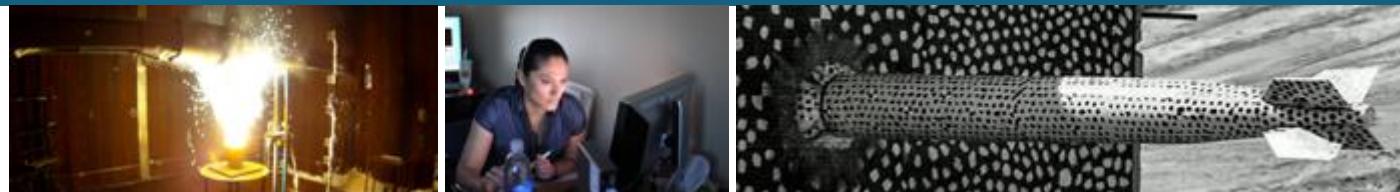


Sandia
National
Laboratories

Continuous conditional generative adversarial networks for data-driven solutions of poroelasticity with heterogeneous material properties



Teeratorn (“Meen”) Kadeethum and Hongkyu Yoon

Geomechanics Department, Sandia National Laboratories

Albuquerque, NM, USA

Collaborators: D. O’Malley (LANL), Y. Choi (LLNL), H. S. Viswanathan (LANL), N. Bouklas (Cornell)

AGU 2021 Fall Meeting

This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories and also DOE Office of Fossil Energy project -Science-informed Machine Learning to Accelerate Real

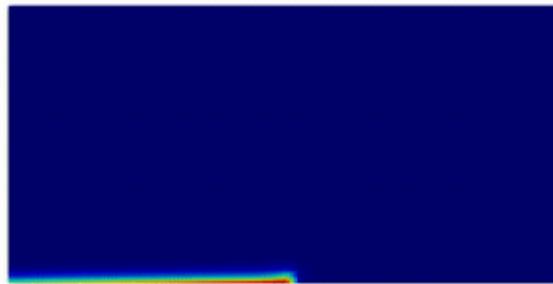
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2021-XXXXX

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Why reduced order model?

Full order model (FOM) is computationally demanding



This would take 1-2 hours^{1,2}

Imagine if you do 100,000 times of this

FOM is computationally very expensive for large-scale uncertainty quantification, optimization, or inverse modeling

