnati set a record of 90 degrees Fahrenheit on May 14 (S&P Global Platts, 2018 [95]).

To understand the market mechanism that induces price spikes, two different market
designs were considered: no price spike model and price spike model.

No Price Spike Model
PJM’s price model is designed to rely on the capacity market to supply sufficient generation.
This design aims to keep prices low (e.g., $150/MWh) during normal operation without price
spikes. The market prices align with the system marginal cost, that is, the most expensive
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power plant to be dispatched. The capacity market requires load serving entities to purchase
approximately 20% more capacity than their peak load, otherwise subject to a financial
penalty. While the threat of penalty induces load entities to purchase more generators, it
also helps eliminate price spikes. This is possible only in a perfectly competitive market and
the market is isolated (i.e., no import or export to other markets).

Rule 1: A capacity market that is isolated, perfectly competitive, and equipped with
penalty mechanism does not induce price spikes in the long term operations. For example,
from April 1, 1998 to April 1, 1999, no member company of PJM had market-based rates, so
none of them could bid above their regulated marginal cost. When the PJM market exceeded
the marginal cost, it was due to the market-based bidding of companies located outside of
PJM [96].

Price Spike Model
The no-price-spike-model is an ideal model with simplified assumptions. In the real-world
PJM data, the energy price spike could exceed 10 times the average cost. If the supply of
generation is inadequate, the spike signals will induce investment in generation. The idea of
a competitive market is to balance an optimal level of installed capacity and an optimal level
of reliability. However, this purely market-based approach is almost always accompanied by
regulations. The key requirement is the operating reserve margin. A higher level of the
reserve margin leads to a higher level of installed capacity. Therefore, the installed capacity
is determined by a market-driven process with regulatory inputs. The competitive market
itself does not determine the required reserve margin.

Rule 2: An increase in reserve margin causes an increase in the level of installed capacity.
While this rule makes intuitive sense, there is no direct link or mechanical connection between
the reserve margin and the installed capacity. The process works through price spikes. In
fact, the price spikes are largely determined by two non-market regulatory decisions: the
operating reserve margin and the way the margin is enforced.

Rule 3: For the same installed capacity, price spikes occur sooner and last longer in a
system with a higher reserve margin. For example, if the reserve margin is 5% and available
reserves are 10%, then the system operator will not bid up prices of reserve. If the reserve
margin is 12% and only 10% reserves are available, then the system operator will offer to
pay a high price for energy.

Rule 4: The regulatory setting for pricing reserve purchases determines the shape of
price spikes. If the rule is sharp, for example, pay up to $5000 if reserves fall below 5% and
pay nothing if reserves are above 5%, then the price spike will jump sharply, but will have
a short duration. On the other hand, if the rule setting increases gradually, then the price
spike will be lower and broader.

Rule 5: Neither the height nor the width of the price spike induces investment in
generation. The total area, that is, the profit, of the price spike induces investment.

The internal working of PJM on the regulatory setting of reserves is not public knowledge.
Just as it is possible to set the wrong capacity requirement, so it is possible to set the wrong
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Table 4.24: Statistics of LMP and its component.

Energy Congestion Loss LMP
MIN -25.01 -227.92 -30.35 -150.00
MAX 354.05 632.35 18.28 673.26
MEAN 24.46 -0.02 -0.09 24.35

Figure 4.61: LMP with the highest (left) and the lowest (right) prices.

operating reserve requirement. Furthermore, the operating reserve approach has its effect by
random variables such as weather conditions. Such randomness slows the process by which
the market converges to its long-run equilibrium.

4.6.4 Classification-based Detection for ISO-NE data
Built upon our understanding on price spike patterns and mechanisms, we developed a

series of classification based spike detectors which were tested on ISO-NE data for comparison
with existing publications. The following subsection elaborates the feature selection and
model testing results.

Five-Minute LMP Data
Our goal is to understand and predict LMP spikes for ISO-NE data in real time. By compar-
ing the observation with the prediction, we can detect anomalous price spikes. We started
by analyzing ISO-NE dataset that contains LMP, demand, reserve, schedule, and binding
constraint data. This dataset is acquired from ISO-NE website and stored in a MySQL
database. In particular, the five minute LMP table contains 12,255,233 data recorded from
2020-06-08 17:10:00 to 2020-07-30 16:50:00 at 1209 locations. The basic statistics of the
LMP and its energy component, congestion component, and loss component are given in
Table 4.24.

Note that the highest LMP is at $673.26 and the lowest LMP is at $-150.00. Figure 4.61
shows the LMP data at the locations with the highest and the lowest prices.

From Figure 4.61, it seems that LMP reaches the lowest price at $-150.00 several times
as if the price is capped below. A zoom-in plot for one example of these times is provided
in Figure 4.62. Note there is a mirror image between energy and congestion costs so as to
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Figure 4.62: Price cap by congestion cost.

Figure 4.63: Lowest LMP, the reserve, and the system load.

have the total LMP capped at $-150.
This observation reminds us Rule 4 in the price spike model, cited as: Rule 4: The

regulatory setting for pricing reserve purchases determines the shape of price spikes. If the
rule is sharp, for example, pay up to $5000 if reserves fall below 5% and pay nothing if
reserves are above 5%, then the price spike will jump sharply, with a high value and a short
duration. On the other hand, if the rule setting increases gradually, then the price spike
will be lower and broader. This implies a possible connection between the price cap and the
reserve prices.

To explore the relation of reserve price and LMP, we plotted the lowest LMP and the
reserve data side by side in Figure 4.63. The reserve data has a clear cycling pattern in all
categories (10-minute spinning, 10-minute non-spinning, and 30-minute operating) that is
not observed in the LMP data. Similar observation can be made for the system load data.

Hourly LMP Data
In contrast to the five-minute LMP data, the hourly LMP data has the day-ahead forecast.
This is because hourly LMP is less volatile than the five-minute LMP, which makes prediction
one day ahead possible. For example, Figure 4.64 shows the real-time hourly LMP and the
day-ahead hourly LMP at the highest price and the lowest price. Note that while the real-
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Figure 4.64: Hourly LMP with the highest (left) and the lowest (right) price.

Figure 4.65: Confusion matrix for the logistic regression model in predicting spikes at $100
(left) and $150 (right) in hourly LMP.

time data is more volatile, its upward and downward trends are captured by the day-ahead
data. This implies that day-ahead data can be used to predict the spikes in the real-time
data.

We started with a simple logistics regression (LR) model with day-ahead LMP as the
only feature and the real-time LMP spikes as the target. The spike threshold was set to
be $100. For this test, we used 24-hour data from 1205 locations with 28,920 observations.
By splitting the dataset into 75% and 25% for training and testing, respectively, the logistic
regression model achieves 82% accuracy in prediction shown in Figure 4.65. When the spike
threshold is set at $150, however, the prediction accuracy drops to 4%, due to fewer spikes.

We then built two more classifiers, gradient boosting (GB) and random forest (RF), to
compare with LR results. Note that gradient boosting and random forest outperform LR
significantly, achieving 69.7% and 70.3% prediction accuracy, respectively, as shown in Table
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LR Predicted
No

Predicted
Yes

Actual
No

0.995 0.005

Actual
Yes

0.96 0.04

RF Predicted
No

Predicted
Yes

Actual
No

0.995 0.005

Actual
Yes

0.297 0.703

GB Predicted
No

Predicted
Yes

Actual
No

0.995 0.005

Actual
Yes

0.303 0.697

Table 4.25: Confusion matrices for logistic regression (LR), gradient boosting (GB), and
random forest (RF) for LMP spike threshold at $150.

Figure 4.66: System load, reserve, real-time hourly LMP, and day-ahead hourly LMP.

4.25.
While these results are encouraging, the models are trained on the 24-hour dataset, which

is very limited. When we use the three models to predict a different dataset, namely, a month
hourly data at the location with the highest LMP, all three models miss all the spikes.

Including load and reserve data
Using solely hourly LMP data proved to be insufficient to predict spikes. We then included
system load data and reserve data to identify spikes caused by reserve shortage or load surge.
These new features are plotted in Figure 4.66 to show their temporal correlation.

Test results show new features improve the performance of all three models significantly.
In particular, the logistic regression, the random forest, and the gradient boosting achieve
30%, 61%, and 99% prediction accuracy, respectively. Table 4.26 shows the confusion ma-
trices for all three models.

To understand the contribution of the two new features, system load and reserve, we
repeated the experiment by adding only the load or only the reserve. By adding load only,
we have almost the same performance for all three models (<1% difference) as we did when
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LR Predicted
No

Predicted
Yes

Actual
No

0.997 0.003

Actual
Yes

0.70 0.30

RF Predicted
No

Predicted
Yes

Actual
No

1 0

Actual
Yes

0.39 0.61

GB Predicted
No

Predicted
Yes

Actual
No

0.997 0.0003

Actual
Yes

0.009 0.991

Table 4.26: Confusion matrices for the three models when system load and reserve data are
included.

LR Predicted
No

Predicted
Yes

Actual
No

0.975 0.025

Actual
Yes

0.42 0.58

RF Predicted
No

Predicted
Yes

Actual
No

0.98 0.02

Actual
Yes

0.52 0.48

GB Predicted
No

Predicted
Yes

Actual
No

0.97 0.03

Actual
Yes

0.39 0.61

Table 4.27: Confusion matrices of three models for multi-year data from 2017 to 2020.

we used both load and reserve. Therefore, reserve is not necessary when load is included to
achieve the performance in Table 4.26. On the other hand, by adding the reserve only, we
see worse performance for all three models (e.g., gradient boosting spike prediction drops
to 90% from 99%). In conclusion, the system load contributes more than the reserve in
achieving performance in Table 4.26.

ISO-NE Web Services
Previous price spike models were only trained for one-month of data at one location of ISO
New England. To generalize the model, we need more data spreading over multi-year and
multi-location in ISO-NE. To this end, we resort to the web services provided by ISO-NE [97].

Given the location ID, we obtained LMP, system load, and reserve data for the entire
2017, 2018, 2019, and partial 2020 (up to August, 27) dataset with 32,037 observations. For
this dataset, the performance of the three models is given in Table 4.27. In this case, the
gradient boosting model achieves the best performance with prediction accuracy at 61% and
the random forest performs the worst at 48%.

Hourly LMP vs. Five-Minute LMP
The ultimate goal for price spike detection is to provide additional information for the five
minute anomaly detection. Thus it is critical to study if the hourly LMP can capture the
trend in the five-minute LMP. Figure 4.67 shows an example of the LMP data for one day.
Here, the five-minute data follows the trend of the hourly data, but more volatile.

The same observation can be made for the one-week data as shown in Figure 4.68. In this
case, the spikes of five-minute data are more significant in magnitude than those of hourly
data.

A zoom-in plot of 10 days in Figure 4.69 shows, with a threshold of $150, the hourly data
miss three out of four spikes in five-minute data. This implies that using models trained on
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Figure 4.67: Hourly LMP and five-minute LMP in one day.

Spike
Threshold

Hourly
LMP

Max 5
-min LMP Overlap Overlap/Hourly Overlap/Max 5-min

$150 7 20 6 6/7=85.7% 6/20=30%
$100 32 52 28 28/32=87.5% 28/52=53.8%
$50 156 299 148 148/156=94.9% 148/299=49.5%

Table 4.28: Spike overlap for hourly and five-minute data at different threshold.

hourly data to predict spikes in five-minute data will have a compromised detection accuracy.

To put this into perspective, consider the number of overlapping spikes in hourly and
five-minute data shown in Table 4.28. For spike threshold at $150, six spikes in hourly data
overlap with five-minute data with 20 spikes, with a 30% overlapping rate. On the other
hand, the overlapping rate for the hourly data is six out of seven with 85.7%. Note that
with a lower threshold for spikes, the overlap rate improves in both hourly and five-minute
data. This is because there are more spikes observed.

Feature Selection and Hyper-Parameter Tuning
The importance of features in all three machine learning models were studied for feature
selection. To recap, we used seven features to predict spikes in real-time hourly LMP data:
Day-Ahead Hourly LMP, System Load, Native Load, Ard Demand, 10-min spin reserve,
total 10-min reserve, and reserve. Table 4.29 shows the importance of these features for
the three machine learning models. We see that day-ahead hourly LMP carries a lot of
weight, in particular, 75% and 43% for the gradient boosting and the random forest model,
respectively. Note that the logistic regression model in Scikit-Learn does not provide feature
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Figure 4.68: Hourly LMP and five-minute LMP in a week.

Feature Gradient
Boosting

Random
Forest

Day-ahead Hourly LMP 0.75 0.43
Load 0.06 0.14

Native Load 0.09 0.28
Ard Demand 0.04 0.19

10-min Spin Reserve 0 0
Total 10-min reserve 0 0

Reserve 0.06 0.13

Table 4.29: Feature importance of the machine learning models.

importance, so the importance weight in for logistic regression is not available in Table 4.29.
Next, we fine tuned parameters for the gradient boosting model, which outperforms

the other two models. There are a dozen hyperparameters in gradient boosting, of which
learning rate and the number of trees are the most important [98]. The learning rate controls
the magnitude of changes in the estimate of gradient boosting, while the number of trees
determines the complexity of the model. The default values for the gradient boosting model
in Scikit-Learn are learning_rate = 0.1 and n_trees = 100. We conducted the basic grid
search for these two hyperparameters. By ranging from defaultValue/10 to defaultValue*10,
we have a grid of parameters from learning_rate = [0.01, 1] and n_trees = [10, 1000].

The target metric is the prediction accuracy (e.g., when GB model predicts a spike, it is
actually a spike). Figure 4.70 (Left) shows the prediction accuracy for each pair of learning
rate and number of trees. The best performance at 66% is achieved at a set of parameters
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Figure 4.69: Price spikes in hourly and five-minute LMP.

Figure 4.70: Prediction accuracy of gradient boosting model by varying the learning rate
and the number of trees.

in coarse ranges, where we fine tuned in small ranges, namely, learning_rate = [0.05, 0.2]
and the n_trees = [50, 200]. Figure 4.70 (Right) shows the target metric over this set
of parameters. In particular, learning_rate = 0.16 and n_trees = 150 result in the 66%
accuracy.

Multi-Zone Data
We then extended the research to all dispatch zones of the ISO-NE dataset. ISO-NE ter-
ritory is divided into eight different zones: Maine, New Hampshire, Vermont, Connecticut,
Rhode Island, Southeastern Massachusetts (MA), Western/Central MA, and Northeastern
MA shown in Figure 14.9.

We trained all three models, logistic regression, random forest, and gradient boosting
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Figure 4.71: Eight zones of ISO-NE [2].

Zone Logistic Regression Random Forest Gradient Boosting
Maine 0.997 1 0.993
New Hampshire 0.998 1 0.996
Vermont 0.998 1 0.995
Connecticut 0.997 1 0.995
Rhode Island 0.997 1 0.996
Southeastern MA 0.995 1 0.993
Western/Central MA 0.998 1 0.996
Northeastern MA 0.994 1 0.993

Table 4.30: True negative rate of machine learning models.

over eight zones. All three models achieve high performance in true negative rate (>99%)
consistently over all eight zones, see Table 4.30. On the other hand, they achieve around
60% accuracy for the true positive rate; see Table 4.31.

Weather Data
We next included weather data from the National Oceanic and Atmospheric Administration
[99]. In particular, we obtained dry bulb temperature, wet bulb temperature, and humidity.
Furthermore, we engineered a few features with respect to time, for example, if the event
happened in weekdays or weekends, in working hours between 9:00 to 17:00. With the new
weather data and the timing features, we conducted a correlation study with the real-time
LMP. Table 4.32 shows the correlation between real-time LMP and the data points. Note
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Zone Logistic Regression Random Forest Gradient Boosting
Maine 0.51 0.18 0.47
New Hampshire 0.58 0 0.54
Vermont 0.53 0.25 0.61
Connecticut 0.57 0 0.61
Rhode Island 0.58 0 0.56
Southeastern MA 0.50 0 0.61
Western/Central MA 0.60 0 0.56
Northeastern MA 0.63 0 0.53

Table 4.31: True positive rate of machine learning models.

Feature ID Feature Name Correlation
0 lmp_rt 1
1 load_da 0.280402
2 Imp_da 2 0.652581
3 NativeLoad 0.37233
4 ArdDemand -0.141967
5 reserve -0.0315462
6 humidity -0.0941187
7 drybulb -0.266672
8 wetbulb -0.274475

Table 4.32: Correlation between real-time hourly LMP and the data points.

that the temperature data is negatively correlated with real-time LMP, which seems a bit
surprising at first glance. To understand this, we plotted the correlation between dry bulb
temperature and the real-time LMP in Figure 4.72. Note that the temperature is negatively
correlated with LMP from November to April and it is positively correlated with LMP from
May to October. To gain a full picture, we computed the correlation between LMP and all
data points over months; see Table 4.33.

In addition, we performed the seasonality decomposition of the day-ahead load, day-
ahead LMP, and real-time LMP, with the results shown in Figure 4.73. Now with these
additional features in trend, residual, and seasonal data, and the timing features discussed
earlier, we obtained the prediction results shown in Table 4.34.

Voting Machine
We next explored the ensemble of the three tested machine learning models using a voting
machine. The basic idea of a voting machine is to combine a diverse set of models with
majority to vote for a stronger prediction model; see Figure 4.74 for an illustration.

To see how the voting machine works, we plot the false positive of three models, logistic
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Figure 4.72: Correlation between dry bulb temperature and real-time LMP.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0 1 1 1 1 1 1 1 1 1 1 1 1
1 0.523 0.3836 0.2717 0.3713 0.2967 0.2475 0.5678 0.6172 0.2366 0.2287 0.4733 0.3719
2 0.8667 0.8209 0.4844 0.577 0.3858 0.292 0.5757 0.7368 0.2455 0.3922 0.7178 0.7239
3 0.6254 0.4904 0.3968 0.5476 0.4261 0.3808 0.6418 0.6549 0.3157 0.3357 0.573 0.5221
4 -0.217 -0.1897 -0.2485 -0.2756 -0.3168 -0.1416 -0.2594 -0.2627 -0.06059 -0.1932 -0.2711 -0.112
5 -0.0859 0.3666 0.1027 -0.06049 0.1146 -0.2668 -0.09795 -0.1354 -0.07824 -0.112 0.4115 -0.3602
6 -0.3055 -0.1255 -0.06861 0.3052 0.03922 0.1212 -0.04574 -0.3781 -0.1122 0.07885 -0.04861 -0.1212
7 -0.705 -0.5137 -0.3078 -0.4572 0.1324 0.1384 0.4137 0.5383 0.2879 0.03704 -0.5046 -0.274
8 -0.688 -0.5003 -0.291 -0.3025 0.2268 0.2538 0.4037 0.4073 0.2165 0.05947 -0.44 -0.2542

Table 4.33: Correlation between LMP and data points over 12 months. The indices of the
data points are given in Figure 25. The horizontal axis denotes month data.

