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The goal of the research program is to develop, validate and apply predictive computational protocols
for calculating charge transfer (CT) rates in complex molecular systems, including molecular dyads and
triads in liquid solution and solid-state organic semiconducting (OSC) materials. We have established a
transformative computational scheme, that goes beyond widely used simplifications, to achieve
realistic descriptions of CT processes. The approach properly addresses the effects of molecular
environment at ambient conditions on CT processes. Our approach achieves unique insight on CT
processes in relevant experimental efforts.

The investigated processes span multiple scales in space and time, a challenge that we have overcome
by developing an integrative approach. The collaborative team includes three principal investigators
(P1s), with complimentary expertise in classical molecular dynamics (MD) simulations and data science
(Cheung), state-of-the-art electronic structure calculations (Dunietz), and cutting-edge theory and
simulation techniques for modeling energy, charge and coherence transfer dynamics in molecular
systems (Geva). The computational efforts are pursued in collaborations with relevant experimental
studies of material design, device fabrication and spectroscopy studies. See the general framework of
the collaborative activity introduced in Figure 1.
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Figure 1: A multiscale and multi PI computational program to investigate charge transfer and transport in
experimentally relevant molecular interfaces. Our program combines state-of-the-art electronic structure
calculations, molecular dynamics simulations in the framework of quantum dynamical hierarchy of approaches
with direct interpretation of experimental efforts pursued by external collaborators performing spectral studies,
material design and synthesis and optoelectronic device measurements.

Our framework to calculated rates is guided by the working hypothesis that a detailed understanding
of the relationship between CT rates and the underlying molecular and electronic structure is key to
improving the efficiency in derived applications. The level of complexity and inherent heterogeneity of
OSC materials necessitates a multiscaling approach. More specifically, we combine MD simulations for
determining interfacial structures and the distributions of donor-acceptor (D-A) geometries they give
rise to, electronic structure calculations for determining ground and excited state energies, charge
distributions, and electronic coupling coefficients, and feasible, robust and transferable rate theory and
simulation techniques for calculating CT rates from ab-initio and MD inputs. Here we briefly outline
several advances achieved by our computational research program:

In one thrust, we developed a polarization consistent electronic structure framework, where we
combine range-separated hybrid (RSH) functionals with polarizable continuum model (PCM). Our
approach achieves physically relevant frontier orbitals with electron removal and addition energies that
reproduce well measured energies in the condensed phase. The success stems from invoking the same



dielectric screening in the long-range part of the functional as invoked in the PCM treatment. In Figure
2 we demonstrate the success of our approach by following averaged energies over a benchmark set of
molecular crystals, where our screened RSH-PCM (SRSH-PCM) frontier orbital energies are in excellent
agreement with the measured ionization potentials (IPs) and electron affinities (EAs). J. Chem. Theory
Comput. 14 (2018) 6287). SRSH-PCM was benchmarked in studying CT (J. Chem. Theory Comput. 15
(2019) 4305), and triplet (J. Chem. Theory Comput. 16 (2020) 3287) excitations and in several spectral
studies of various chromophores. Recently it was employed successfully in the context of quantum
embedding in studying the optical gap of cis-trans isomers of solvated azobenzene derivative (J. Phys.
Chem. Lett. 13 (2022) 4849).
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Figure 2: Averaged frontier orbital (HOMO and LUMO) energies, in eV, calculated in the gas phase and in various
combinations with a PCM compared to the averaged benchmark IP and EA energies in gas and thin-film forms
(Exp.). The SRSH-PCM and OT-SRSH-PCM present excellent agreement with the measured values in the crystal
phase (J. Chem. Theory Comput. 14 (2018) 6287). Followup benchmark studies show the success of the SRSH-

PCM framework in calculating charge transfer states ((J. Chem. Theory Comput. 15 (2019) 4305), and triplet
excitations (J. Chem. Theory Comput. 16 (2020) 3287).

In the second thrust, we develop and implement a hierarchy of approximations based on the
linearized semiclassical (LSC) method for CT rate constants in complex molecular systems. In
particular the triad system is used to test our LSC hierarchy of methodologies that range from a
semi-classical (Marcus-like approach) to a Fermi-Golden rule level, where the molecular
environment is probed by MD simulations. Our approach combines all-atom molecular
dynamics simulations with explicit solvent and electronic-state-specific force fields. The validity
of the second-order cumulant approximation, which leads to a Marcus-like expression for the
rate constant is established by comparing the rate constants calculated with and without
resorting to this approximation. We also studied the CT process in the triad with a non-
equilibrium extension of the Fermi golden rule rate expression introducing an instantaneous
Marcus expression to describe evolving rates following a perturbation representing electronic
state population induced by photoexcitation (J. Phys. Chem. B, 124, (2020) 9579). See the
results summarized in Figure 3.

We reported several additional new tools for modeling quantum dynamics that go
beyond the perturbative equilibrium Fermi’s golden rule level. One such tool is the generalized
guantum master equation (GQME), which allows to simulate the CT dynamics for electronic



coupling of arbitrary strength (J. Chem. Phys., 160 (2019) 034101). Another such tool is based
on representing the electronic degrees of freedom in terms of mapping variables with a well
defined classical limit and simulating the dynamics of the overall (electronic + nuclear) system
within the framework of LSC. (J. Chem. Phys., 151 (2019) 074103.)

In the third research thrust, we developed and implemented the computational framework to
study CT processes in systems related to actual experiments. For example, in considering the
interface of SubPC and Cso, D-A materials that are widely studied, we resolve the molecular
interfaces and describe their effect on CT rates using the newly developed computational
framework. (Phys. Rev. App. 13 (2020) 054075). In Figure 4 we introduce the algorithmic
workflow as implemented by CTRAMER an open source software package that takes as input
atomic coordinates of the considered materials and generates a distribution of CT rates in the
condensed phase consisting of thin films made of the same organic materials (J. Chem. Phys.
154 (2021) 214108).

Using the computational tool, we benchmarked the choices of the density functional
and of the force field, finding that a range-separated hybrid functional provides superior
performance in reproducing experimental CT rates, whereas employing B3LYP appears to
overstate the importance of selecting a polarizable force field to represent the molecular
environment (J. Chem. Theory Comput., 16 (2020) 6481).
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Figure 3: In earlier work a Marcus-like expression, based on the second order cumulant approximation, was
validated for an experimentally-relevant triad system. Strong dependence of CT dynamics on the triad’ s
conformation is demonstrated, where the bent->linear conformational change is found to the rate-determining
step for CT in this system. The CT in the solvated molecular triad was found to be driven by the solvent, which
highlights the important role that interactions with the host can have on CT kinetics. (J. Phys. Chem. C. 122
(2018) 11288-11299). Here we extend the formulation to non-equilibrium form of Fermi Golden rule and
introduce an instanteous Marcus rate expression.
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Figure 4: CTRAMER: A software package to calculate the interfacial charge transfer rates demonstrated on thin

films consisting of SubPC-Cqg.
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