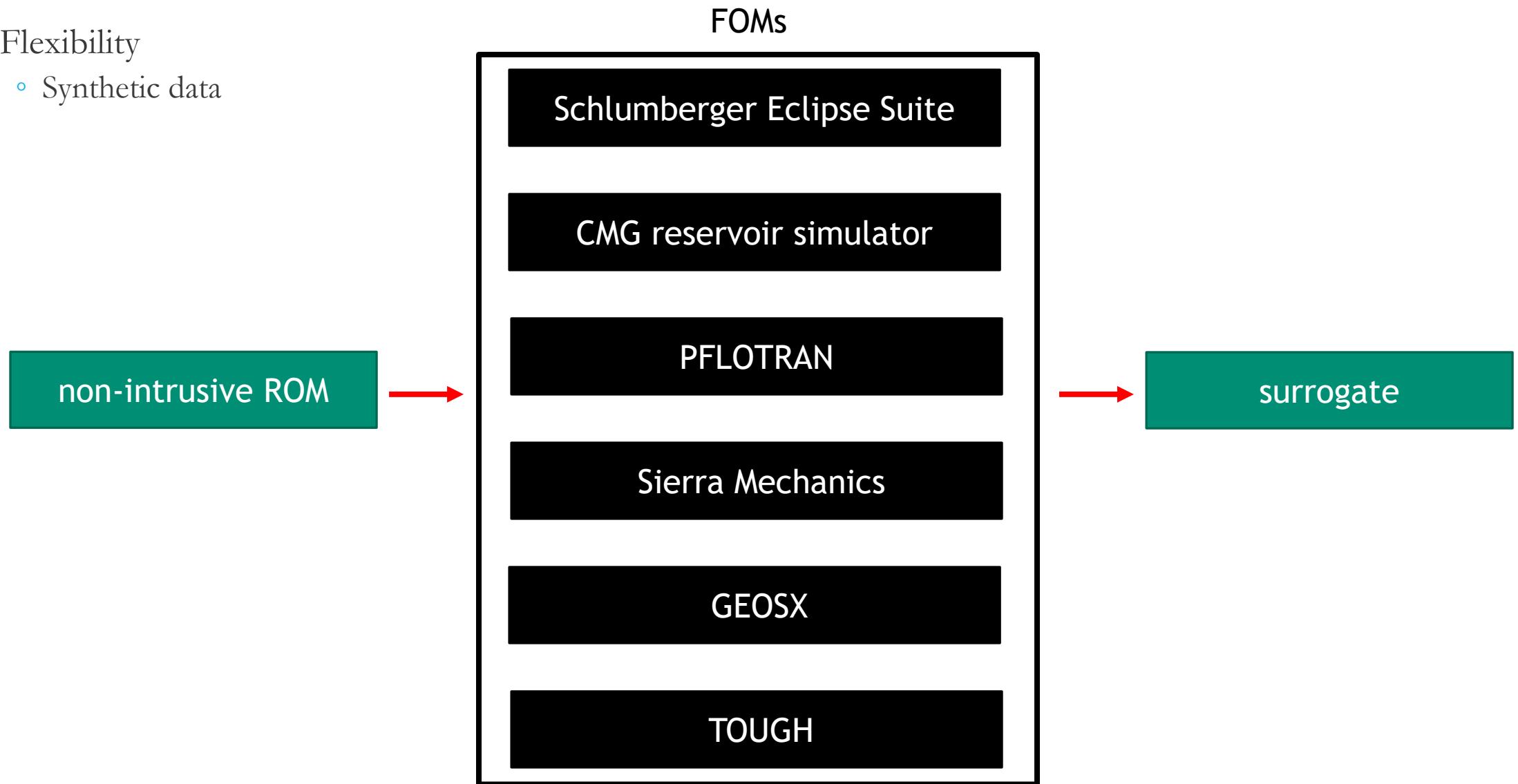
¹Kadeethum T, Ballarin F, Choi Y, O'Malley D, Yoon H, Bouklas N. Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: comparison with linear subspace techniques. arXiv preprint arXiv:2107.11460. 2021 Jul 23. [Adv. Water Res. In review after moderate revision]

²Kadeethum T, Lee S, Ballarin F, Choo J, Nick HM. A locally conservative mixed finite element framework for coupled hydro-mechanical-chemical processes in heterogeneous porous media. Computers & Geosciences. 2021 Jul 1;152:104774.

Why non-intrusive approach?