Figure 4.73: Seasonality decomposition of the day-ahead load data (left), the day-ahead
LMP data (middle) and the real-time LMP data (right).

regression, random forest, and extreme gradient boosting (the enhanced version of GB) in
Figure 4.75. Note that by combining the votes from three models, the voting machine has
better confidence in the prediction results. Similarly, the false negative votes from three
individual models and the aggregated votes are shown in Figure 4.76.

Nevertheless, the performance of voting machine does not outperform the individual mod-
els. Recall that price spikes are defined as price values that surpass a threshold (e.g.>$1000)
The missed detections happen mostly on the spikes at marginal distance to the spike thresh-
old. This indicates threshold selection is critical to the detection accuracy.
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LR Predicted
No

Predicted
Yes

Actual
No

2112 10

Actual
Yes

28 36(34)

RF Predicted
No

Predicted
Yes

Actual
No

2122 0

Actual
Yes

34 30(18)

GB Predicted
No

Predicted
Yes

Actual
No

2113 7

Actual
Yes

22 42(45)

Table 4.34: Confusion matrices for the machine learning models with new data points.

Figure 4.74: Voting machine prediction [3].

Figure 4.75: False positive votes from individual models (left) and the aggregated votes
(right).

Spike Thresholds
We next varied the threshold of the price spikes and examined the robustness of all models
with respect to the thresholds. The reason for this sensitive test is that the user (e.g.,
operators at ISO-NE) may choose their own spike threshold. A model whose performance is
consistent over price thresholds will be more valuable.

Figure 4.77 shows that the number of spikes decreases as the threshold increases. For
each of the thresholds, we repeated the same exercise for all models. Figure 4.78 shows that
the false alarm rate drops first when the threshold increases and hovers around a fixed value
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Figure 4.76: False negative votes from individual models (left) and the aggregated votes
(right).

Figure 4.77: Number of spikes for varying thresholds.

after $150. The detailed numbers for the false alarm rate are given in Table 4.35.
Figure 4.79 shows the accuracy of all machine learning models. Note that the performance

of logistic regression and random forest drops significantly when the threshold increases. The
voting machine, however, follows the same trend when it is fed with results from these models.
On the other hand, the performance of the gradient boosting model and its enhanced version,
XGB, degrades gracefully as the threshold increases. In particular, XGB manages to achieve
60% prediction accuracy when other models suffer from the performance loss at high values
of price thresholds, as shown in Table 4.36.

4.6.5 Conclusion
In this section, we studied the price spike patterns and mechanisms. We then designed

algorithms for spike analysis and prediction and tested them on ISO-NE data. We developed
data acquisition pipelines from several sources including ISO-NE and NOAA. By taking
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Figure 4.78: False alarm rate for all machine learning models.

Threshold LR RF GB XGB VotingMachine
75 0.0185 0.0046 0.0154 0.0133 0.0067
100 0.0112 0.0019 0.0093 0.0093 0.0068
125 0.0077 0.001 0.0053 0.0038 0.0029
150 0.0038 0.0005 0.0028 0.0033 0.0014
175 0.0033 0.0023 0.0056 0.0023 0.0019
200 0.0019 0.0009 0.0028 0.0023 0.0019
225 0.0023 0.0009 0.0051 0.0014 0.0005
250 0.0028 0.0018 0.0046 0.0018 0.0028

Table 4.35: False alarm rate in numbers.

Figure 4.79: Prediction accuracy for all machine learning models.
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Threshold LR RF GB XGB VotingMachine
75 0.6387 0.4244 0.6681 0.7269 0.6261
100 0.6667 0.553 0.7197 0.7955 9.697
125 9.6105 0.5579 0.7053 0.7579 0.7053
150 0.5625 0.4531 0.6562 0.6406 0.5625
175 0.3077 0.3077 0.4615 0.5641 0.4103
200 0.25 0.25 0.4643 0.6429 0.4286
225 0.2273 0.1364 0.4545 0.4545 0.3636
250 0 0 0.3636 0.6364 0.1818

Table 4.36: Prediction accuracy of all models in numbers. Note that XGB stays around 60%
when other models have suffered performance loss at higher values of price thresholds.

advantages of the web services provided by ISO-NE, the developed pipeline enabled us to
pull, process, and store data automatically. We compared multi-year and multi-location
datasets. We engineered new features based on the event time and the seasonality of time
series. In addition, we employed state-of-the-art machine learning models, including gradient
boosting and its enhanced version, to predict LMP spikes. By limiting to realistic day-ahead
data, our models achieved less than 1% false alarm rate and 66% prediction rate. Among
these models, the extreme gradient boosting is robust with respect to the spike thresholds,
which makes it the best option for real world implementation.

4.7 Conclusion
In this chapter, we elaborated the three categories of anomaly detection algorithms: the

point-wise anomaly detection, the locational anomaly detection and the price spike anomaly
detection. For each algorithm class, we explained the detection mechanism, the parameter
optimization, the threshold selection and the testing and evaluation results that lead to
the achievement of project milestones. Both real-world datasets (PJM and ISO-NE) and
simulation datasets were used for signature study and performance evaluation. Collectively,
these algorithms form the WISP data-driven detection core.



Chapter 5

WISP Algorithms: Electricity Market
Vulnerability Analysis

5.1 Introduction
The interconnected communication network presents the modern power system operation

unprecedented threats from cyberattacks. For instance, in December 2015, the information
system for three distribution centers in Ukraine was compromised, and 30 substations were
switched offline [100]. In March 2019, a denial of service attack happened at a western utility
in the U.S. disconnecting the communication between operators and remote generation sites
for a minute [101]. Those real-life events demonstrate that cyber intrusions are capable of
penetrating the communication systems in power grid operation.

The U.S. power market clears hundreds of Gigawatt loads every hour, where electricity
is produced reliably and economically. Therefore, malicious communication breaches into
market operations could induce catastrophic consequences on fair financial settlements and
reliable transmission services. Followed by the initial discussion of market-targeted cyberat-
tacks presented in [32], there is abundant literature discussing various cyberattacks on power
market operations

5.1.1 Literature Review
Three main directions of market-targeted cyberattacks are summarized as follows:
(1) The development of new attack strategies

In the first category, state estimation (SE) is the most popular intrusion path. In [102], a
robust false-data injection attack (FDIA) on SE is designed to create a financial bias on
market settlements along with bogus bids. In [103], an undetectable parameter attack on
the system model is designed for financial profit in market operations. In [104], a topology
attack is combined with a FDIA to lead customers to pay a higher bill through undetectable

129
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price deviations. In [105], three new topology attacks on SE are developed to mislead both
economic dispatch and reliable operation. Next, [106] realizes that the grid topology is too
extensive to be known by attackers and proposes a new profitable attack method without
prior information on grid topology. Similarly, imperfect topology information is dealt with
via robust optimization and stochastic programming in [107] and [108]. Various new
attack paths and scenarios on market operation are identified: a transmission line rating
attack [109], a ramping constraints attack [110], and very short-term load forecasting [111].

(2) The development of new detection schemes
For the second category of market-targeted cyberattacks, developing new detection schemes,
detecting cyberattacks on market operations mainly focuses on SE level protections. In [112],
a least-budget defense algorithm is proposed to secure pre-selected sensors, leading to the
failure of bad data detection attacks. Additionally, [113] and [114] focus on enhancing the
bad data detection algorithm itself because random noise has consistent statistic distribu-
tions, but a FDIA changes the pattern.

(3) The development of the sensitivity studies on cyberattacks
In the last category of market-targeted cyberattacks, investigating the sensitivity of cyber-
attacks, sensitivities of SE manipulation on market-clearing results are fully investigated.
In [68] and [115], the sensitivity of locational marginal prices (LMPs) to bad meter data is
formulated, and buses with higher sensitivity are prone to being attack targets. In [116], the
mathematic representation for the sensitivity of profitability to topology data is investigated.
In [117], the sensitivity of renewable generation curtailments to profitability is formed. Al-
though the curtailments in [117] are described as a strategy, the malicious attack could lead
to the same results.

5.1.2 Significance of Cyber-Vulnerability Analysis
As presented in the previous subsection, various market cyberattacks and their corre-

sponding defense strategies have been identified and demonstrated. They generally focus
on elaborating the attack paths or specific strategies. However, from the market operators’
viewpoint, no matter where the attack path lays, whether in the state estimation or the
market gateway, the potential targets for a market operation are as follows: unit bids, de-
mand management, generation capacities, line ratings, and congestion patterns. Therefore,
it is important for the market operator to identify the vulnerability among all those attack
paths. To the best of our knowledge, no previous research has developed a comprehensive
analysis model regarding the vulnerability of the electricity market model involving all po-
tential attack objectives and targets. Therefore, this work first provides an impact analysis
model that emulates the market-clearing under various cyberattacks, and then introduces a
set of algorithms to identify the vulnerability from different aspects. The significance of this
cyber-vulnerability analysis are as follows:

1. A comprehensive cyber-vulnerability analysis (CVA) model is provided, in which mar-
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ket data from all sources is assumed to be susceptible to attacks, including line ratings,
congestion patterns, generation capacity withholds, market-interface, etc. Namely, all
parameters in the ISO’s market model are assumed to be attackable. Next, various
attack objectives are categorized and considered. The market operator can apply the
model to perform impact analysis on market cyberattacks.

2. Four specific impact analysis algorithms are provided to identify the vulnerability of
power market parameters comprehensively. The CVA algorithms target at four vital
aspects regarding the vulnerability of power market parameters: (1) The vulnerability
in terms of the possibility: which attack paths are the most likely of being attacked?
(2) The vulnerability in terms of the severity: which attack paths have the most impact
on the market operation? (3) The vulnerability in terms of the load level: which load
level is more likely for attacks to happen? (4) The vulnerability in terms of the defense
strategies: how the defense actions impact the effectiveness of market cyberattacks?

5.2 Cyber-vulnerability Analysis
The previous subsection discusses the research gap in power market cybersecurity litera-

ture. This report will detail a comprehensive CVA platform for delivering a detailed analysis
from four aspects: highly probable cyberattack targets, devastating attack targets, risky
load levels, and mitigation ability under different degrees of defense. Users can simulate the
interactions between attackers and defending operators under different attack events, and
the corresponding market settlements can also be obtained.

5.2.1 Cyber-Vulnerability Analysis Model
The analytic model provides a flexible platform to emulate different attack strategies

and defense degrees under various assumptions. The details of the vulnerability analysis
algorithms are discussed in the next section. This section presents the structure of the CVA
model.

The CVA model simulates an attacker and a defending market operator. The attacker
wants to optimize its objective (e.g., LMP manipulations), then it anticipates the optimal re-
sponse from the market operator. In this setting, the attack’s optimization problem contains
a nested optimization task that corresponds to the market operator’s optimization problem.
The defending ability is modeled for the impact analysis of defense degrees. Therefore, the
proposed model is constructed as a bilevel optimization problem. The attacker modifies
the parameters that impact the market-clearing result, and the market operator clears the
market with defending variables, which in turn affects the attacker’s objective. The overall
structure of the proposed model for CVA is shown in Figure 5.1.
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Figure 5.1: CVA model structure

Table 5.1: Potential attack objectives.

Type Objective Model

Financial settlements LMP LMPi
Social-welfare ∑

Ci(Pi)
Generation Generation dispatch Pi

Transmission Congestion price LMPi − LMPj
Congestion pattern L

(1) Upper level model: attacker
Although most of the existing research assumes that attacks on the market are profit-driven,
the purpose of cyberattacks on market operation varies from one attacker to another. Gen-
erally, potential objectives for power market cyberattacks can be categorized into three
types: (1) financial settlements, (2) generation dispatches, and (3) transmission congestions.
Therefore, the proposed model considers different attack objectives from each of the above
categories, as shown in Table 5.1 to provide a general attack evaluation. The objective of
the upper level model can be selected from Table 5.1 based on different analysis purposes.

The upper level of the analysis model incorporates all potential attack targets in mar-
ket operation. When the market operator solves a real-time economic dispatch problem,
data from multiple sources are used, including: (1) short term load forecasts and demand
management from energy management systems (EMSs); (2) bidding price and generator
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capacity from market gateway; and (3) congestion patterns and line ratings from EMSs.
Therefore, to conduct a comprehensive analysis, all of the above data sources are assumed
to be susceptible to attacks, as shown in Equation 5.1-5.7. Although some parameters may
not be easily compromised unless the cyber threats are from insiders, the proposed CVA
model considers comprehensive scenarios to provide a general analytic platform for market
operators to identify possible cyber vulnerabilities. Specific constraints and variables can
be simplified or removed if decision makers consider these parameters perfectly secure. The
maximum amount of those attacks is constrained by the penetration level value q and the
targets’ original value.
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where:

Aak is Attack degrees;
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Constraint in Equation 5.6 means that congestion pattern attacks happen either at upper
or lower limits because a line flow can either be on the upper or lower limit. The attacker
degree is constrained in Equation 5.7, which represents how many targets the attacker can
compromise.
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(2) Lower level model: market operator
The market operator is placed at a lower level equipping the capability of defending attacks.
The traditional economic dispatch model is reformulated as Equation 5.8 with the consid-
ered attacks and corresponding defenses. To identify the critical attack path and defense
efficiency, the defense degree is constrained in Equation 5.8f, which means how many attacks
can be defended. Although defenders always want to defend all possible attacks, there is
always a recourse limit such that we have to defend the most threatening attacks based
on the defender’s choice. It is worth noting that the defender knowns where the attacker
attacked in this bilevel formulation. However, the defender analysis is aiming at analyzing
the effectiveness of the defense degree. Equations 5.8g and 5.8h indicate that if an attack
is identified, then it is totally countered, and Equation 5.8i shows the defense is only placed
where the attack happens.
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where:

Ci is Bidding prices of ith unit;

di is Load at bus i;

Pmax, Pmin are Up and down generation limits for unit i;

GSFl−i is Generation shift factor which gives the fraction of a change in the injection
at bus i that appears on a branch l;

Lmax
l , Lmin

l are Up and down transmission capacity for branch l;
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Adf is Defense degrees;

Pi is Scheduled generation for unit i;

V +
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l are Defense decision for congestion status of lth up/down line flow limits;
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of ith unit, up flow limit of lth branch, and down flow limit of lth branch.
The proposed model is used to perform the CVA from four different aspects, which will be
elaborated in the next section.

5.2.2 Cyber-Vulnerability Analysis Algorithms
Potential attack targets, risky operating conditions, and defense effectiveness are the

most vital elements in developing a defense strategy. Therefore, the following four aspects
are selected to construct the CVA analysis algorithms.

Algorithm 1: Identifying highly probable attack target
Some parameters are compromised more frequently than other parameters. For example,
congestion patterns can be a vital attack route for both LMP manipulation and diminishing
social-welfare. As shown in Figure 5.2, protection of the congestion pattern makes those
two types of market attackers hard to achieve their desired goal. Therefore, in Algorithm
1, the CVA model is solved iteratively for all interested attack objectives, and the attack
route for each attack objective is recorded. The frequently attacked parameters (routes) are
identified as vulnerable parameters in terms of the probability of being attacked. Providing
protection to the identified parameters diminishes overall attack interest in the market op-
eration. Further, the attacker has different optimal attack routes when they have different
attack degrees.

Therefore, market operators can also identify vital attack routes under different attack
degrees through Algorithm 1. The detailed procedure of this identification is shown in
Algorithm 1.

Algorithm 2: Identifying devasting attack targets
Different from highly probable attack targets (Algorithm 1), devasting attack targets vary
from one attack objective to another. The attacks on one parameter could be more effective
than the attacks on other parameters for a particular attack objective. As shown in Figure
5.3, modifying load information could be more effective than modifying line rating. Thus,
protection of these attack targets largely diminishes the attackers’ interests for a specific
attack objective. It should be noted that the attack on the congestion pattern is not appli-
cable to this algorithm because the congestion status is a binary variable that does not have
a penetration level.
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Figure 5.2: Identifying highly probable attack targets

Algorithm 1 Function HPA (market parameters, attack objectives)
Input Real-time market parameters and interested attack objectives
Output Highly probable attack targets

1: for each possible attack degree do
2: for each attack objective in Table 5.1 do
3: Solving the CVA model (7) - (22)
4: Record the attack binary variable B for each target
5: end for
6: Sum variable B in all attack objectives for each target
7: end for
8: Identify targets that have high values of sum(B)
9: Return: the Identified Targets

Figure 5.3: Identifying devasting attack targets
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Further, LMPs experience step changes regarding some attack routes, such as attacks in
load levels, which means the LMP does not change until the modified parameter is large
enough. For these attack scenarios, Algorithm 2 can identify the critical attack penetration
level that leads to the step change. In Algorithm 2, the CVA model is solved iteratively with
a gradual increase of the penetration level ∆q under an interested attack objective. The
selection of ∆q is based on the market operator’s need, and the smaller the ∆q, the higher
the accuracy that can be obtained. The detailed procedure of this identification is shown in
Algorithm 2.

Algorithm 2 Function DAT (market parameters, attack objectives)
Input Real-time market parameters and interested attack objectives
Output Devasting attack targets

1: Select interested attack objective from Table 5.1
2: for each attack target do
3: Set attack variables B associated with other attack targets equal to

0
4: while penetration level q is less than a threshold do
5: Solving the CVA model (7) - (22)
6: q = q + ∆q
7: Record the value of attack objective
8: end while
9: end for
10: Compare the slope of different attack targets
11: Identify targets that have steep slopes
12: Return: the Identified Targets

Algorithm 3: Formulating risky load levels
Different load levels result in different market settlements and dispatches. Therefore, the
load level is a critical element of a successful cyberattack. As shown in Figure 5.4, the
attacker with the same ability could obtain different profits from the market-clearing under
different load levels. Therefore, the higher the profitability is, the riskier the load level is.
In Algorithm 3, the CVA model is solved iteratively with all interested attack objectives at
different load levels. The obtained attack objective values are scaled and summed for each
load level. If the value is higher than a threshold, then the load level can be identified as
risky. In this study, the same load participation factors are assumed. If the market operator
is interested in different load participation factors, the load level and the participation factors
are both recorded when solving the CVA model, and the risky load level becomes a risky set
containing a load level and load participation factors.