Flexibility

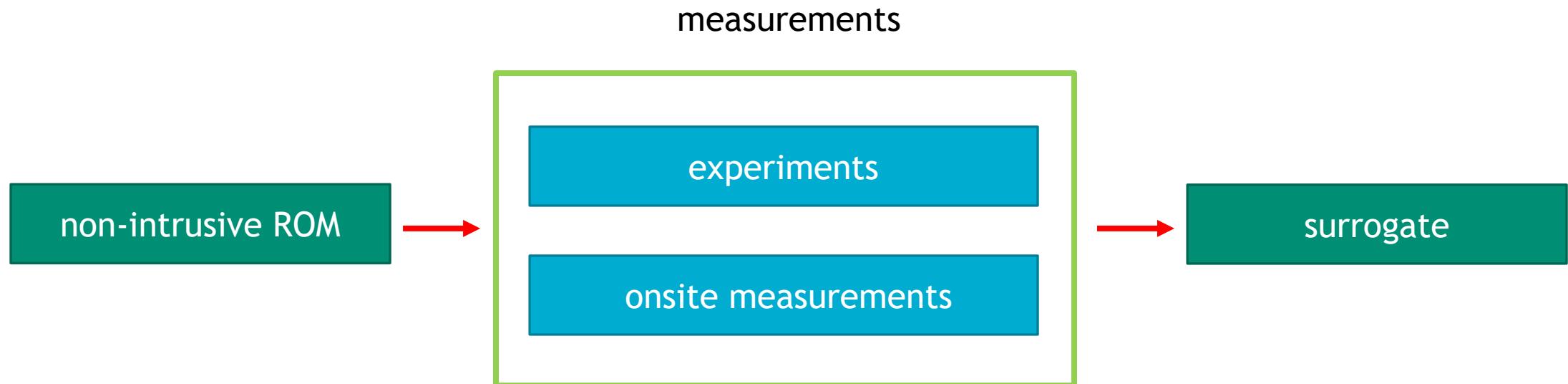
- Synthetic data



Why non-intrusive approach? - continued

Flexibility

- measurement



Why non-intrusive approach? - continued

Flexibility

- Or both

FOMs

Schlumberger Eclipse Suite

Sierra Mechanics

non-intrusive ROM

measurements

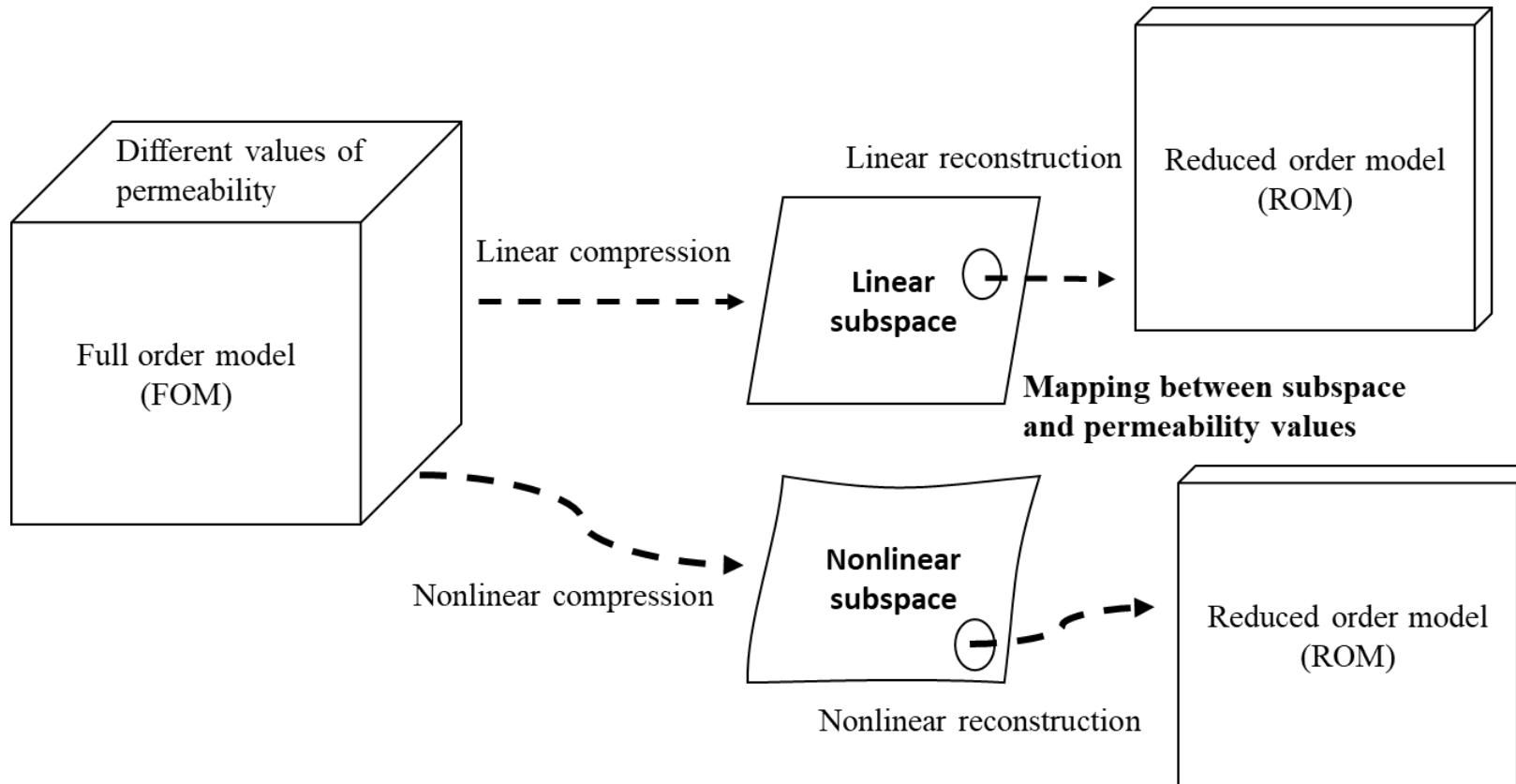
surrogate

experiments

onsite measurements

Motivation

ROM typically works on ‘parameterized PDEs’ and ‘reduced subspace’



Motivation - continued

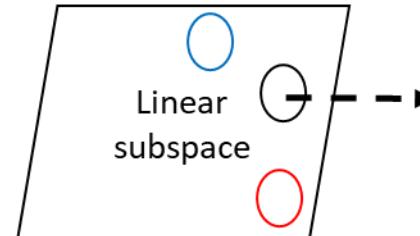
7

Parameterization for a single value (low dimension) is straightforward

However, how could we parameterize the whole heterogeneous field?

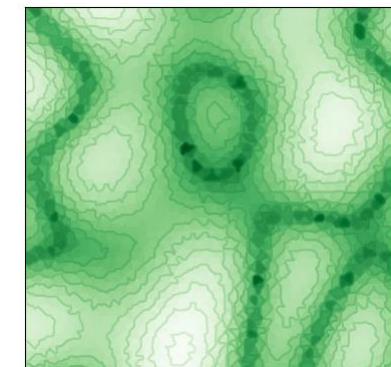
Mapping between subspace and permeability values

Permeability = 2×10^{-12}

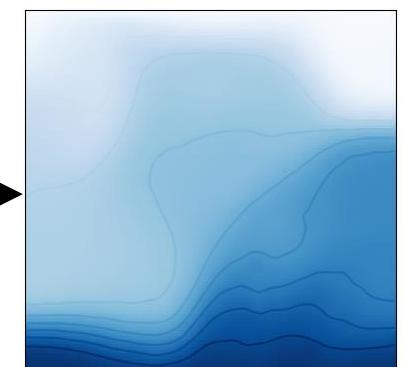


Permeability = 1×10^{-12}

permeability

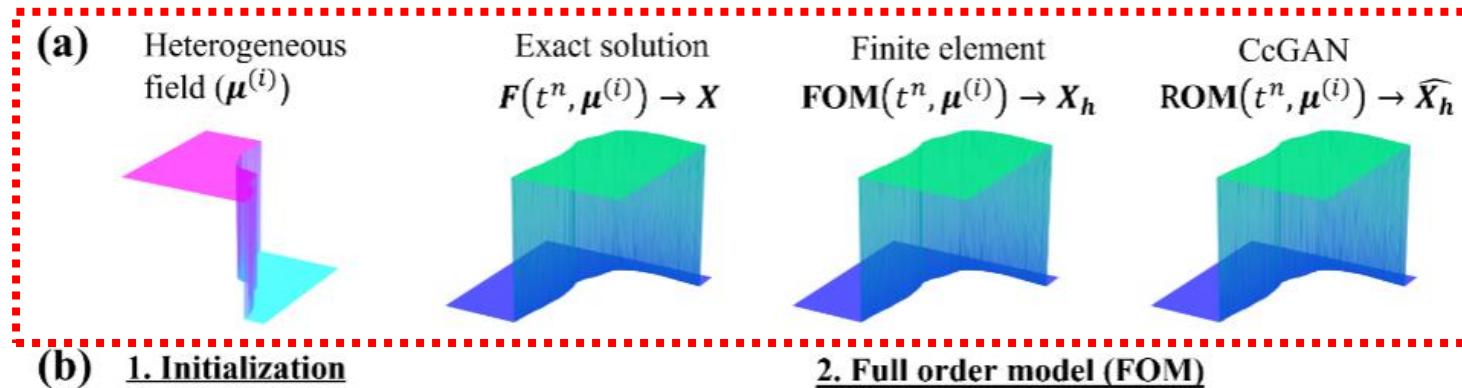


pressure



Methodology

We want to create a **surrogate model** that can provide a good accuracy comparable to that of **finite element model** with a much cheaper computational cost