The market operator should take extra caution when the current load level is identified
as risky. The detailed procedure of this identification is shown in Algorithm 3.
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Figure 5.4: Formulating risky load levels

Algorithm 3 Function RLL (market parameters, attack objectives)
Input Real-time market parameters and interested attack objectives
Output Risky load levels

1: for each load level do
2: Obtain market-clearing result with/without attacks
3: for each interested attack objective do
4: Solving the CVA model (7) - (22)
5: Record the difference between the attacked value and the normal

value
6: end for
7: Sum attack objectives with specified weights

∑
Wi

˙obji
8: end for
9: Identify load levels that have high weighted values
10: Return: the Identified Load Levels

Algorithm 4: Investigating the mitigation ability of different defense levels
The goal of Algorithm 4 is to investigate the impact of defense degrees on the effectiveness of
the attack. As shown in Figure 5.5, if some of the most effective attack routes are defended
by the operator, the attacker might switch to other attack routes. However, those backup
attack routes are not as effective. Therefore, investigation of the defense degree to which the
attacker may lose interests in attacking is an important aspect of the development of defense
strategies. The Algorithm 4 solves the CVA model iteratively with a gradual increase of
defense degrees, and the corresponding value of the attack objective is recorded. When the
value of the attack objective discourages the attack, the defense degree is identified as the
critical defense degree.

The detailed procedure of this identification is shown in Algorithm 4.
The four analysis algorithms described above are demonstrated with examples in the
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Figure 5.5: The mitigation ability of different defense levels

Algorithm 4 Function DDL (market parameters, attack objectives)
Input Real-time market parameters and interested attack objectives
Output Defense mitigation ability plot

1: for each attack objective do
2: Set an interested attack degree Aak and set the defense degree Adf =
Aak

3: while defense degree Adf is larger than 0 do
4: Solving the CVA model (7) - (22)
5: Record the objective value
6: Adf = Adf − 1
7: end while
8: Plot the objective value versus defense degree
9: end for
10: Return: the plots

simulation study. Analysis will be performed using the attack objectives in Table 5.1, but
future users can integrate any additional attack objectives in a similar way. The analysis
algorithms aim to solve the CVA model iteratively, which could raise a concern on the
scalability. Indeed, the number of combinations of attack objectives and attack targets can
be astronomical for a real system. However, the potential attack objectives and attack
targets could be filtered to a much small portion depending on ISOs or the decision marker’s
preference. For example, the ISO New England system has 2771 branches but the average
active transmission constraints in January 2020, their winter peak month, only have 142
branches [118]. The attacker’s ability is also generally a small number because the attacker
may not have access to all parameters. Therefore, the number of combinations could be
reduced to a small number. Further, the algorithms are for the purpose of analyzing the
vulnerability instead of protecting the market operation in real-time. Thus, the analysis
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Figure 5.6: One-line diagram of IEEE-30 bus system

could be performed offline and in the cycle of a few weeks (or even months) depending on
the market operator’s preference. Therefore, the computation is a minor concern for the
current vulnerability analysis algorithms.

5.3 Case Study

5.3.1 Test System Description and Simulation Settings
The simulation study was performed on an IEEE 30-bus system. The one-line diagram

of the test system is shown in Figure 5.6. Four generators are considered in bus 1, 2, 13, and
27. The detailed system parameters and cost data can be found in [119]. The simulation
studies were performed with Matlab 2018 on a PC with Intel i7-8650U processor and 8GB
RAM.

5.3.2 Simulation Results and Discussions
Identifying highly probable attack target This study aims to demonstrate Algo-

rithm 1, which identifies highly probable attack targets. The CVA model is solved iteratively
for various attack objectives from Table 5.1. The computational time of Algorithm 1 in this
study is 70.32 s. Figure 5.7 shows various attacked parameters for each attack objective. The
Y-axis shows different objectives of the attacks, and X-axis shows different attack targets in
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Table 5.2: Impact analysis on LMP manipulations

Targets
P.Levels 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Bids of G3 0 0 3.0 5.4 7.7 10.2 12.6 14.9 17.3 19.7
Bids of G4 2.6 5.1 7.7 10.3 12.8 15.4 18.0 20.6 23.1 25.7

Capacity of G3 0 0 0 0 51.9 51.9 51.9 51.9 51.9 51.9
Load at bus 2 0 0 0 0 0 0 0 0 0 0

market operation. Triangles on a specific row represent optimal attack targets for a specific
attack objective. For example, for the attack that is to maximize the LMP at bus 1, the
optimal attack targets are the load at bus 12 and the line rating at line 15. In other words,
an attack on these two parameters will most effectively alter the LMP at bus 1 than the
attacks on any different combination of two parameters.

Therefore, by enumerating the number of triangles on each column, the probability of
being attacked can be estimated for each parameter from the perspective of being a highly
probably attack target. In other words, the column that has the most triangles indicates
the parameter that has a high probability of being attacked. In this study, the line rating
of line 15 is the most vulnerable parameter which will be the most frequent attack target.
Therefore, if this target is protected, most attacks become less effective. Although the at-
tackers’ objective is usually unknown in reality, protection of highly probable targets reduces
the overall attack interest in the market operation. The upper subplot and lower subplot
in Figure 5.7 mean different attack degrees (2 and 3), namely, how many parameters that
the attacker is able to modify. With the attack degree increases from 2 to 3, the possibility
of attacking the line rating of line 15 increases from 48.6% to 71.6%. Therefore, if the line
rating of line 15 is immune from attacks, the interests of most attacks in this market are
much reduced.

Identifying devasting attack targets
This study aims to demonstrate Algorithm 2. The CVA model on interested attack objectives
is solved iteratively for a gradual increase of the penetration levels of different attack targets.
The deviations between the objective value under normal operation and under attack are
recorded. The computational time of Algorithm 2 in this study is 135.25 s. We select the
most popular two attack objectives in the literature as examples: (1) diminishing the social
welfare and (2) manipulating LMPs (bus 10). The impact analysis of 4 different attack
targets on those two objectives is shown in Table 5.2 and Table 5.3. Simulations on other
attack objectives and targets can be performed similarly. For LMP manipulation, an
attack on unit 4’s bid is more effective when the penetration level is low, and an attack on
unit 3’s capacity becomes more effective when the penetration level is higher than 40%. For
diminishing social-welfare, attacking load at bus 2 is more effective when the penetration level
is lower than 30% or higher than 90%, and attacking unit 3’s bid is more effective for other
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Figure 5.7: Identifying the most likely attack target
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Table 5.3: Impact analysis on diminishing social-welfare

Targets
P.Levels 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Bids of G3 0 0 207.1 207.1 207.1 207.1 207.1 207.1 207.1 207.1
Bids of G4 0 0 0 0 0 22.0 22.0 22.0 22.0 22.0

Capacity of G3 1.2 3.6 5.5 7.3 9.1 10.9 12.7 14.5 16.4 18.1
Load at bus 2 30.0 60.0 90.0 120.0 150.0 180.0 210.0 240.0 270.0 300.0

penetration levels. Further, a step-change phenomenon is observed for both attack objectives.
The social welfare loss exhibits a step-change pattern with the bid modification attack and
continuously changes with the remaining attacks, while LMP continuously changes with the
bid modification attack and exhibits a step-change pattern with the remaining attacks. The
reason is that the bid modification attack does not impact social welfare unless it changes
the dispatch results since it does not change the generation cost in practice, but the bids of
marginal units directly impact the LMP. If the most sensitive attack target is identified and
protected, the attack interests for a specific attack are significantly reduced.

Evaluating risk load levels
This study aims to demonstrate Algorithm 3. The CVA model for all attack objectives
is solved iteratively under different load levels. The deviations between the objective value
under normal operation and under attack are recorded. The computational time of Algorithm
3 in this study is 965.36 s. Figure 5.8 shows the risk evaluation of different load levels by a
heat map. Different attack objectives have their own heat map (i.e., risk zone). Here, all risk
zones are summed and scaled to be between 0 and 1, where 0 means not risky and 1 means
the riskiest. Thus, the more overlap of the risk zones, the brighter the square is. That is, a
brighter area means more impact to the market operation.

As shown in Figure 5.8, at first, the heavier the load is, the more an attacker can do.
However, when the load becomes higher, the impact decreases because the margin for manip-
ulation by the attacker is decreased. In other words, when more generators are at maximum,
there is less room for an attacker to manipulate the parameters without being detected.

Investigating the mitigation ability of different degrees of defense
This study aims to demonstrate Algorithm 4. The understanding of how defenses improve
the deviation from the optimal dispatch provides a guideline for a market operator to develop
defense strategies. The CVA model is solved iteratively with a gradual increase of the defense
degree. The computation time of Algorithm 4 in this study is 65.39 s. As shown in Table 5.4,
the value of deviation from a normal value gradually decreases to zero with the increasing
defense degree.

When more highly effective attack routes are blocked (i.e., at higher defense degrees), the
attacker has to switch to less effective attack routes, and thus, the impact of cyberattacks is
much more alleviated. Although the attack still impacts the market operations unless all of
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Figure 5.8: Vulnerable market operating zone

Table 5.4: Impact analysis on defense degree

Objective
Degree 0 1 2 3 4 5 6 7 8

Social-welfare loss 109.2 105.1 101.0 86.2 72.1 55.3 35.7 24.6 0
LMP (bus 10) 215.9 215.9 215.9 215.9 215.9 215.9 132.0 30.3 0

the compromised parameters are corrected, the attacker could lose interest when the degree
of defense is higher than a certain threshold such that the attacker’s gain from cyberattack
is very low. The proposed analysis provides the market operator the information of critical
defense degrees. As shown in the first row of Table 5.4, when 3 of the most effective attack
routes can be protected, the maximum social welfare deviation dropped from 109.2% to
86.2%, which may discourage the attacks. Further, the social welfare loss due to cyberattacks
decreases almost linearly with the increasing defense level. For an LMP manipulation attack,
as in the second row of Table 5.4, the defense is not effective (i.e., the deviation created by
the attack is 215.9%) until 5 parameters can be defended, which means the attackers can still
achieve the desired outcome with the rest of the undefended measures. When the defense
degree is larger than 5, the optimal value of the attack objective starts to decrease. It should
be pointed out that the proposed algorithm provides useful information for a decision maker
while the actual threshold to determine the number of defense degrees is a choice of the
decision maker.
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5.4 Conclusion
In this chapter, the missing components in the current research on power market cyberse-

curity were discussed. A cyber-vulnerability analysis (CVA) model was developed for market
operator to perform impact analysis on market cyberattacks. Four vital components related
to cyber vulnerability in the system were discussed with respective algorithms. The proposed
algorithms can help the market operator identify highly probable attack targets, devastating
attack targets, risky load levels, and the mitigation ability of different defense degrees. In
summary, the CVA model developed in this effort provides a new method to identify various
aspects that are vulnerable to cyberattacks in market operation, which provides valuable
references for further development of cyber defense strategy.



Chapter 6

WISP Algorithms: Root Cause Analysis

ISOs in the United States typically involve multiple rounds of market clearing through
centralized unit commitment and economic dispatch processes. Every market clearing pro-
cess requires various types of input data, such as load and renewables forecasts, telemetry,
etc. The data is usually acquired from a mix of internal and external sources, such as market
participants. Hence, the market processes present, in theory, multiple avenues for malicious
actors to inject false data to, a) achieve financial objectives through market manipulation,
or b) steer the system into a stressful state, which can eventually lead to physical breakdown
and outages.

Regardless of the malicious objective, false data injection can result in anomalous market
outcomes, such as unexpected price spikes, congestion patterns, etc. Price spikes can result
from a combination of factors, such as forecast errors, generation and transmission outages,
etc., which can happen even in the absence of any malicious activity. Hence, proper diagnosis
techniques are required to ensure that market outcomes, such as price spikes, are attributed
to their true underlying cause(s). In this chapter, we will discuss techniques to analyze root-
causes of historical price spikes to identify features of the input data sets, market processes,
and IT systems that can be used by malicious actors to influence market outcomes.

6.1 Introduction
The operation of the electricity grid is becoming complex with increased renewable pen-

etration, which often leads to differences in planned versus actual operations between day-
ahead and real-time markets. Various market instruments like virtual bidding, reserve mar-
kets, flexible ramping products, and demand response provide mechanisms to achieve con-
vergence between the markets and manage imbalances and uncertainties between day-ahead
and real-time markets [120]. Even with advanced market instruments in place, different
markets tend to encounter price differences, and often, sudden spikes in the real time market
prices. Such spikes in energy price can be caused by one or more system operating condi-
tions occurring in different temporal and spatial combinations. Figure 6.1 shows the overall
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Figure 6.1: CAISO Market Architecture and Inputs at different time intervals [4].

market structure diagram for CAISO with the timelines for the different market processes.
It is to be noted that the input parameters like load and renewable forecast to the mar-
ket are updated at different time intervals and if compromised near real-time can result in
significantly different market outcome. It is therefore necessary to understand the different
state space of the system conditions which can lead to price spikes and which parameters, if
compromised, can result in a price spike event.

There is a significant amount of literature including [92], [121], [122], [123] that addresses
the problem of price spike forecasting in electricity markets; however, there is a dearth of
research on price spike root cause analysis. While forecasting of price spikes is an important
problem, it does not provide any insight on the primary drivers behind price anomalies. A
root-cause analysis is not only crucial in understanding system states when price spikes might
happen, but also differentiate spikes due to true underlying causes from the spikes caused
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by the malicious actors to influence the market outcome. The market processes present,
in theory, multiple avenues for malicious actors to inject false data to, a) achieve financial
objectives through market manipulation, or b) steer the system into a stressful state, which
can eventually lead to physical breakdown and outages. Regardless of the malicious objective,
false data injection can also result in anomalous market outcomes, such as unexpected price
spikes, congestion patterns, etc. Therefore, it is important to identify the underlying causes
between price spikes, so that inappropriate market-based interventions can be identified, if
not fully mitigated. Furthermore, proper diagnosis techniques are required to ensure that
market outcomes, such as price spikes, are attributed to their true underlying cause(s).

The challenges in accurately forecasting price spikes, and subsequent root cause analysis,
can be due to (a) rare occurrence of price spikes compared to "regular" prices; (b) complex
interactions between multiple system conditions leading to price spikes; (c) limited data
availability due to confidential nature of price bids and generator availability. The major
contribution of this chapter is to provide a robust methodology for identifying key root causes
behind price spikes and ways in which they can be manipulated by a malicious user to alter
market outcome. In this chapter, publicly available energy market data from the California
Independent System Operator (CAISO) is used to train machine learning models to identify
probable root causes. The process uses machine learning models to discover the complex
temporal and spatial interactions between 100s of system state variables, which are then used
to assign a confidence level to different root causes for the price spike events. The confidence
score can assist the operators in classifying price spikes due to malicious activities.

6.2 CAISO Energy Market
The root cause analysis methodology is tested using publicly available data from CAISO

[124], though the methodology can be extended to any electricity market without loss of
generality. CAISO manages a day-ahead market and an intra-day real-time market that
economically dispatches generating resources to serve the forecast load, while managing
various transmission and generation constraints. CAISO is a nodal market, which generates
locational marginal prices (LMP) for over 4000+ price nodes throughout its footprint. In
this chapter, price spikes occurring at only the four major locational aggregate price (LAP)
nodes for PG&E (Pacific Gas and Electric Company), SCE (Southern California Edison),
SDGE (San Diego Gas and Electric), and VEA (Valley Electric Association) are analyzed.

The root-cause analysis process requires a study of correlations between prices and the
various exogenous and endogenous set of data features, such as renewable and load forecasts,
etc. The raw data for this analysis, obtained from [124] for the year 2019, comprises of the
following set of features for the day-ahead, hourly, fifteen-minute and five-minute markets:

1. Prices for PG&E, SCE, SDGE, VEA regions

2. Ancillary Market Prices and Cleared MW
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Figure 6.2: Price distribution

3. Congestion price at various flowgates and interties

4. Real-Time (5-min) Aggregate Supply/ Generation (MW)

5. Actual System Demand (MW)

6. Day Ahead and Real-Time Demand Forecast (MW)

7. Day Ahead and Real-Time Renewable Forecast (MW)

8. Area Control Error (ACE)

9. Energy Imbalance Market (EIM) Transfers (MW)

6.3 Approach to Root Cause Analysis
To illustrate the relationship between various components of an LMP, and their spatial

distributions, Figure 6.2 depicts correlation between the LMP components of PG&E LAP
(x-axis) and other CAISO LAPs (y-axis). LMP (for all the nodes) is a linear combination of
MCE, MCC, and MCL. In this analysis, we will only focus on identifying root causes that
impact the marginal cost of energy i.e. MCE.
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Figure 6.3: Spike distribution across months. Figure 6.4: Spike distribution across HoD.

Table 6.1: State Space Representation

Feature Mathematical Formulation Interpretation

Standard

mean (µi) 1
n ×

n−1∑
t=0

X
(t)
i average value of the signal Xi during a segment

Gradient
gavg avgt∈[1,n−1]{X(t)

i −X
(t−1)
i } average gradient of signal Xi during a segment

gmax maxt∈[1,n−1]{X(t)
i −X

(t−1)
i } maximum gradient of signal Xi during a segment

6.3.1 Exploratory Analysis of Price Spikes
Distribution of price spikes: The process of identifying root causes begins with exploratory

analysis of time series data, individually and in relation to other data features. Figure 6.3
depicts the distribution of energy costs (MCE component of LMP) across the year. The
right y-axis presents the average monthly contribution of renewable sources of energy (solar,
wind, hydro, and others) and non-renewable sources of energy (thermal and nuclear) towards
the total energy demand.

More positive price spikes, defined here as price exceeding $150, were observed in the
spring and summer seasons than the fall and winter, which coincided with the higher con-
tribution from renewable sources as well as increased forecasted load. Similar patterns were
observed from the analysis of average hourly generation for the entire year, as seen in Fig-
ure 6.4. Preliminary analysis of raw time-series data suggested a high degree of correlation
between price spikes and renewable generation. The exact set of data features, which were
deemed to be root causes for price spikes will be discussed later in the chapter. The process
of preparing data sets for the analysis is described next.
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6.3.2 Data Segmentation based on System State
The CAISO market processes begin a day ahead of actual operations, based on fore-

casts of renewable and system load. Subsequently, the markets clearing processes are run
hour-ahead, fifteen-minutes ahead, and finally, five-minutes ahead of real-time dispatch. As
the market processes near real-time operations, various inputs, especially forecast variables,
become more accurate requiring changes in commitment and dispatch schedules to manage
the imbalances. If the forecast values are significantly different relative to previous inter-
vals, large-scale imbalances can manifest resulting in higher probability of price spikes in the
future.