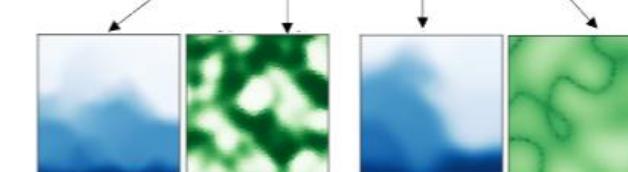


(b) 1. Initialization

Training set: $\mu = [\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(M-1)}, \mu^{(M)}]$

2. Full order model (FOM)

$FOM = X_h^{(1)}(t^n, \mu^{(1)}) \dots X_h^{(M)}(t^n, \mu^{(M)})$



The same goes for validation and test sets.

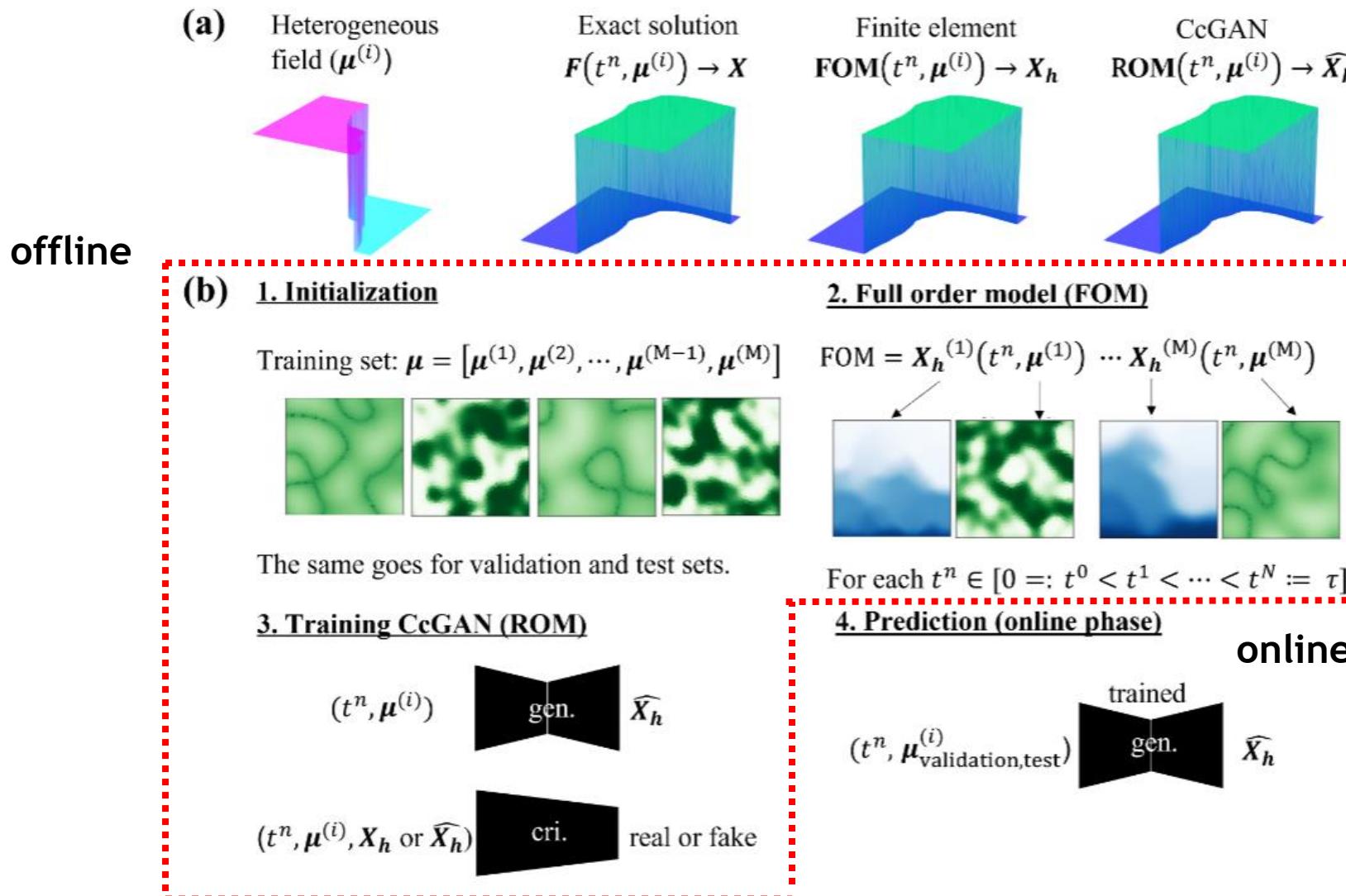
For each $t^n \in [0 =: t^0 < t^1 < \dots < t^N =: \tau]$

3. Training CcGAN (ROM)

4. Prediction (online phase)

Methodology - continued

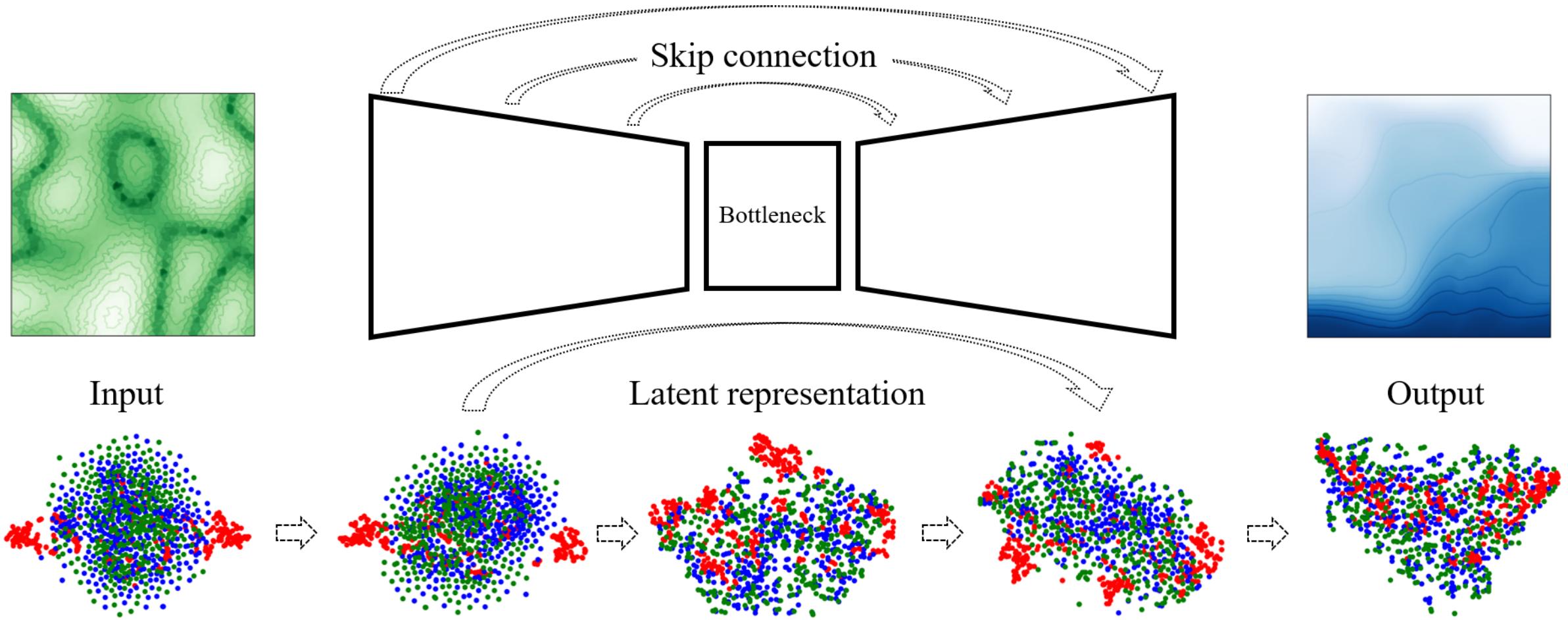
Our framework is developed for **parameterized coupled multiphysics** processes based on **offline** and **online** phases



Methodology - continued

10

In short, we extend the work done by Kadeethum et al. (2021) to time-dependent problems.