Figure 6.5 shows a specific day in the CAISO market in 2019, where renewable forecast
errors were significantly high. The renewable forecast error at 08:00 led to increased im-
balance causing a price spike. On the other hand, the price spike at 14:00 was due to the
intermittent nature of solar energy and a drop in solar generation resulted in other resources
to ramp up and balance the mismatch. Manual inspection of price spike events indicated
that the cause for price spike in a given market internal had roots in the changes transpiring
in past market intervals. Therefore, we divided the data into hour-long segments to identify
key features related to a price spike event. We kept a buffer of 30 minutes between all the
segments to avoid data overlap for accurate modeling. For every segment, maximum MCE
was used as the price label and three statistics were calculated for each of the data feature,
as listed in Table 6.1. The mean (µ) estimates the average value of the feature and the gra-
dient stats compute the change in feature during that time interval. We used two gradient
statistics, gavg and gmax that report average and maximum change in the feature value. This
resulted in data set consisting of over 90+ feature vectors. Hence, machine learning tools
were used to identify features of greatest significance, the process for which is described next.

6.3.3 Feature Identification and Extraction
Three machine learning tools were used to find correlation between prices and the feature

set consisting of both, raw data and its derivatives.

Self-Organizing Maps (SOM)

Self-Organizing Maps (SOM) [125], a computational method for visualization and analysis
of high-dimensional data, was used to devise hypotheses based on visual observations of
correlation patterns between the feature set, coupled with domain knowledge of electricity
markets. Figure 6.6 provides an example of data visualization using SOM analysis. The
SOM analysis was performed on the raw data, as well as the derivative set of features that
incorporate rate of change and trend elements, using the SOM Toolbox [126]. It can be
observed that price spike intervals align with periods of high thermal and wind generation
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Figure 6.5: Forecast error leading to spike. Figure 6.6: Feature visualization using SOM.
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Figure 6.7: Feature Extraction using Autoencoders and Random Forest.

levels, whereas few spikes occur when solar generation is high. From SOM analysis, the
following feature sets were identified to be strongly correlated to price spike intervals:

• Renewable forecast errors

• Demand forecast errors

• Regulation-up price spikes (proxy for generation outage)

• High Load/ Net Load state
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• High Load change/ Net Load change

• Low Solar generation state

• High Wind production

• High Thermal production

It should be noted that SOM analysis does not provide a quantitative measure of correlation.
Testing out the hypotheses devised from visual inspection of SOM results requires additional
analysis, such as using autoencoders and random forest classifiers, presented next.

Autoencoders

Autoencoder [127] is an unsupervised deep learning technique used to learn a low-
dimensional latent representation of the high-dimensional data. The latent representation
is then used to recreate the input feature set. The reconstruction error between the input
and the output feature set is a key metric to identify features correlated with price spikes.
The process requires training the autoencoder using the non-spike data segments and then
passing the spike data segments through the autoencoder. The resulting set of the recon-
struction errors are likely to be high for those features which are highly correlated with the
price spikes.

Figure 6.7a compares the reconstruction error for top five features (sorted by reconstruc-
tion error in price-spike segments) when the trained autoencoder is used to estimate input
feature space for price spike segments v/s non-spike segments. It is evident from the plot
that the reconstruction error is significantly higher for gradient based features like gmax and
gavg, whenever there exists a price spike. The reconstruction error for mean based features
are similar for both non-spike and spike events.

Overall, the analysis highlights a greater significance of gradient-based features, such as
rate of change of forecast error over mean-based features, such as average forecast error over
a time window for root-cause analysis.

Random Forest

Next, a random forest classifier was trained (in scikit-learn [82]) to further quantify
the importance of features. The classifier takes feature values as input and classifies each
segment as a regular vs. a price-spike event. Random forest [128] is an ensemble machine
learning technique that uses multiple decision trees to predict a class, and the class with
maximum votes is predicted as the outcome. In every decision, the data split happens based
on feature values, and the quality of every split is evaluated based on either gini impurity
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Figure 6.8: Graphical model for the root cause analysis of the price spike events.

or entropy. Figure 6.7b depicts the distribution of gini impurity (or also known as feature
importance) of top five features, sorted by their importance (left to right shows most to least
important feature) for the trained classifier. The results are in agreement with the insights
from autoencoders.

These observations led to three major conclusions: (1) The price spikes are highly corre-
lated with the forecast errors, both in load and renewables. (2) The gradient-based features
are highly correlated with the price spikes. (3) The mean-based features are critical to iden-
tify if the change in any feature is significant enough to cause a price spike. Based these
insights, the following 16 features were chosen for Bayesian Inference modeling.

• Load Forecast Error: L(fe)
m , L(fe)

gmax
, L(fe)

gavg

• Renewable Forecast Error: R(fe)
m , R(fe)

gmax
, R(fe)

gavg

• Regulation-Up Prices: RUm

• Imports: Im, Igmax , Igavg

• Thermal: Tm, Tgmax , Tgavg

• Hydro: Hm, Hgmax , Hgavg
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6.4 Bayesian Modeling
Next, the key takeaways from the exploratory analysis were used to build the Bayesian

Graphical Structure (as shown in Figure 6.8): a directed acyclic graph where nodes indicate
the features and the edges between them indicate dependency of one feature on the other.
The node from where the arrow begins is the parent node and the node where it ends is
the child node. For each node, we compute conditional probability distribution (CPD) table
from the data [129].

6.4.1 Structure Representation
In the current implementation (Figure 6.8), the graphical structure is divided into three

sections. Root causes include load forecasting error, renewable forecasting error, and change
in regulation up prices. The segments for which we couldn’t assign a root-cause, we put
them under Unknown. Any significant change in these features might force the regulators to
bring in more resources in the form of thermal, imports, and hydro: the intermediary causes.
These nodes can make direct impact on the price label - spike or non-spike. To decide if
a feature caused the price spike, the model evaluates the feature values. For example, to
decide if the load forecasting error (Load(fe)) was one of the root-causes for the price spike,
the model will examine its mean value and change in its value just before the price surge.

6.5 Evaluation
For each query, the trained model takes the value of child nodes as an input and es-

timates the probability of any node being the cause for price spike. The framework then
translates these estimations into a human-readable explanation. To illustrate, in one sce-
nario, the model estimated Imports=True, Thermal=True, and Hydro=False knowing that
Price Spike=True. The framework used this information to next evaluate corresponding
feature values (Im, ..., Tgmax , ..., Hgavg) to understand “what went wrong?”. The model found
that Tgmax , Tgavg , Igmax , Igavg ramped up during that period. The model then used these
feature values to estimate labels for the parent nodes: Load(fe)=True, Ren(fe)=True, and
RegPr=False. Eventually, the framework generated the following explanation:

With 92% confidence, the price went up because thermal and imports ramped up
significantly. With 95% confidence, thermal and imports ramped up because mean
load forecast error was high and renewable forecast error jumped up significantly.

In total, 187 price spike events and 6,237 regular price segments were recorded in the
data. In manual labeling, load forecasting error was the root-cause in 87% cases, renewable
forecasting error was in 71% cases, regulation prices up was in 11% cases. Likewise, in
intermediary-causes, thermal was the intermediary-cause in 75% cases, imports in 89% cases,
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Figure 6.9: Spike distribution for different reasons.

and hydro in 87% cases. Figure 6.9 further shows distribution of the price spike instances
across the key reason for every root-cause and intermediary cause. It is evident from the
plot that spikes either happen due to sudden change in the signal only, or sudden change in
the signal along with a high mean value. In only a few cases, high mean value of the signal
alone is the root-cause for the spike.

Since change in the signal is a leading cause, one can easily infect a few data points to
generate unintended market outcomes. For instance, by deliberately modifying the renewable
and load forecast in the day-ahead market, the system can be compromised to generate price
spikes in the real-time market. Based on the above-mentioned analysis, following is a list of
possible cyber-attacks in the energy market.

• Malicious Forecast: In such scenarios, one can intentionally keep the load and renew-
able forecast value high/low for a small period to introduce price spikes in the market.

• Data Modification Attack: In such attacks, a malicious user can change the real-time
data streams to introduce a sudden change in the signal, and thus the price spikes.

The Bayesian model, as of now, cannot identify both above-mentioned attacks because
it assumes that the incoming data is correct and uncorrupted. The model was trained on
100% regular segments + 70% price spike segments, and tested on remaining 30% price spike
segments. Figure 6.10 shows the model accuracy based on the scales of precision, recall, and
F1-score in identifying the root-causes and the intermediary causes. The results indicate
that, on an average, the proposed model can identify root causes and intermediary causes
with an accuracy of 86% and 80%, respectively.
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Figure 6.10: Accuracy numbers for the test data.

(a) Anomaly score for all instances. (b) Confusion matrix.

Figure 6.11: Classification based on autoencoders.

6.5.1 Suspicious Instances
Figure 6.11a shows the reconstruction error for a batch of regular and spike instances

as tested by the Autoencoder model. For non-spike (or regular) events, the error is usually
low, and high for the spike events. The black line in the plot should ideally separate regular
from price spike events. While some events are far apart, several regular and price spike
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Table 6.2: Similar state space representation for a regular and a price spike event. Here,
Renewable implies Solar and Wind.

Feature Regular Price Price Spike

Price 35.177190 952.562400
Imports Median 8623.510663 8711.206627
Imports Standard Deviation 103.771116 325.678216
Imports Trend 282.402748 788.843837
Thermal Median 16446.598150 16463.263180
Thermal Standard Deviation 331.121176 282.372849
Thermal Trend 830.156730 825.002810
Renewable Median 5578.540764 3527.708979
Renewable Standard Deviation 772.450192 759.682878
Renewable Trend -2059.053798 -2079.383630
Renewable_Forecast_Error Median -915.200000 -1858.320000
Load Median 39785.664840 37823.860630
Load Standard Deviation 239.247281 161.397481
Load Trend -663.090910 -454.278190
Load_Forecast Median 39427.000000 37538.000000
Load_Forecast_Error Median -1558.225160 97.100630

instances lie around the line. These instances are the confused events (or suspicious events)
that require manual verification.

As shown in Figure 6.11b, on a randomly sampled test data, the model found state
space representation of the 77 instances (out of 1225 regular price events) similar to the
price spike events, however, no spike was noticed in those time periods. Likewise, the model
noticed 59 instances (out of 187 instances) where the state-space representation indicated
regular price, but price spike occurred in the actual data. While a few of them may be
attributed to the modeling error, 10 (orange points in Figure 6.11a very low reconstruction
error) belonged to the Unknown category in the manual labeling and thus require more data
and further evaluation. Table 6.2 depicts once such scenario where even though the state
space representation is similar, market noticed spike in one scenario and no price spike for
the other scenario.
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6.5.2 Unknown Spikes
Once the true reason is identified by the Bayesian model, it is easy to differentiate sce-

narios for which it is hard to pinpoint a root-cause because everything looks normal to the
model. In the current implementation, all such instances lie under the Unknown category.
In the described dataset, 10 such spikes were noticed where it was hard to manually find the
root-cause for the price spikes.

6.6 Conclusion
As the electricity grid continues to evolve with increases in renewable penetration, elec-

tricity markets will continue to see changes in price behaviors - price spikes, volatility, and
negative prices. Root cause analyses for these price behaviors are usually done by ISOs
and market monitors who have access to sensitive data, using proprietary model-based sim-
ulations [120]. These existing techniques are not usually automated, and hence, require
significant time to investigate. Besides, with more data coming in, it would only become
harder to manually differentiate price spikes due to true cause(s) from malicious attacks.

The proposed machine learning-based approach provides a fast and robust methodology
to automatically identify the primary drivers for price spikes using publicly available data
only. Furthermore, the approach does not require the use of proprietary model-based simu-
lations. The raw data set used to identify root causes behind price spikes in CAISO market
consisted of load and renewable forecasts and their errors, etc. Machine learning algorithms
like SOM, Auto-encoders and Random Forest were used to identify the data features that
had significant impact on market outcomes, resulting in price spikes. These analyses helped
conclude that price spikes are highly correlated with renewable and load forecast errors, and
that gradient-based features, such as rate-of-change of forecast errors, tend to have greater
significance in explaining price spikes than averages. From these analyses, it was also ob-
served that the price spikes often result from complex interactions between various data
features, each with their own signatures that evolve over time.

Hence, the inferences from the exploratory analysis was used to hypothesize the structure
of Bayesian Graphical models, which were then trained to automatically identify root and
intermediary causes for price spike events. Our evaluation of 2019 year-long CAISO data
indicates that the proposed model can correctly identify root-causes in 86% cases (renewable
forecast errors and load forecast errors), and intermediary causes in 80% scenarios (ther-
mal/imports/hydro generation changes). Since gradient based features play a key role in
causing price spikes, further analysis indicates that attacks like malicious forecast and data
modification attack can easily be carried out by deliberately modifying renewable and load
forecast in the day-ahead market.



Chapter 7

WISP Software Development

7.1 Software Architecture Design
WISP is an energy market monitoring tool that uses public energy market data to detect

potential cyber-attacks on the system. Real time and simulated market data is analyzed
by various diagnostic algorithms and the resulting detection data and events are stored
in a database to be displayed in a user friendly interface. The detection algorithms have
been developed as well as an advanced event simulation system. This document contains an
overview of potential architectural components of WISP including data formats, mechanisms
used for data storage and the user interfaces. In using this document, system use-cases
and user preferences should be captured as this will impact the design of overall system
architecture and the behaviors of the individual components of the system.

7.1.1 System Overview
The high-level components of the WISP detection system are illustrated in Figure 7.1.

The system is envisioned to be a cloud-enabled or on-site tool that monitors real-time power
grid data, looking for anomalous data signatures that could indicate a cyber-attack event.
Power grid data is received and stored by the system and the data is analyzed and visualized
in real-time. There is also a configuration and maintenance interface for tasks such as
analyzing past events, retraining/tuning the detection algorithms, or inspecting any system
logs. The “Real-time estimators” block contains the core WISP detection logic, much of
which has already been prototyped in Python. As the majority of the system data is in the
form of time-series, the “Visualization UI” could be implemented using a suitable tool such
as Grafana. The “Data management” component stores all raw and processed data as well
as configuration / tuning data for the estimators. The “System control/config” component
is the interface used to setup and run the detection system as well as updating the estimator
tuning / parameters.

160
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Figure 7.1: High-level WISP System Architecture.

Many frameworks are available which can be used to implement the various WISP system
components. Generically, the WISP system is a service delivery framework (SDF), but
specifics about the framework and platform (e.g. cloud vs. on-site) should be discussed in
some detail before committing to specific solutions.

7.1.2 Component descriptions
The individual components of the WISP system are described below. Most of these com-

ponents require detailed design work before any significant system implementation occurs.
Data Management:

Real-time ISO data storage. Public real-time data from providers such as ISO NE will be
periodically downloaded and stored in a local database. A current prototype using MySQL
database has been created but a time-series database such as InfluxDB might be more ap-
propriate. The database schema design should consider the storage of data from multiple
independent data sources, including the WISP simulator, and should then be documented.
Attack indicator data storage. The WISP detection algorithms output scalar anomaly indi-
cators as each new data set is processed. These indicators should be stored in a time-series
database such as InfluxDB to facilitate visualization. The database schema design should
include the ability to discriminate between different indicators to allow for the addition of
new indicator types to the system. Algorithm parameter storage. The WISP estimation /
detection algorithms implement various techniques for anomaly detection. Each algorithm
has various parameters (tunings, trainings) that must be placed in permanent storage for
retrieval during system startup. For example, training runs of AI-enabled algorithms return
complex data that should be saved for later use in real-time. In most cases, the parameters
will be Python data/arrays that can be stored in HDF5 files. The format, location, and
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naming strategy of the various parameter files must be designed and should consider future
expansion of WISP with new/different detection algorithms.

WISP Simulator:
The WISP event simulator is a MATLAB-based system for synthesizing artificial cyber-
attacks. The data is then used to validate the various WISP detection algorithms. In the
prototype system, this simulation data is currently exchanged via MATLAB “mat” files.
The data should eventually be stored in the real-time MySQL/InfluxDB database along side
the real raw data.

Real-time estimators (detectors):
The WISP detection algorithms are the central feature of the system. Various algorithmic
components (e.g. feature extraction, anomaly detection, localization) are implemented to
detect potential cyber-attacks. The algorithms include AI-enabled inference logic that has
been trained using real and simulated data. At startup, the algorithms read their parameters
from the data management system. Real-time or historical data is then retrieved from the
database and processed by the detection algorithms. The various indicator outputs are then
published to the indicator database for subsequent visualization.

Visualization UI:
The visualization UI is the main dashboard for viewing the real-time indicator data. Real-
time or historical indicator data is retrieved from the database and displayed in appropriate
time-series graphs. The UI may also be used to view raw (input) data from the database.
Configurable threshold alarms and notifications are also desired. Grafana is an obvious
candidate for this UI component.

System control and configuration:
The system configuration and control interface should control all other aspects of the WISP
system. This includes system startup, enabling and updating (tuning) of the different es-
timators, analyzing current or past detection events, and other system maintenance tasks.
Tools to maintain the WISP databases will be needed as there may be old records that need
to be removed, or old/invalid indicator data that is no longer needed. Also, other external
data may need to be imported (e.g. prior/historical data for new real-time data sources).
Tools to retrain (tune) existing estimators is needed as indicator accuracy may change over
time due to changing data trends. Retraining existing estimators using new data will be
needed. Adding new estimators may also be needed. Appropriate update processes must be
considered in the design of the control UI.

7.2 Software Development
In this section, we introduce the implementation details of the WISP software. The

software stack is comprised of a data plane, a backend, and a frontend. Figure 7.2 summarizes
these three components.
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Figure 7.2: The software stack includes a data plane, a backend, and a frontend.
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Figure 7.3: WISP’s components are deployed on Linux–based host.

• The data plane consists of a database and a management class. The database stores
raw data and anomaly scores while the management class deploys the database, loads
it with raw data, and provides data warehousing services to the backend.

• The backend includes anomaly detection algorithms. The backend handles tasks that
include training of new models, storing and loading pretrained models, and computing
anomaly scores.

• The frontend consists of a management class and a user interface. The user interface
is browser–based and provides a way for the end–user to inspect raw data, anomaly
scores, and focus on selected nodes of the power grid. The management class configures
and deploys the user interface.

For deployment, Docker containers are used. Specifically, each component is deployed
in a separate container, a lightweight virtual machine that provides isolation from existing
software on the host and robustness. Figure 7.3 shows how WISP’s modules are deployed
and communicate with each other.
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Figure 7.4: An example database holding raw data downloaded from ISO-NE.

7.2.1 Data Plane
A database and its management class comprise the data plane. For a database, MariaDB,

a drop–in replacement of mySQL is used. As depicted in Figure 7.4, data from different
source, including the MATPOWER simulator, ISO-NE, and PJM, are stored in different
databases in their native format. Additionally, a Python class performs data warehousing
by implementing several functionalities.

• Deployment: An empty MariaDB Docker image is downloaded from Docker Hub and
deployed by the local Docker daemon. Configuration such as credentials and network-
ing is provided during the deployment via environment variables.

• Data downloading: Tables are initialized and data are loaded in the database. MAT-
POWER raw data are loaded from an external file, whereas ISO-NE and PJM data are
downloaded using the data providers’ APIs. To accelerate the time from deployment
until meaningful anomaly scores are produced, recent historic data are initially down-
loaded for training. Then, data are downloaded in real–time as soon as they become
available, typically every 5 minutes.

• Data serving: Data for a given time window are served to the backend in a tabular
format. Data from each source are formatted differently, and, thus, the data plane
manager converts the data in a common tabular format on–the–fly.

• Utilities: The class provides supporting such as managing the connections to the

https://hub.docker.com/_/mariadb
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Figure 7.5: The inheritance diagram of the available analytics algorithms

database to ensure good performance and executing arbitrary SQL scripts for devel-
opment and debugging.

7.2.2 Backend
The backend is the WISP’s main module that processes raw LMP and load data into

meaningful anomaly scores. The backend provides several deep learning and traditional
machine learning anomaly detection algorithms that can be trained on historic data. The
historic data is assumed to be normal and free from attack, yet, a small contamination
by anomalous data is acceptable. Each anomaly detection algorithm implements at least
the functionality of saving and loading an already trained model, train a new model given
parameters such as time window of training data, learning rates, etc, and computing a
single or a vector of anomaly scores for a given time. Each algorithm may implement
additional functionality such as incremental training and focusing on a selected subset of
nodes. Figure 7.5 lists all the anomaly detection methods and their inheritances.

7.2.3 Frontend
The frontend provides the interface the user interacts with. It allows the user to fo-

cus on a specific node of the network and any time window, inspect the LMPs, system
load, and their components, and the calculated anomaly scores. The frontend module
consists of Grafana and a management class. The management class deploys a Docker-
ized https://hub.docker.com/r/grafana/grafana, configures its credentials and networking
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Figure 7.6: A dashboard provisioned to Grafana showing data over a whole day.

via environment variables, and provisions with a datasource and multiple dashboards. Pro-
visioning a datasource points Grafana to the MariaDB deployed earlier and provisioning the
dashboards defines the graphs to be shown to the user.
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Figure 7.7: A dashboard provisioned to Grafana showing the last 8 hours.



Chapter 8

Commercialization Plan

Cybersecurity has been a major concern for electricity delivery systems, especially when
transitioning to the smart grid schema. The tightly coupled cyber and physical infras-
tructures challenge the traditional way of defending power systems against cyber criminals.
Though protected by the industry standards, the grid is still falling behind the cybersecurity
technology frontiers. Given these facts, we investigated the potentials of WISP, an innova-
tive cyber monitoring tool, in advancing the cybersecurity practices of the power industry.
We surveyed the market opportunities, competitive landscape, possible commercialization
paths, and capabilities of our product and our company in carrying out influential marketing
activities. The findings are summarized in this chapter, including descriptions of industry
standards, dominant security products, and three main deployment strategies and their cor-
responding target customers and cost analysis. This chapter will be updated during the
course of this project as additional information and insights are gained.

8.1 Market Opportunity

8.1.1 Increasing Growth of Cyber Attacks Targeting on Electric
Grids

Recent reports and surveys show that the energy sector is constantly under new, tar-
geted, advanced and dangerous cyber-attacks that have the potential to result in the loss of
human life. Examples include advanced cyber-intrusions such as the BlackEnergy, Havex,
and Sandworm [130–132] malware variants that targeted critical electric power infrastructure
cyber assets, including Supervisory Control and Data Acquisition (SCADA) systems. The
threats against critical infrastructure from criminal groups, hackers, disgruntled employees,
nation states and terrorists, whether targeted or opportunistic, are evolving and growing (see
incidents reported by the Industrial Control Systems Cyber Emergency Response Team (ICS
CERT) [133]). DRAGOS’s report [134] identified a recent increase in cyber activities target-
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ing North American electric entities, including PARISITE’s VPN attacks, MAGNALLIUM’s
password spraying campaigns and XENOTIME’s supply chain compromises. Additionally, a
detailed report on the spear phishing campaign was published [135] to raise the attention of
asset owners and operators. In response to these attempts, the U.S. military launched cyber
attacks into the Russian power grid reported by the New York Times in 2019 [136]. Securing
the electric grid was mentioned as the top priority for the U.S. federal government [137].

The threat to the electric sector is further exacerbated by the need to modernize the
grid. As current power systems advance from a macro utility-centric model to a distributed
structure, driven by the energy revolution, several new schemes such as smart metering, real-
time pricing, managing demand side flexibility and distributed renewable energy resources,
shall come to fruition. Such technologies will no doubt improve the operation of the grid and
the efficiencies of the associated markets. On the other hand, it will also increase system
exposure, providing newer entry points for hackers to disrupt grid operation. Based on the
U.S. Government Accountability Office (GAO) report [138], the electric grid is becoming
more vulnerable, especially considering the increased number of attacks on the Industrial
Control System (ICS) devices widely adopted in power grids. Figure 8.1 shows the increasing
number of ICS attacks.

Figure 8.1: Increased Number of Vulnerability Advisories for ICS Devices

8.1.2 Solution Gaps
The cyber security threat to the energy sector is not new as the U.S. Department of

Energy (DOE) has led strategic road mapping activities to address cyber security threats
and improve cyber resilience since 2004. DOE’s Electricity Advisory Committee recently
announced the establishment of the Grid Resilience for National Security (GRNS) Sub-
committee focusing on identifying and mitigating the cyber threats in energy sectors [139].
The energy sector has also made significant strides in protecting the critical cyber assets
at power generation facilities through the development and enforcement of standards such
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as Critical Infrastructure Protection (CIP) by the North American Electric Reliability Cor-
poration (NERC). CIP has enforced 11 cybersecurity regulations (CIP-002-5.1a, CIP-003-7,
CIP-004-6, CIP-005-5, CIP-006-6, CIP-007-6, CIP-008-5, CIP-009-6, CIP-010-2, CIP-011-2,
CIP-014-2). Meanwhile, CIP keeps updating its standards to cover the areas exposed to or
targeted by cyber criminals. For example, a few new standards came into effect in 2020 and
2021, listed below:

To enforce cybersecurity best practices, the Federal Energy Regulatory Commission
(FERC) has performed multiple regulatory activities, such as approving mandatory cyber-
security standards, enforcing regulatory requirements and auditing NERC and bulk power
entities for compliance with standards. Major transmission system operators (TSO) have
released their cybersecurity strategy to the public, including compliance with the CIP stan-
dards, establishment of a security working group, and investment in cyber security hardware,
software and personnel resources. Figure 8.2 shows the capital and operational cost of ISO
New England to keep compliance with cybersecurity standards [140].

Figure 8.2: ISO-New England Capital and Operational Cost for Cybersecurity and CIP
Compliance

However, based on GAO’s assessment [138], the FERC-approved standards do not fully
address leading federal guidance for improving critical infrastructure cybersecurity. Mapping
the CIP standards to the NIST Cybersecurity Framework shows CIP standards partially
address or do not address 15 out of 23 categories. NERC emphasized the CIP standards
have to be industry specific and auditable, thus they cannot be one-to-one aligned to the
NIST framework. Therefore, beyond the obligated regulations, entities in the energy sector
are encouraged to establish their own program to manage cyber risks and mitigate cyber
impacts.
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8.2 Product Description
RTRC, in collaboration with the University of Tennessee and the Pacific Northwest Na-

tional Laboratory, developed an advanced cyber security monitoring tool based on electricity
market behaviors and using only public-available data to identify potential cyber attacks and
attack targets. This technology, under the sponsorship of the DOE Cybersecurity for Energy
Delivery Systems (CEDS) program, is called Watching grid Infrastructure Stealthily through
Proxies (WISP). The key objective of WISP is to leverage the advanced data analytics al-
gorithms on the vast majority of electricity market data, especially the Locational Marginal
Prices (LMP), to detect anomalous prices caused by potential cyber-attacks and reason over
these anomalies, in order to provide additional situational awareness to operators. To achieve
this goal, the team developed three WISP modules, shown in Figure 8.3.

Figure 8.3: WISP framework

WISP Data-Driven Detection Core
The WISP Core provides the main functionalities related to the anomaly detection and
localization tasks. It consists of three layers: the data management platform, the data-driven
detection core and the visualization platform. The detection pipeline is as follows. Firstly,
the customized data drivers and adapters download electricity price and system operational
data from utility websites and store them into local databases. The accumulated data are
passed to the detection core to train the machine learning algorithms and the trained models
are then used on the real-time data stream to identify data outliers and their locations.
Finally, the detection results are reported in streaming curves and statistics to the operators
to raise cyber alerts and provide information for further action.

WISP Vulnerability and Risk Analysis
The WISP vulnerability and risk analysis module provide options for overall cyber vulner-
ability scanning of the power grid under protection. This module implements all possible
attack strategies into the mathematic formulation of the electricity market management sys-
tem to calculate the attack impacts under different system conditions, thus to identify the
most-profitable attacks and easiest-achievable attacks. For large-scale systems, this module
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helps narrow down the cyber monitoring locations and times.
WISP Root Cause Analysis

Often, the real-world market data contain uncertainties stemming from factors such as energy
consumers, renewable generation, device maintenance, and extreme weather conditions. The
WISP root cause analysis module provides additional input to the operators to decompose
the alarms and identify major contributors to the anomalous price behaviors.

With the integrated WISP framework, the final product will be a non-intrusive software
application which meets the industrial needs of enhancing cyber security capabilities and
can be easily adopted by utilities and RTO/ISOs.

8.3 Competitive Landscape
The team conducted a detailed survey on the existing commercial products addressing

cyber security concerns at different levels of energy system operation. To the best of our
knowledge, there is no product offering similar functions to WISP. This section provides
a summary of a few relevant software and hardware solutions protecting the SCADA and
energy management system (EMS) of bulk power systems. These can be complementary to
WISP.

Lack of visibility is one of the main challenges for securing ICS. Operators often have
more access to devices on the IT network than those on an ICS/OT (operational technology)
network. The Dragos Platform [141] claims to provide a comprehensive security solution with
integrated capability of asset visibility, threat detection and incident investigation to oversee
large volumes of devices on the operational network. A Dragos case study report [142] de-
scribed how the Dragos Platform was deployed on a mid-sized electric utility to protect the
communications of its EMS. The Dragos Platform is a network monitoring software where all
services are based on data mining of the network traffic. In contrast, WISP takes in the elec-
tricity market data as a reflection of system physical behavior without risking increased net-
work overhead and interruption.

Figure 8.4: Dragos Platform Asset Visualiza-
tion

In response to the increasing cyber
threats, major vendors/suppliers in the en-
ergy sector have started to develop their
own cyber security features compatible with
their existing products. One example
is ABB’s Network Manager SCADA/EM-
S/GMS [143]. As a main selling point, Net-
work Manager claims to elevate utilities’ se-
curity level to be compliant with certain CIP
standards, via advanced security functions
such as role based access control, 2-factor au-
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thentication, and network encryption and ports lockdown. Another example is the SIEMENS
RUGGEDCOM products [144], which covers a full range of industrial communication net-
work devices from switches, routers, and media converters to servers. RUGGEDCOM pro-
vides built-in security appliances as well as integration capability to third-party solutions,
such as CheckPoint and Secure-NOK. RUGGEDCOM also allows CIP enforcement and se-
cure connections to Cloud services. One last example is EcoStruxure Cybersecurity Admin
Expert [145] from Schneider Electric, a software tool ensuring configuration security to OT
devices.

One main challenge for the deployment and marketing of cybersecurity products is the
compatibility to legacy devices in operation. Security companies have to partner with the
major electric equipment suppliers to be accepted by their customer base. For example, Dra-
gos has support from GE, Emerson and SEL, while Secure-NOK is backed by SIEMENS.
These partnerships are clearly a double-edge sword that helps with the initial market pen-
etration but blocks further expansion. WISP breaks this barrier as an independent and
non-intrusive solution that is not tied to the specifications of the physical/cyber infrastruc-
ture. WISP is only driven by publicly available information and is programmable to be
adapted to different data formats. The innovation of WISP also lies in its unique detection
mechanism that is based on system behavior rather than single device or network traffic be-
havior. To this extent, WISP can work together with the above listed solutions and provide
additional situational awareness to operators.

Another observation is that the main motivation and driving factor for utilities/ISO/R-
TOs to invest on cybersecurity is the compliance and audition of CIP standards. This implies
that solutions in the scope of CIP requirements are easier to market. As mentioned above,
current CIP standards only partially fulfil the federal security guideline; novel security solu-
tions are encouraged to help close the gap. WISP fits into the “Detect” element of the NIST
framework. Unlike the cyber system anomaly detection required in CIP-007-6, WISP offers
physical system anomaly detection which is equally important for securing highly coupled
cyber-physical systems (CPS), especially electricity delivery systems. This unique feature
makes WISP well-positioned for an unexplored market.

8.4 Path to Commercialization

8.4.1 Raytheon Technologies
Raytheon Technologies is one of the world’s largest aerospace and defense companies.

Raytheon Intelligence & Space (RIS), one of the four Raytheon Technologies business units,
delivers full-spectrum cyber, training and service solutions to civil, military and commer-
cial customers around the world. Especially, the RIS Cyber Physical Systems Security
(CPSS) [146] team provides solutions to protect engineered sensing, control, computing and
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networking systems in the critical infrastructure of smart cities, electricity grids, trans-
portation and agriculture. Direct customers of CPSS include electricity utilities, industry
regulation authorities/associations, federal agencies (DOD NAS) and military bases. These
capabilities enable Raytheon Technologies to be in a strong position to commercialize WISP
technology and promote it to existing and potential customers.

8.4.2 Deployment Plan
Independent software solution on premise or in cloud

The WISP software is an end-to-end cyber monitoring system with integrated functions from
data downloaders to anomaly detectors and result visualizers. Especially, the WISP cyber-
alert visualization board, shown in Figure 8.5, reports to the operators in real time from top
to bottom: the number of anomalies detected, the top impacted nodes (locations), the raw
locational marginal price (LMP), the corresponding anomaly score and the histograms. The
operators can choose which node to monitor using the drop-down menu on the board or take
input (recommended vulnerable nodes) from the vulnerability analysis module. Additionally,
WISP provides an optional geographic contour map for a global view of the LMP values and
anomaly scores, shown in Figure 14.8.

Figure 8.5: Current Version of WISP Visualization Board

WISP can be deployed as on-premise software on company-owned servers and behind the
firewall. In this case, the maintenance of WISP will be offloaded to the customer with no
recursive fees after purchase. WISP can also be deployed as an application in the cloud with



175

Figure 8.6: LMP contour map of California system with (right)/without (left) cyber attack

no hardware cost for computing, storage, and networking. The customer can avoid paying
for extra redundancies to host WISP software and pay only for what is needed depending on
the scale of the target system and complexity of the functions. The potential customers for
WISP as standalone software are large utilities, ISO/RTOs, and industry regulation entities.
However, they are not especially motivated to adopt WISP since it is not part of the CIP
commitment. One way to promote this product is to offer a free trial license to set up an
on-site demonstration and prove its value in field operations. Profits will be achieved when
customers learn the benefits and become more confident to renew the license or upgrade the
services.

Embedded detection engine in EMS/Cybersecurity software
Another path for commercialization is to market WISP as a backend cyber detection engine
integrated with existing EMS or cybersecurity software. Major EMS systems already have
powerful data management systems and operator view panels. Thus, WISP can be integrated
into an EMS as a cybersecurity application that fetches data from historian and real-time
databases and presents results to a panel with which operators are more familiar. Similarly,
the cyber monitoring software, like the Dragos Platform and Secure-NOK, are also capable
of data collection and topology visualization. This makes it easier for WISP to fit in and
provide physical-behavior based cyber detection, complementary to their existing functions.

In these cases, the potential customers are EMS vendors or cybersecurity companies
who seek to extend their systems and lead the frontier of cyber protection in the energy
sector. Their end users, i.e. utilities/ISOs/RTOs, might be more comfortable to adopt the
technology since it is offered as an add-on item to the existing solution.

Third-party information provider
Due to its non-intrusive nature, WISP can function without proprietary knowledge of the
running power systems. The detection and diagnostic results of WISP can be compiled
into analysis reports on a weekly, monthly or annual basis. These reports are valuable to
utilities and government agencies that are generally concerned with the cybersecurity of
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critical infrastructure. Though we all agree major blackouts severely interrupt people’s daily
life and industry production, early detection through physical symptoms are not achieved
nowadays. We still heavily rely on the network intrusion detection systems which do not
react to attacks that bypass the network interfaces, such as insider attacks, backdoor attacks
or side-channel attacks. In cyber war, attackers could leverage multiple channels to craft
more sophisticated and hidden intrusions. Intruders may be experts in concealing cyber
traces, but they often overlook the physical traces. This makes the WISP report especially
helpful to customers to gain additional situational awareness.

As an information provider, we identified a potential partner, GENSCAPE. One of their
main business fields is to provide deep insights of the electricity market to prepare market
participants with better trading strategies. WISP is not in their domain but partly shares
the same mechanism (deep mining of the electricity market data) and customers. Hence,
we anticipate a collaboration with GENSCAPE will help WISP gain more attention and
interest from potential clients.

8.5 Customer Engagement and Outreach
ISO New England

To understand customers’ perspectives and expectations, we visited ISO New England and
presented our on-going project. The concept of WISP was well-received but with concerns
of the software deployment overhead, detection scopes and false alarms. As discussed above,
the computing resources and human labor needed for WISP operation and maintenance
depends on the deployment plan. Since ISO New England has established a cybersecurity
center, less effort is needed in training the staff to be cyber aware and understand the
concept of WISP. We also clarified that WISP only detects attacks that leave physical traces
or create disturbances in the electricity market data. Data sniffing or information leakage
kind of attacks are out of scope for WISP. WISP introduced multiple advanced machine
learning algorithms facilitated with domain knowledge to reduce the false alarms. We are
aware that the false alarms draw unnecessary attention from the operators and thus we have
kept the false alarm rate lower than 1% (about 3 per day) and plan to further reduce it to
0.1% (one per 3 days) in subsequent development.

PJM
The COVID-19 pandemic has largely obstructed our outreach activities. Instead of on-site
visits, we organized an online meeting with the PJM technical team. During the meeting,
the PJM team educated us on how the reserve capacity influences the real-time market and
how PJM’s market regulation rules shaped the prices. Inspired by their approach, we added
the reserve market to the WISP simulator and added market rules for price spike detection.
These functions enable WISP to handle uncertainties in the real-world data.

Industry Partners of UTK CURENT center
WISP is supported by the Center for Ultra-wide-area Resilient Electric Energy Transmission
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Networks (CURENT) research center at the University of Tennessee. Their industry mem-
bers include major power industry vendors (ABB, GE, Eaton, etc.) and utilities (Dominion
Energy, ISO New England, PJM, etc.). We presented WISP at CURENT’s summer retreat
and annual industry conference to more than 100 audience and received valuable feedback
from potential customers and partners. Our next step is to present a demo video at the next
CURENT event to gain more visibility within the industry.

8.6 Conclusion
Modern electric grids face significant cyber risks due to the adoption of intelligent devices

and systems. Along with the rapid increase of cyber-attacks, threats and vulnerabilities is
the trend of evolving, advancing and persistent attacks targeting power systems. To protect
the national electric grid, the U.S. government and industry regulation authorities enforced
multiple cybersecurity standards as amendments to the existing NERC CIP. Asset owners
and operators, together with the equipment vendors and cybersecurity specialists, have made
significant progress to defend the grid against cyber criminals. However, they are mostly
driven by the required commitment to the CIP standards and thus are limited by the scope
of CIP. It is claimed in the GAO report that CIP only partially fulfils the cybersecurity
guideline for critical infrastructure. By introducing WISP to the market, we hope to fill
this gap and elevate our customers’ security level to an even higher level so that they are
better prepared for the upcoming surge of cyber intrusions. We identified three major paths
for deployment and commercialization. Each leads to different customers, partners, costs
and advertising activities. Raytheon Technologies, as a top cybersecurity service provider, is
ready to explore these options. Further actions for the success of WISP commercialization
include:

• Survey of the identified potential customers and partners to understand their interest
and need

• Adopt the feedback in product design to fulfill customers’ needs

• Reach out to government security agencies (NIST, NSA, DOE) to get support or
certification to gain product credibility

• Open demonstrations and public presentations on various applications
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Conclusions - Phase I

The overall objective of WISP is to deliver a non-intrusive electricity market monitoring
tool that detects and localizes the cyber-attacks using public-available locational electricity
price data with other system information to provide additional cyber awareness to operators.
To fulfill this, the major tasks include identify attack scenario and threat model; develop
electricity market simulator and generate realistic datasets; develop and evaluate anomaly
detection modules; system integration and software development. This report described
the achievements in Phase I where each of the major tasks are addressed and explained.
Specifically, we have developed anomaly detection algorithms including probabilistic detec-
tion models, deterministic detection models, ensemble models, locational detection models
and price spike detection models. We have developed vulnerability and risk analysis module
and root cause analysis module and completed the system integration in software develop-
ment. The final WISP software is tested thoroughly following the product test plan and
demonstrated in real-time. In summary, we have accomplished the major tasks in Phase I
and we are well prepared for tasks in Phase II.

178



Chapter 10

Introduction - Phase II

The core focus of WISP is to observe publicly available prices to identify and explain
the cause of anomalous pricing behaviors, either it is due to intentional or non-intentional
acts on the underlying power system and market interfaces. In Phase 1, the team has
(1) developed an electricity market simulator to generate cyber-attack data, (2) developed
algorithms for anomaly detection, vulnerability analysis and root cause analysis, and (3)
developed a software prototype for cyber monitoring. The Phase 1 software products were
intensively tested through the IEEE 39-bus system. However, demonstrating the WISP
software on large-scale systems is still a challenging task. In Phase 2, more efforts are
required to build the use case interfaces, generate realistic testing datasets, optimize the
software performances, refine the algorithms and redesign the result presentations.

Phase 2 of WISP is executed as follows. The team started with red team testing to iden-
tify cyber vulnerabilities of the WISP software and implement the mitigation approaches to
satisfy cyber risk management requirements. In order to generate realistic cyber-attacks for
large-scale systems, the team improved the electricity market simulator by upgrading the
optimization solver and adopting DC power flow in attack algorithms. Furthermore, the
software prototype was modified to enable efficient and robust operation on large systems.
The database was restructured for faster data flow. The detection was programmed to be
parallel computing with data buffers allowing for less hard-disk data queries. The visual-
ization platforms were integrated to provide timely and comprehensive result presentation.
The detection models were retrained and the parameters were fine-tuned to achieve the best
detection performance. The demonstration details were elaborated in this report.

The remainder of this report is organized as follows. Chapter 11 presents the red team
testing procedure and observations. Chapter 12 presents the electricity market simulator
improvement and the attack scenario design. Chapter 13 presents the software improvement
to accommodate the need of processing large-scale power systems. Chapter 14 presents the
demonstration results and analysis for the Texas system and the ISO New England system.
Chapter 15 concludes Phase II.
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Red Team Testing

The Raytheon Technologies Research Center cybersecurity team performed a red team
engagement at the request of the WISP development team to identify the full range of
realistic threats and their impacts to the WISP software. The Red Team identified sev-
eral exploitable vulnerabilities and leveraged them to perform attacks that compromised
information confidentiality, data integrity and system accessibility. The team also provided
recommendations for security hardening solutions to mitigate these impacts. The red team
activities are summarized in this Chapter.

11.1 Objective
The overall objective of the red team testing is to identify potential vulnerabilities via

real-world adversary techniques and provide corresponding mitigation recommendations to
the system under test. The red team activities should support the following objectives:

1. To define the test tools and environment needed to conduct the test.
2. To define the sources of the information used to conduct the test.
3. To perform vulnerability analysis and cyber-attacks for the system under test.
4. To communicate testing results and mitigation solutions to the development team.

11.1.1 Background
The Raytheon Technologies Research Center (RTRC), in collaboration with the Uni-

versity of Tennessee and the Pacific Northwest National Laboratory, developed a cyber-
monitoring software, called WISP (Watching grid Infrastructure Stealthily through Prox-
ies), under the sponsorship of the U.S. Department of Energy, CEDS program. The project
started at March 25th 2019 and the Phase I Research and Development was completed at
May 30th 2021. As a result of Phase I, WISP was prototyped as an end-to-end software that
is able to be interfaced with major electricity market data and/or simulation data to train
and test the anomaly detection core and print the results on a visualization panel.
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As a cyber-monitoring tool, WISP could be deployed in the same environment with the
system under protection. For example, WISP can be embedded in the Energy Management
System (EMS) of a utility or ISO. Therefore, the security assurance of the WISP software
itself is a prerequisite for customer adoption. The WISP development team invited the
RTRC cybersecurity team to perform a thorough red team testing aiming to minimize the
security risks.

11.1.2 Scope
The red team testing targets on all interfaces of the WISP software. It does not include

vulnerabilities related to the customer’s security policies and procedures. The testers assume
no constraints of the attackers and assume to have access to the network that hosts the WIPS
software. Thus, the testers could focus on the adversary techniques specific to the WISP
software instead of the IT-only techniques.

11.2 Referenced Documents
WISP application should provide a layered and resilient security protection of its sys-

tems based on preventative, detective, and corrective security controls from the NIST SP
800-53 (Rev4). The NIST 800-53 Security and Privacy Controls for Federal Information
Systems and Organizations (Revision 4) controls protect WISP application against threats
and vulnerabilities with an acceptable level of risk. They protect and defend information
and information systems by ensuring their availability, integrity, authentication, confiden-
tiality, and non-repudiation throughout the life cycle. These include general protections
such as authentication, access controls, host and network intrusion detection, malware de-
tection/protection, and firewalls as well as the appropriate use of cryptographic techniques
for data protection and integrity.

The WISP security architecture should allocate security controls across the WISP ap-
plication. These controls help recover WISP systems from security threats and are tied to
appropriate Risk Management Framework (RMF) families to minimize challenges of RMF
Assessment and Authorization.

The WISP Red Team selected NIST RMF Access Control, Systems and Communications
Security, and System and Information Integrity families as the most important areas with
cybersecurity concerns.

• NIST RMF Access Control: Identity Management, Authentication and Access
Control
Access to physical and logical assets and associated facilities is limited to authorized
users, processes, and devices, and is managed consistent with the assessed risk of
unauthorized access to authorized activities and transactions.
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• NIST RMF Systems and Communications Security: Denial of Service Protec-
tion
The information system protects against or limits the effects of the following types of
denial-of-service attacks: volume-based attacks, protocol attacks, and application layer
attacks by employing IDS, IPS, and firewalls.

• NIST RMF Information Integrity: Malicious Code Protection
The organization employs malicious code protection mechanisms at information sys-
tem entry and exit points to detect and eradicate malicious code; updates malicious
code protection mechanisms whenever new releases are available in accordance with
organizational configuration management policy and procedures; configures malicious
code protection mechanisms to perform periodic scans of the information system and
real-time scans of files from external sources at network entry/exit points as the files
are downloaded, opened, or executed in accordance with organizational security pol-
icy; and block malicious code, quarantine malicious code, send alert to administrator
in response to malicious code detection, and addresses the receipt of false positives
during malicious code detection and eradication and the resulting potential impact on
the availability of the information system.

The Red Team analysis contributes to the WISP System Security Plan (SSP) which describes
the security requirements for the WISP system and the components that reside within this
system’s security boundary. The SSP supports controls allocated to the hardware and soft-
ware components that comprise the WISP system. WISP SSP should be a living document
that is maintained over time and will be configuration controlled to allow for the continuous
monitoring process to evolve. It is crucially important that the document is maintained as
a security control as system status changes over time.

11.3 System Examined
The Red Team evaluated the WISP software installed on a server with Ubuntu system in

RTRC’s Cyber-Physical Security Research Lab. WISP consists of three modules: the data
management module, the anomaly detection module, and the visualization module. The
data management module is based on a standard SQL database, called MariaDB. WISP
provides data downloading, data formatting, data query and data clean functions in the data
management module. The anomaly detection module supports offline training, model saving
and loading, and online detection pipeline. The data are fed from the data management
module with formats fit into each detector. The visualization model is developed on the
open-source real-time visualization platform, called Grafana. Grafana provides customized
visualization dashboard which is configurable to adapt to different data sources and data
view requirements.
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TheWISP software potentially exposes two interfaces to the external and internal entities.
One is the data downloading scripts that request real time electricity price updates for remote
utility databases. The other one is the visualization web server that allows remote clients
to view the detection results and raw data curves through authorized user accounts. The
Red Team explores these two interfaces and searches for other unexpected open interfaces
as attack entry points.

11.4 Red Team Approaches
Overall approach: the team used Kali Linux and the penetration testing software tools on

Kali platform. The Kali machine is on the same network with WISP software host machine.
The testing assumes all malicious activities have intruded into the enterprise network and
the implementation describes the exploits of the WISP software exposure to an unauthorized
entity on the same network.

Detailed implementation for each attack:
(1) SQL Attack

Attack Impact:
An attacker that can connect to the database can tamper with the raw data, the anomaly
scores, and the user permissions. As a result, the system can become inaccessible, and the
data can be untrustworthy.
Attack Implementation:

1. Kali/Nmap scanning was conducted to discover hosts and services on a computer
network by sending packets and analyzing the responses. As shown in Figure 11.1, an
open port 3306 was discovered, which is a reserved port for SQL services.

2. Kali/Hydra is a parallelized network login cracker built in various operating systems
like Kali Linux, and other major penetration testing environments. Hydra uses different
brute-force approaches to guess the right username and password combination. The
team first tried several base key words using the software engineers’ names and the
software server’s name. A base dictionary red_team_keywords.txt was created with
keywords: Mark, Fragki, Lynn, Wisp2.

3. Hydra applied red_team_keywords.txt without success ( Figure 11.2).
4. Next, the team used Hashcat to mangle the given red_team_keywords.txt and created

an expanded wordlist, named red_team_mangleuniq.txt. Using this dictionary, Hydra
was able to reveal the username and password combination for the SQL root user, as
shown in Figure 11.3.

Mitigation: The SQL server should be configured to listen only to local addresses, and a
strong password should be used that does not contain known and easily predictable words.

(2) SQL DOS
Attack Impact:
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Figure 11.1: Nmap scanning results.

Figure 11.2: Hydra applied red_team_keywords.txt.

Figure 11.3: Hydra used red_team_mangleuniq.txt and cracked credentials of the SQL root
user.

An adversary can render the system inaccessible by manipulating the rate of the queries to
the database.
Attack Implementation:

1. The team logged into SQL with the cracked password and selected ‘single_day’ database
for DOS attack, shown in Figure 11.4.

2. The team then launched dos.sh script to interrupt SQL services shown in Figure 11.5.
Mitigation: Appropriate quality-of-service (QoS) values should be set in the SQL server. This
will block a single connection from consuming all server’s resources and make it responsive
to other clients’ requests.
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Figure 11.4: Login with the cracked password and select ‘single_day’ database for DOS
attack.

Figure 11.5: Apply dos.sh script to cause SQL DOS attack.

(3) Grafana Password Attack
Attack Impact:
An adversary that can authenticate in the front-end can pivot to other attacks and tamper
with the visualization. Additionally, sensitive information can be leaked.
Attack Implementation:

1. The team used Kali/Hydra to brute-force Grafana’s user credentials. A list of key words
was created using some popular default values. A base dictionary wisp_keywords.txt
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was created with keywords: wisp, test, admin, root.
2. Hydra applied wisp_keyword.txt with success (Figure 11.6).

Mitigation: Grafana should be configured to listen only to white-listed addresses, and a
strong password should be used that does not contain known and easily predictable words.

Figure 11.6: Hydra applied wisp_keywords.txt with success.

(4) SQL code injection from Grafana
Attack Impact:
An adversary can change raw SQL queries and make changes to the database through
Grafana interface.
Attack Implementation:

1. The team has authorized access to Grafana using previously cracked credential. Figure
11.7 shows that Grafana is using a highly privileged account to access the database.

2. The team edited an existing dashboard and modified the SQL query to include mali-
cious code (Figure 11.8).

3. When another user reloaded the dashboard, and the malicious SQL query was executed,
and the attack deleted a whole table “anomaly scores” from the database (Figure 11.9).

Mitigation: Grafana should use a read-only account to access the database.
(5) Code injection to Grafana’s dashboard configuration

Attack Impact:
An adversary can edit Grafana’s dashboards and save them back to the server to manipulate
the information visualized to other users. For example, an attack can hide detected anoma-
lies.



187

Figure 11.7: Grafana SQL is configured with root credential.

Attack Implementation:

1. The team logged into Grafana using previously cracked credential and selected a dash-
board named “IEEE_39Bus_FDIA”.

2. The team edited the dashboard and modified the SQL query commands to change the
data retrieved from the database. (Figure 11.10)

3. The dashboard was saved back to the server, and a benign user inspecting the dash-
board saw the modified data that contain incorrect load data. (Figure 11.11)

Mitigation: A Grafana user should have read-only permissions to the dashboards.
(6) Grafana SYN Flood DOS Attack

Attack Impact:
An attacker that can deplete the resources of the system can make the system inaccessible
for a benign user.
Attack Implementation:



188

Figure 11.8: The team edited an existing dashboard and modified the SQL query to include
malicious code.

Figure 11.9: SQL has an “anomaly scores” table (left) vs. Malicious code deletes the
“anomaly scores” table (right).

1. To simulate DOS attack, the team used Kali/HPING, an open-source packet generator
and analyzer for the TCP/IP protocol. HPING is often used for security auditing and
testing of firewalls and networks. In this attack, the team used HPING tool to send
SYN (synchronization) messages to Grafana in flood mode, which exhausted Grafana’s
SYN-ACK (synchronization acknowledgement) connections to other users, as shown in
Figure 11.12.

2. As a result, Grafana cannot be loaded for other users, as shown in Figure 11.13.
Mitigation: Grafana should be deployed within a monitored network with appropriate firewall
rules that detect and block the most common types of network attacks.
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Figure 11.10: The team modified the SQL query to replace all data retrieved from the
database with zeros.

Figure 11.11: Grafana dashboard shows benign data (left) vs. Grafana dashboard shows
attack data (right).

Figure 11.12: HPING tool sent echo request to Grafana in flood mode.

11.5 Result Analysis
The system vulnerabilities identified through red team process are listed in this section.

We also provide potential mitigation methods to be compliant with the NIST framework.
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Figure 11.13: Grafana cannot be loaded for other users.

11.5.1 Vulnerability
(1) SQL interface vulnerability:

• An attacker that can connect to the database can tamper with the raw data, the
anomaly scores, and the user permissions. As a result, the system can become inac-
cessible and fake data can be visualized.

• An adversary that can control the rate of the queries to the database can render the
system inaccessible. Grafana interface vulnerability:

• An adversary that can authenticate in the front-end can pivot to other attacks and
tamper with the visualization. Additionally, sensitive information can be leaked.

• Several fields in Grafana access code that is passed to other components. Although
Grafana already sanitizes this input, it allows for raw SQL queries to be sent to the
database. An adversary can change these queries and make changes to the database.

• An adversary can edit Grafana’s dashboards and save them back to the server, effec-
tively hiding detected anomalies or publishing misleading information to other users.

• An attacker that can deplete the resources of the system can make the system inac-
cessible for a benign user.

(2) Grafana online vulnerabilities:
The team noticed that there are multiple CVEs against Grafana v8.1.2, a version currently
used in WISP, shown in Figure 11.14.
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Figure 11.14: Grafana 8.1 has known vulnerabilities.

11.5.2 Mitigation
(1) SQL interface hardening:

1. The SQL server should be configured to listen only to local addresses. If needed for
development, a separate account should be created and the root account should not
be exposed to external addresses.

2. A strong password should be used that does not contain known and easily predictable
words.

3. A cooldown period after a few unsuccessful login tries can slow down an attacker’s
brute-force effort.

4. Appropriate quality-of-service (QoS) values should be set in the SQL server. This
will block a single connection from consuming all resources of the server and make it
responsive to other clients’ requests.

(2) Grafana interface hardening:

1. A strong password should be used that does not contain known and easily predictable
words.

2. Grafana should be configured to listen only to white-listed addresses. If access over
the Internet is needed, a VPN or a DMZ should be used.

3. Grafana should use a read-only account to access the database.
4. A Grafana user should have read-only permissions to the dashboards. Therefore, any

changes made cannot affect other users’ view.
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5. Grafana should be deployed within a monitored network with appropriate firewall rules
that detect and block the most common types of network attacks.

6. Grafana should also be configured to automatically update to the latest version.

11.6 Conclusions
The RTRC Red Team performed a series of adversary attacks to determine the security

level of the WISP software. These attacks target mostly on the data management module and
the visualization module. The major observations include (1) the SQL database was exposed
to all entities on the network; (2) the SQL database was not configured to enforce strong
password policies including limitations on password retries; (3) the Grafana platform also
does not enforce strong password policies; and (4) the Grafana platform was not configured
to limit the user privilege to the database access and dashboard editing. Besides several
recommendations on secure configuration, we also recommend adding new firewall rules to
limit the accessibility of WISP remote users.



Chapter 12

Electricity Market Simulator and Attack
Scenario Design

In Phase 2, we tested and improved the electricity market simulator for a large-scale
power system use case, i.e. the Texas synthetic 2000 bus system. To create realistic and
impactful cyber-attacks, we searched for the critical power components and vulnerable time
periods for the attack scenario design. In this chapter, we first introduce the structure of the
electricity market simulator, following by the improvement for large-scale system simulation.
We then elaborate the attack scenario design for the final demonstration.

12.1 Electricity Market Simulator
To generate realistic electricity market data with cyber-attacks, we developed an electric-

ity market simulator in Phase 1. In this section, we first review the structure and components
of the simulator. Since the simulator was only tested on IEEE 39-bus system in Phase 1, we
met a few challenges when testing it on a large system. This section explains the challenges
and the improvements for the simulator to properly generate data for Texas 2000-bus system.

12.1.1 Structure of electricity market simulator
The electricity market simulator is designed to take in real-time five minutes load data

to generate locational marginal prices and relevant physical measurements (e.g. power flow
data and state estimation data), provided the topology and parameters of the system and
configurations of the cyber/physical contingencies. The overall structure of the simulator is
illustrated in Figure 12.1.

The simulator consists of two simulation loops: the main loop and the reserve loop. In
the main loop, the simulator starts by computing the DC optimal power flow (DCOPF)
based on the current load level and system status. The results are then used to generate
AC measurements with perturbation of the measurement noises. The simulator can then
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Figure 12.1: Structure of electricity market simulator.

inject false data injection attacks or load redistribution attacks in the measurement data.
The processed data is used to compute the state estimation. The estimated states will be
converted to DC power flow to prepare for the incremental economic dispatch (IED), which
produces the real-time locational marginal prices (LMPs) and the final dispatch results. If
the system is configured to have demand response program, the incremental load will be
computed and the price responsive attack may be applied at this step. The adjusted load
and the next time step load profile will be used for the subsequent loop. The pipeline of the
reserve loop is similar with the main loop except that it adds the reserve capacity to the
total generator capacities when computing DCOPF.

The switch between the main loop and the reserve loop is controlled by an outage sched-
uler and a system recovery flag. The outage scheduler defines when, where and what type
of outages occur in the system. The system recovery flag shows if the system has recovered
and if there is a need to stay in the reserve loop. Specifically, after each DCOPF in the
main loop, the simulator will check if there is an outage status change. If outage status
changes (turn ON or OFF), the system will check if the reference bus (REF bus) can cover
the capacity gap caused by the outage event. If yes, the system stays in the main loop,
otherwise, it switches to the reserve loop. Similar status check happens after each last step
of the reserve loop.

On the other hand, if the outage status stays the same (no status change), the simulator
will check if the system is currently using reserve. If yes, it means the system still needs to
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stay in or switch to the reserve loop. If not, it means the system has recovered from the
outage or there is no impact from any outages at this time step, it can stay in or move back to
the main loop. The Phase 1 report provides the details of the algorithms and functionalities
of each component in the simulator.

12.1.2 Large-scale system simulation
The main challenge for simulating the electricity market of a large-scale system is the

convergence and computing speed of the AC optimization solvers. AC optimization is used in
the process of false data injection attack generation and state estimation. AC power flow is
more accurate in representing the real-world physical conditions than DC power flow which
ignores the reactive power and line conductance. However, AC power flow optimization
is an non-linear non-convex problem that often leads to loss of convergence or very slow
convergence. To address this issue, we first upgraded our optimization solver from Matlab
fmincon solver to Gurobi optimizer (9.1.2). This update guarantees the convergence of the
large-scale Texas system, but the computing speed is still very slow. We then removed the
AC conversion and kept only the DC power flow for the false data injection attack and state
estimation. This modification largely reduced the simulation time and allowed us to search
for the best attack period and locations exhaustively for the whole system and for a whole
year data profile.

12.2 Attack Scenario Design
Unlike load redistribution attacks (LRAs) and price responsive attacks (PRAs), false

data injection attacks (FDIAs) are more researched in the literature and widely accepted to
be both realistic and impactful. For Texas 2000-bus system, the LRA and PRA are tested to
be non-impactful given realistic parameter settings. Thus, in Phase 2, we only focus on the
study and data generation of the FDIAs. In this section, we will first review the mechanism
of FDIAs and then introduce the process and results of the attack scenario design for the
Texas system.

12.2.1 False Data Injection Attacks
FDIA needs to be well-designed to bypass the bad data detection (BDD) examining, and

hence it is actively researched, both for designing a successful realistic attack and for finding
the defense countermeasure to protect the power system [29,56,65,68,69]. Based on the most
practical state estimator and BDD scheme, let ~a, ~za = ~z + ~a and ~̂za denote the false data
injection vector, fake measurements and state estimation results from the fake measurement,
respectively. Without carefully constructing the malicious data ~a, the residual ~ra = ~za − ~̂za
can break the residual test and hence be easily detected by BDD.
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In order to successfully hide the malicious attack, the attack vector ~a must satisfy the
condition

~a = h(~̂xa)− h(~̂x), (12.1)

where ~̂xa is the estimated state under FDIA. In order to construct ~a satisfying (12.1), we
follow a similar strategy proposed by [56], to minimize the changes in the states while
lunching a successful attack. We can formulate this optimization as

min
∆~V ,∆~θ

‖∆~V ‖2
2 + ‖∆~θ‖2

2 (12.2a)

s.t P inj
i (~V , ~θ) = P inj

i (~V + ∆~V , ~θ + ∆~θ),∀i ∈ B (12.2b)
Ftarget(~V + ∆~V , ~θ + ∆~θ) ≥ Fmax

target, (12.2c)
∆V min

i ≤ ∆Vi ≤ ∆V max
i ,∀i ∈ B (12.2d)

∆θmini ≤ ∆θi ≤ ∆θmaxi ,∀i ∈ B (12.2e)

where
∆~V : changes happened to the bus voltage;
∆~θ: changes happened to the bus phase angle;
∆θmaxi : maximum changes in phase angle at bus i;
∆θmini : minimum changes in phase angle at line i;
∆V max

i : maximum changes in voltage magnitude at bus i;
∆V min

i : minimum changes in voltage magnitude at bus i;
Ftarget(.): the real power flow on the targeted line;
P inj
i (.): the power injection at bus i.

The idea of this optimization problem is to find the minimum changes to the states,
subject to (1) keeping the same power injection at all the buses, and (2) creating congestion
at the targeted line. It is worth mentioning that this optimization problem is hard to solve,
and there is no guarantee to find a solution. This is due to the fact that if the flow on the
targeted line is far away from its limit, there is no such solution that can make this line
congested while keeping all the power injections unchanged. Therefore, we only apply this
attack when the flow on the target line is close to its limit. Solving this problem gives us the
attack vectors to the state c = (∆~̂

V,∆~̂θ). We can then get the full attack vector by setting
~a = h(~̂x + ~c)− h(~̂x). This FDIA can successfully push the target line flow to the limit and
make it look congested in the state estimate. Therefore, the following IED, which uses this
fake state estimation, cannot assign any more flow to the target line, and has to shift the
flow onto other routes if needed. More detailed discussion and implementation of FDIAs can
be found in the Phase 1 report.



197

12.2.2 Attack Scenario Design for Texas System
The Texas 2000-bus system contains 2000 buses (542 generator buses) and 3206 branches

(lines). For the one year load data profile, we first selected the peak load period (June, July
and August) when the system is stressed to supply the demand. During the selected time
period, we then searched for the congested lines or nearly congested lines. For these lines,
we apply FDIAs with a timing condition constrained by the load status and the congestion
level of the target line. One observation is that the peak load time of a day may not be
the best attacking time due to the fact that the system is already prepared for the high
demand. Study [118] shows the most vulnerable time to attack is at the critical load levels
when even small incremental loads can cause major price changes by triggering expensive
marginal units. We leveraged this observation by adding a searching condition to compare
the increasing/decreasing delta load between two time steps. If it is above the average level,
we will apply the FDIA and measure the price impact. There is a higher chance of creating
impactful attacks using this strategy. The searching results for line 805 are shown in Figure
12.2.

Figure 12.2: Baseline LMP and attack LMP at bus 551 for 720 hours under FDIA at line
805.

From the searching results, we can see the most impactful attacks were applied at the
load transition periods rather than the peak load periods, which is consistent with our
observation.
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12.3 Conclusions
This chapter presents results from the effort of improving the electricity market simu-

lator and design cyber attacks for large-scale power systems. The optimization solver was
upgraded and the attack model was restricted to DC models to guarantee convergence of the
simulator. The Texas 2000-bus system was studied for the most impactful FDIAs and the
results of a successful attack scenario was presented and selected for final demonstration.



Chapter 13

WISP Software Improvement

WISP is an energy market monitoring tool that uses public energy market data to detect
potential cyber-attacks on the system. Real time and simulated market data is analyzed
by various diagnostic algorithms and the resulting detection data and events are stored in
a database to be displayed in a user friendly interface. In this chapter, we first review the
framework of the WISP software, developed in Phase 1. We then elaborate the improvement
of the software to adapt to the performance requirements of monitoring a large-scale power
system.

13.1 System Overview
The framework of the WISP software is illustrated in Figure 13.1. The software consists

of three modules: the data plane, the algorithms and the visualization.
The data plane offers a database manager which is a class of functions to create databases

and provide utilities for data downloading, saving, fetching and formatting. The data plane
interfaces to three data sources: the real-time data from PJM and ISO-NE, the historical data
from PJM and ISO-NE, and the benign/attack data from the electricity market simulator.
All data are stored in a MariaDB based database system hosted in a docker container, which
is managed also by the data plane.

The algorithms provide three categories of data-driven anomaly detectors: the autoen-
coder detector, the pointwise anomaly detector and the system anomaly detector. The
details of the detectors can be found in the Phase 1 report. The algorithms also provide
two ancillary functions: the parameter tuning and threshold selection. Both of them are
important tools for maintaining high level detection performance for different systems.

The visualization module is based on Grafana software which is hosted in a docker con-
tainer. Functions in the visualization module are designed to initiate and configure the
Grafana server and to generate dashboards for each monitored system.
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Figure 13.1: WISP Software Framework.

13.2 Software Improvement
In this section, we explain the challenges of using the Phase 1 software for large-scale

systems and the solutions we developed to address these challenges.

13.2.1 Database Restructure
In the Phase 1 software, we used single timestamp index for the simulated data (IEEE

39-bus system). It works well because there are only 39 nodes (buses) in the system and data
query by timestamp is sufficient and fast. When working on the Texas system, the data query
became extremely slow since there were 2000 buses. If the location information is not filtered
in the query stage, the post processing will become very slow and memory-consuming. For
data efficiency, we changed all databases to composite index system with both timestamp
and location as primary searching keys. This data restructuring helps reduce the data query
time and also reduce the data size needed for each computing.

13.2.2 Computing Speed Optimization
To understand the end-to-end computing delay, we applied a Python profiler to record

and rank the computing time for each function. An example of the profiler results is shown
in Figure 13.2.

The three most time-consuming functions are data query, anomaly detection and data
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Figure 13.2: An example of software profiler results.

saving. For Phase 1 software, we used the single-thread serial computing structure. All
detectors are executed in a predefined one-after-another sequence. The total computing
time for each time step will be a sum of computing time of each detector. In Phase 2, we
adopted the multi-thread parallel computing structure, where the software automatically
launches an individual thread for each detector. The total computing time is the slowest
computing time among all detectors instead of the sum of all. To further reduce the data
query and data saving time, we introduced two global data buffers. The first buffer stores the
data that are recently fetched from the system, so that the algorithms that share the same
data input can visit this data buffer without starting a new database query. The second
buffer stores the recent generated anomaly scores. This is used for stateful score computing
where historical scores are needed to decide the final detection decision of the current time
step. With this buffer, the algorithms do not need to visit the database for previous scores
which largely reduced the hard-disk visiting time.

13.2.3 Ancillary Function Automation
In Phase 1, we provided the hyper-parameter tuning in a grid-searching strategy. The

algorithm will test all possible combinations of parameters and find the best set. However,
this process is very slow and a manual configuration is needed for more refined searching. In
Phase 2, we leveraged the Bayesian optimization based parameter searching to automate and
accelerate the tuning process. Bayesian optimization works by building a surrogate function
(in the form of a probability model) of the objective function P (score|hyperparameters)
. The surrogate function is much cheaper to evaluate than the objective function, so the
algorithm chooses the next values to try in the objective based on maximizing a criterion on
the surrogate.
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13.2.4 Visualization Integration
In Phase 1, the Grafana visualization dashboard only presents the results of the data-

driven anomaly detection core. It does not show the system vulnerability analysis results
nor the root cause analysis results. In Phase 2, we added two panels on the dashboard.
The first panel automatically pulls results of the vulnerability analysis module and presents
them as instructional information at the top of the dashboard. The operators can read these
results and decide which node to monitor on the dashboard. The second panel presents the
top ranked spider charts of the key contributing factors for price spikes. These charts are
generated from the root cause analysis using long-term historical data.

In Phase 1, we used the web-based Large-scale Test Bed (LTB) geographical visualizer
to illustrate the LMP changes on the map. In Phase 2, we developed AGVis (Another Grid
Visualizer) which is a visualization program that can read simulation data, such as LMP,
and output them in a contour heatmap with real geographic locations. AGVis can run
independently from LTB as a standalone software. To synchronize with the WISP Grafana
visualizer, we shared the simulation data and time stamps between two platforms.

13.3 Conclusions
The software prototype developed in Phase 1 is further modified to accommodate the

needs of monitoring a large-scale power system. The team worked on the database restruc-
turing to improve the data fetching efficiency. The multi-thread computing and data buffers
were used to improve the computing speed. The parameter tuning process was automated
and accelerated using Bayesian optimization and finally the visualization platforms were
integrated to present comprehensive detection and analysis results to power grid operators.



Chapter 14

Demonstration

The WISP technology is demonstrated through two large-scale power systems: the Texas
synthetic 2000-bus system and the ISO New England (ISO-NE) system. In this chapter,
we elaborate for both systems details of the demonstration platforms, the detection perfor-
mances and the system analysis results.

14.1 Texas 20000-bus System
The Texas synthetic 2000-bus system is built based on public information and statistical

analysis of real ERCOT systems [147]. The topology of the Texas synthetic 2000-bus system
is shown in Figure 14.1.

Figure 14.1: The topology of Texas 2000-bus system labeled with cyber-attack targets.
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As mentioned in Chapter 12, the FDIAs were implemented on line 805 which connects two
heavy load areas. These attacks successfully induced price spikes during the load transition
periods.

14.1.1 Data-driven Anomaly Detection Core
The WISP cyber monitoring function is executed through our data-driven anomaly de-

tection core. There are ten individual algorithms implemented in the core: the AutoEncoder,
the five pointwise anomaly detectors (the LSTM (long short-term memory), the optimiza-
tion based probabilistic detection, the gradient boosting regressing (GBR), the joint mean
and quantile regression, and the random forests), and the four system anomaly detectors
(the isolation forests, the random cut forests, the random forests, and the K nearest neigh-
bor). The scores are fused by the majority voting ensembler. To test the Texas system, we
first need to fine tuned the hyper-parameters of the algorithms.

Hyper-parameter Tuning

Most of the algorithms kept their best parameters from the IEEE 39 system tested in
Phase 1. The AutoEncoder and the GBR algorithms showed significant improvement after
Bayesian optimization based parameter searching.

Figure 14.2: The convergence plot of the AutoEncoder detector for the Texas system.

Figure 14.2 shows that the reconstruction error (objective function of the AutoEncoder)
was reduced with the number of searching. The learning rate and the number of neurons in
the bottleneck layer were finally selected as 0.6e-3 and 1.

Figure 14.3 shows that the prediction error (objective function of the GBR) was reduced
with the number of searching. The learning rate and the number of estimators were finally
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Figure 14.3: The convergence plot of the gradient boosting regression (GBR) detector for
the Texas system.

Detection Rate False Alarm Rate Computing time
Total attacks: 74
Total detected attacks: 66
Detection Rate: 89.2%

Total false detection: 236
Total benign data: 8566
False Alarm Rate: 2.76%

Data fetching time: 33.86s
Data saving time: 0.316s
Detection Time: 2.275s

Table 14.1: Key performance indexes for the Texas system demonstration.

selected as 0.1 and 200. All the algorithms were trained on 90 days of historical data with
no attacks.

Anomaly Detection Performance

The detection core was tested on 30 days of data with FDIAs. Table 14.1 summarized
the detection performance for the Texas system and Figure 14.4 illustrated the time series
plot fo the detection.

14.1.2 Cyber Vulnerability Analysis
The cyber-vulnerability analysis (CVA) is performed on the Texas system to provide a

list of vulnerable components. In the CVA, market data from all sources is assumed to
be susceptible to attacks, including line ratings, congestion patterns, generation capacity
withholds, market-interface, etc. Namely, all parameters in the ISO’s market model are
assumed to be attackable. The detailed mathematical model of the CVA can be found in
the Phase 1 report.

The CVA identified 5 most vulnerable buses listed as follows: bus 1654, bus 375, bus
1563, bus 1687, and bus 1452. The attack impact of different buses is shown in Figure 14.5.
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Figure 14.4: The detection results for major detectors and ground truth labels for 30 days
of the Texas system.

The y-axis shows the deviated price in terms of percentage. The x-axis represents different
attack degrees, which means how many parameters can be manipulated by attackers. The
attack impact increase with a higher attack degree for all buses. It is worth noting that the
attack on bus 1654 increased more sharply than others when the attack degree was larger
than 7. The above 5 most vulnerable buses were identified based on the average value of
the attack impact. Other vulnerability analyses can be done similarly. For example, the
5 most vulnerable lines were line 2778, line 1755, line 3201, line 89, and line 3103. The
vulnerable lines were considered where cyber-attacks can achieve more profits by modifying
the congestion status. The above vulnerability scan assumed of 15% attack penetration level.

14.1.3 System Visualization
To deliver the cyber monitoring and CVA results to the operators, the WISP software

replies on the Grafana time-series visualizer and the AGVis geographical visualizer. The
visualization results are shows in Figure 14.6, Figure 14.7 and Figure 14.8.

Figure 14.6 presents the top five panels of the Grafana dashboard. The first panel shows
the overall system introduction and the CVA results as additional guidance information for
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Figure 14.5: CVA results.

Figure 14.6: The top five panels of the Grafana dashboard for the Texas system.

Figure 14.7: The bottom three panels of the Grafana dashboard for the Texas system.
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Figure 14.8: The AGVis contour maps before (left) and after (right) attack for the Texas
system.

the operators. The second panel contains two sub-panels. The left sub-panel shows the total
number of anomalies in the given time window while the right sub-panel shows the three top
ranking offensive nodes for potential attack targets. The third panel shows the LMP data
(total LMP, energy component, congestion component and loss component) of the selected
monitoring node in the given time window. The forth panel shows the total system demand
data in the given time window. The fifth panel shows the data acceptance rate for LMP
and demand data, computed as the total received data divided over the total expected data.
This is to indicate if there are any missing data points in the given time window.

Figure 14.7 presents the bottom three panels of the Grafana dashboard. The first panel
shows the binary results (0 means benign and 1 means attack) of the system level anomalies
detected from any nodes. The second panel shows the anomaly score breakdown for each
individual detector and for the selected monitoring node. The last panel shows the histogram
of the raw LMP data and the anomaly scores in the given time window.

Figure 14.8 presents the LMP contour maps before and after cyber attacks. The cooler
colors point to lower LMP and the warmer colors point to higher LMP. When line 805 got
congested, the LMP prices of the nodes at the top right area increased dramatically.

14.2 ISO-NE System
ISO New England (ISO-NE) is an independent, non-profit Regional Transmission Orga-

nization (RTO) serving Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island,
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and Vermont. The ISO-NE system consists of 1203 buses and its topology is shown in Figure
14.9. In this section, we performed anomaly detection on randomly selected 100 nodes of the

Figure 14.9: The topology of ISO-NE system [5].

ISO-NE system due to the time-consuming process to accumulate historical data for model
training. Different from the Texas system, we do not have the detailed system and compo-
nent models of the ISO-NE system. Thus, we cannot simulate cyber-attacks nor perform
the cyber vulnerability analysis. However, there are more available data in the historical
database which allows us to perform a thorough root cause analysis for the price spikes. In
this section, we provide demonstration results for the data-driven detection core and root
cause analysis.

14.2.1 Data-driven Anomaly Detection Core
Similar to the Texas system, we first need to fine tuned the hyper-parameters of the

algorithms for the ISO-NE system.



210

Hyper-parameter Tuning

Most of the algorithms kept their best parameters from the IEEE 39 system tested in
Phase 1. The AutoEncoder and the GBR algorithms showed significant improvement after
Bayesian optimization based parameter searching.

Figure 14.10: The convergence plot of the AutoEncoder detector for the ISO-NE system.

Figure 14.10 shows that the reconstruction error (objective function of the AutoEncoder)
was reduced with the number of searching. The learning rate and the number of neurons in
the bottleneck layer were finally selected as 2.2e-3 and 1.

Figure 14.11: The convergence plot of the gradient boosting regression (GBR) detector for
the ISO-NE system.

Figure 14.11 shows that the prediction error (objective function of the GBR) was reduced
with the number of searching. The learning rate and the number of estimators were finally
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Detection Rate False Alarm Rate Computing time

Not applicable
Total false detection: 74
Total benign data: 4370
False Alarm Rate: 1.69%

Data fetching time: 8.432s
Data saving time: 0.084s
Detection Time: 1.894s

Table 14.2: Key performance indexes for the ISO-NE system demonstration.

selected as 0.1 and 50. All the algorithms were trained on 90 days of historical data with no
attacks.

Anomaly Detection Performance

The detection core was tested on 15 days of data subsequent to the training data with
no attacks. Table 14.2 summarized the detection performance and Figure 14.12 illustrated
the time series plots of the detection.

Figure 14.12: The detection results for major detectors and ground truth labels for 15 days
of the ISO-NE system.

Note that since there is no attack data, we cannot evaluate the detection accuracy perfor-
mance for the ISO-NE system. Since most of the false alarms came from the physics-induced
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price spikes, we provide, in the following subsection, key contributing factors of the spikes
through root cause analysis based upon long-term historical data.

14.2.2 Root Cause Analysis
For nearly 25 years, New England’s wholesale electricity markets have attracted billions

of dollars in private investment in some of the most efficient, lowest-emitting power resources
in the country—providing reliable electricity every second of every day, lowering wholesale
prices. In 2021, natural-gas-fired generation, nuclear, other low- or no-emission sources,
and imported electricity (mostly hydropower from Eastern Canada) provided of the region’s
electricity, as seen in Figure 14.13. The total generation by renewable energy are 12.44%,
including 4% by wind and 3% by solar.

Figure 14.13: Resources Mix for ISO-NE (2021)

Pricing in the ISO-NE wholesale electricity marketplace is calculated at individual gen-
erating units, about 900 load nodes, eight load zones (aggregations of load nodes), and the
Hub (a collection of locations in central New England where little congestion is evident).
Figure 14.14 depicts the eight load zones.
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Figure 14.14: Eight Load Zones in ISO-NE (ISO-NE, 2021)

Approach to Root Cause Analysis

We first briefly recap the approach for root cause analysis that has been applied to
ISO-NE. The approach follows what has been described in the Phase 1 report, with some
modification necessarily for ISO-NE.

Spike detection and data segmentation
Price spikes are defined as prices that exceed certain threshold. The threshold can be a
fixed number, or a quantile such as the price at 95 percentiles. Time series price data are
segmented to price spike segments and “regular” price segments according to the approach
detailed in the Phase 1 report. Figure 14.15 shows the concept of data segmentation and
the steps are as below:

• In this step, we first group the events which are close to each other.

• In the next step, we fetch the anomalous data segments. In the anomalous data
segments, we select data between [tfirst − blen, tlast + flen]. Here, tfirst and tlast depict
the first and last occurrence of spike in the grouped event, and blen and flen show the
backward and forward size of the data. These segments help us analyze the cause and
the effects of spikes.

• In the third step, we divide the rest of the data in normal data segments.
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Figure 14.15: Data Segmentation for Price Spikes

Using the above steps, we divided the data into hour-long segments to identify key
features related to a price spike event. We kept a buffer of 30 minutes between all the
segments to avoid data overlap for accurate modeling. For every segment, maximum MCE
was used as the price label and three statistics were calculated for each of the data feature.
The mean (µ) estimates the average value of the feature, and the gradient statistics compute
the changes in features during that time interval. We used two gradient statistics, gavg and
gmax that report average and maximum change in the feature value.

Root Cause Identification
We have explored several machine learning techniques to identify and extract the key factors
that causes the price spikes in section, including self-organizing map (SOM), autoencoder and
random forest. For ISO-NE data, we use autoencoder for identification of features that cause
the price spikes. Additionally, we implement clustering analysis on the high dimensional data
with different features, to group the time series price and feature data in such a way that
data points in the same group are more similar to each other than to those in other groups.

Autoencoder
Autoencoder is an unsupervised deep learning technique used to learn a low-dimensional
latent representation of the high-dimensional data. The latent representation is then used to
recreate the input feature set. The reconstruction error between the input and the output
feature set is a key metric to identify features correlated with price spikes. The process
requires training the autoencoder using the non-spike data segments and then passing the
spike data segments through the autoencoder. The resulting set of the reconstruction errors
are likely to be high for those features which are highly correlated with the price spikes.

Clustering
Besides autoencoder, we also implement clustering analysis on the features. Clustering is
the task of grouping a set of data points in such a way that objects in the same group (called
a cluster) are more similar (in some sense) to each other than to those in other groups
(clusters). Price segments that are driven by the same features in the same way are grouped
together. When a new price spike appears, one can easily assign the new spike to a cluster
and identify the main root causes for that spike.
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ISO-NE Data Description and Price Spike Detection

Data Description
We collected market data from ISO-NE for 2020 and 2021. The LMPs and the three com-
ponents of LMP, energy component, congestion component, and loss component, are down-
loaded from ISO-NE for the eight load zones and hub. In this analysis, we only focus on
identifying the root causes that impact the marginal cost of energy component. Figure 14.16
shows the energy component of LMP over time in 2020 and 2021, as well as its histogram.
Compared with the energy prices in CAISO in the Phase 1 report, energy prices in ISO-NE
are lower in general, and the price spikes are sparser. The prices spikes happen most in
summer months, and some in winter. Compared with 2020, 2021 has experiences more price
spikes, shown in Figure 14.17.

Figure 14.16: Plot and Histogram of Energy Component of LMP in ISO-NE

Figure 14.17: ISO-NE Energy Component for ISO-NE by Month and Year

Price Spike Detection
We use 95 percent quantile as the threshold for moderate price spikes, and 99 percent quantile
as the threshold for high price spikes. For 2020-2021 data, 223 spikes are detected, including
3 spikes that lasted longer than 5 hours. Figure 14.18 shows an example of price spike
segments on Feb 3, 2021, with one spike (in brown) that lasted over 7 hours. Figure 14.19
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shows that most of the duration are less than 2 hours. Spikes that happen in winter vary the
most in duration, no matter it is in morning, or midday, evening or night. Figure 14.20 shows
the number of spikes happen in each hour by season. Winter early morning and evenings
and summer midday have more price spikes.

Figure 14.18: Example Price Spike Segments in Feb 03, 2021

Figure 14.19: Spike Duration: Histogram Plot and Boxplot over Seasons

State Space Representation of Price Segments
State space representation is calculated for every price segment: maximum energy component
is used as the price label and several statistics were calculated for each of the data feature,
including the mean that estimates the average value of the feature, the standard deviation
that estimates the variation of the feature, two gradient statistics, gavg and gmax that report
the average and maximum change in the feature value. This resulted in data set consisting
of over 100 feature vectors. Autoencoder and clustering analysis are applied in these 100+
feature vectors to identify the root causes for price spikes.
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Figure 14.20: Spikes Events by Season and Hour of Day

Feature Identification and Extraction Results

Exploratory Data Analysis Results
We have performed exploratory data analysis on the impact of the features on price spikes.
Figure 14.21 to Figure 14.25 are examples showing how these features impact the price spikes.
In summary:

• Demands for spike periods are significantly higher than those of non-spike periods.

• Demand forecast errors are not significantly relevant to the price spikes.

• Wind power (including real time wind as well as wind forecasts) does not show signif-
icant relevance with the price spikes from preliminary analysis.

• Solar, hydro-power, and natural gas generation have significant impact on price spikes.

• Reserve prices have significant impact on price spikes.

• Whether the export or import limits have been hit has significant impact on the price
spikes.

• Marginal fuel type influences the prices, but how it causes the price spikes needs further
investigation.

Autoencoder Results
We implement autoencoder to identify the key features that cause the price spikes. We
first implement autoencoder on the entire data set, then on data for each season to further
investigate how each feature impact the prices in different seasons. Figure 14.26 shows the
reconstruction errors for the top 40 factors when implementing autoencoder on the entire
data set. The top features are the reserve prices, whether the import/export limits have
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Figure 14.21: Hour-ahead Forecast Error for Price Spikes and Non-spikes

been hit, the congestion component, generation of hydropower, wind power forecast errors,
day ahead demand forecast errors, the ratio of renewable generation etc. Figure 14.27 and
Figure 14.28 shows the comparison of construction errors for training and test data sets, and
the price spikes and non-spikes, respectively. We can see that the reconstruction errors for
non-spikes are significantly different for the top features.

To investigate how each feature impact the prices differently by season, we also performed
autoencoder for each season. Figure 14.29 to Figure 14.32 shows the reconstruction errors
for the top features by season. We can see that the reserve price, export/import limit hits,
demand and demand forecast errors remain the top features across different seasons. There
are some features that work specifically for one season. In summer, the solar generation
level and variation contributes as the third top factor to the price spikes. In fall, nuclear
generation is one of the top factors, and in winter, generation of hydropower and wind play
significant impact on the price spikes.

Clustering results
Clustering analysis was done to the entire datasets to group price segments with similar
features. Price spikes in different clusters will be caused by different key features. We first
use elbow method to determine the optimal number of clusters, and then performed k-means
clustering to cluster the entire data set. Figure 14.33 shows that the number of clusters is
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Figure 14.22: Solar Generation for Price Spikes and Non-spikes

optimal approximately at 8 clusters. We cluster the data sets to 8 clusters. Figure 14.34
shows the top 6 clusters and the top 10 features for each cluster. We can see that in Cluster
5 (in green), reserve prices, solar generation, wind generation and import hits play more
important roles than in other clusters. For cluster 0 (in blue), day ahead demand forecast
errors, wind Generation and variation in congestion component have larger impact.

Summary
As the electricity grid continues to evolve with increases in renewable penetration, electricity
markets will continue to see changes in price behaviors – price spikes, volatility, and negative
prices. We proposed a machine learning-based approach that provides a fast and robust
methodology to automatically identify the primary drivers for price spikes using publicly
available data only. The Phase 1 report has applied this approach to CAISO and in this
section, we apply it to ISO-NE. The raw data set downloaded from ISO-NE were used to
identify root causes behind price spikes. It consists of load, renewable forecasts and their
forecast errors, reserve prices, and system conditions such as the import and export limit
hits, etc. Machine learning algorithms, auto-encoders and clustering were used to identify
the data features that have significant impact on the market outcomes, resulting in price
spikes.

These analysis helped concluded that the price spikes are highly correlated with reserve
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Figure 14.23: Natural Gas Generation and Price Spikes and non Price Spikes

prices. The mean, standard deviation and the average rate of change, as well as the max rate
of change of reserve prices all have significant impact on the price spikes. Whether the power
flow exceeds the import and export limits also plays an important role in price spikes. Load
and load forecasts, renewable ratios, wind and solar generations are also the key features
that cause the prices spikes. Some features behave differently in different seasons and have
different impact on the electricity prices. For example, solar generation and its variation
is a top factor that causes the price spikes in summer. The price spikes are resulted from
complex interactions between various data features, each with their own significance that
evolves over different hours and seasons. Our clustering analysis grouped the data sets into
clusters containing data points with similar price drivers. This allows us to quickly assign
one new price spike segment to a cluster and identify the key causes for that price spike.

14.2.3 System Visualization
To deliver the cyber monitoring and root cause analysis results to the operators, the

WISP software replies on the Grafana time-series visualizer. The visualization results are
shows in Figure 14.35 and Figure 14.36.

Figure 14.35 presents the top five panels of the Grafana dashboard. The first panel shows



221

Figure 14.24: Regulation Capacity Clearing Prices and Price Spikes and non Spikes

Figure 14.25: Power Import Exceeding Limit and Price Spikes

the overall system introduction as additional information for the operators. The second
panel contains two sub-panels. The left sub-panel shows the total number of anomalies
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Figure 14.26: Reconstruction Errors (absolute value) for the Top 40 Features for the Entire
Datase

Figure 14.27: Reconstruction Error Comparison for Training and Testing Dataset

in the given time window while the right sub-panel shows the three top ranking offensive
nodes for potential attack targets. The third panel shows the LMP data (total LMP, energy
component, congestion component and loss component) of the selected node in the given time
window. The forth panel shows the total system demand data in the given time window.
The fifth panel shows the data acceptance rate for LMP and demand data, computed as the
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Figure 14.28: Reconstruction Error Comparison for Spike and non-Spike Price Segments

Figure 14.29: Reconstruction Errors for Top Features in Spring

total received data divided over the total expected data. This is to indicate if there are any
missing data points in the given time window.

Figure 14.36 presents the bottom four panels of the Grafana dashboard. The first panel
shows the binary results (0 means benign and 1 means attack) of the system level anoma-
lies detected from any nodes. The second panel shows the anomaly score breakdown for
each individual detector and for the selected monitoring node. The third panel shows the
histogram of the raw LMP data and the anomaly scores in the given time window. The
last panel shows the spider charts for the top six clusters of price spikes. This is to help
the operators understand potential physical and operational causes for the observed price
spikes.
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Figure 14.30: Reconstruction Errors for Top Features in Summer

Figure 14.31: Reconstruction Errors for Top Features in Fall

14.3 Conclusions
The WISP technology was demonstrated on the Texas 2000-bus system and the ISO-NE

system. Overall, the detection rate is above 89% and the false alarm rate is below 3%.
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Figure 14.32: Reconstruction Errors for Top Features in Winter

Figure 14.33: Elbow Method to Determine the Optimal Number of Clusters

The total end-to-end computing delay is below 37 seconds. It is worth mentioning that the
detection rate depends on the impacts of the cyber-attacks. If we focus only on the attacks
that cause major disturbances in the market, we can achieve very high detection rate. For
our demonstration, we did not explicitly filter out the attacks with low impacts. Thus the
detection rate and false alarm rate are satisfactory but not perfect. In real implementations,
we provide the threshold selection function to allow the operators to decide the sensitivity
of the detectors. The more sensitive detector can detect low-impact attacks but with higher
false alarms, vice versa. For real-time implementation, the data downloading speed is largely
constrained by the remote utility database server. Based on our test for the ISO-NE system,
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Figure 14.34: Top 6 Clusters

Figure 14.35: The top five panels of the Grafana dashboard for the ISO-NE system.

the detection results can still be ready within the five minutes time interval.



227

Figure 14.36: The bottom four panels of the Grafana dashboard for the ISO-NE system.



Chapter 15

Conclusions - Phase II

The objective of WISP Phase 2 is to test and demonstrate the WISP software on re-
alistic real-world scale power systems. We first performed red team testing for the WISP
software platform to identify cyber vulnerabilities and enforce the cyber hardening solutions.
We then selected the Texas synthetic 2000-bus system and the ISO-NE system as the two
demonstration use cases. For the Texas system, we implemented the system models and
parameters on the electricity market simulator. To generate cyber-attack data, we improved
the simulator optimizer and modified the false data injection attacks to apply to the DC
power flow. We searched and selected the most impactful attack locations and attack time
periods for the final demonstration. For the WISP software, we improved the database
structure, implemented parallel computing and automated parameter tuning to achieve the
most efficient and accurate anomaly detection and enable applications to different systems
and performance requirements. The visualization platforms were integrated to present the
detection and analysis results simultaneously to better facilitate the operators in decision
making. The demonstration performance met the requirements for real-time cyber monitor-
ing of large-scale systems. In summary, we have successfully demonstrated the effectiveness
of the WISP software in providing timely anomaly detection and diagnostic results to the
operators.
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