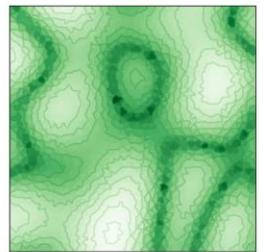
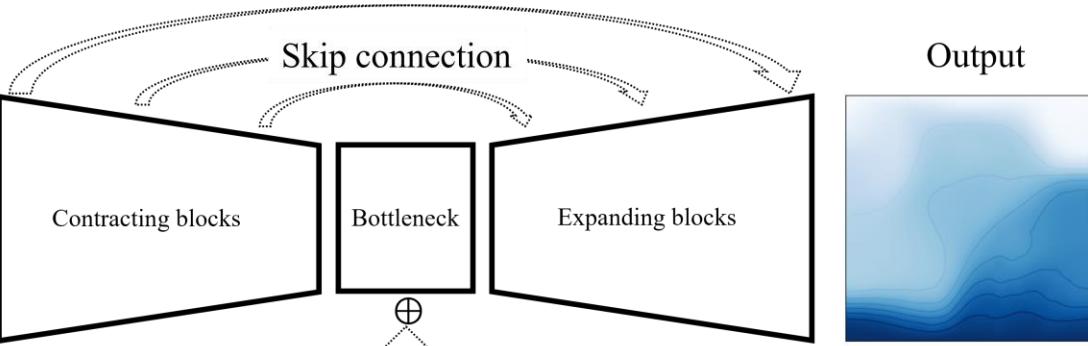
Methodology - continued

We have two models:

1. naive label input (NLI)
2. Improved label input (ILI)

Both models use the same critic.

Generator: Input:
with NLI heterogeneous field

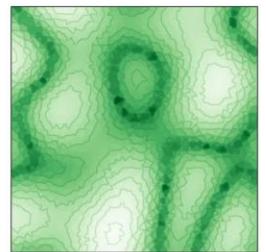
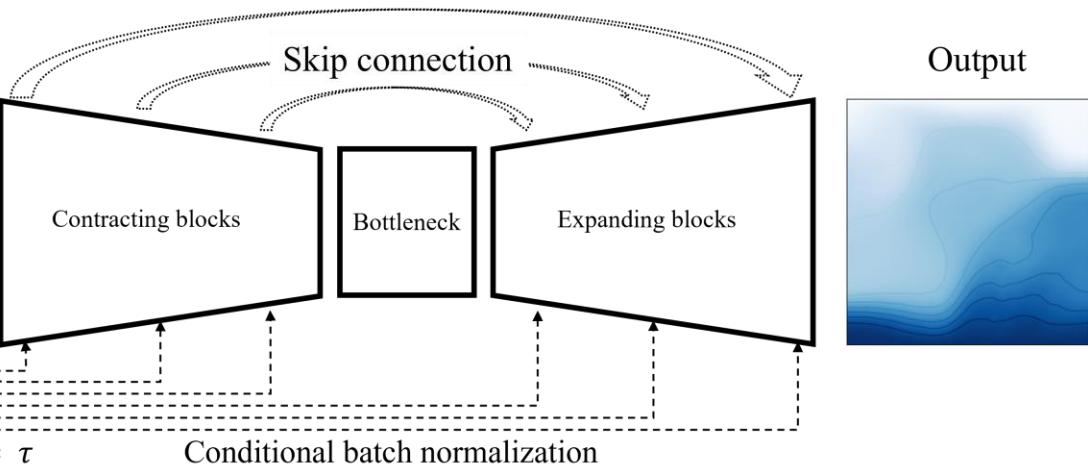


Input: time (t^n)

$$0 =: t^0 < t^1 < \dots < t^N := \tau$$

Element-wise addition

Generator: Input:
with ILI heterogeneous field

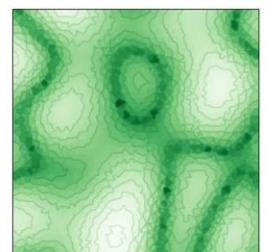
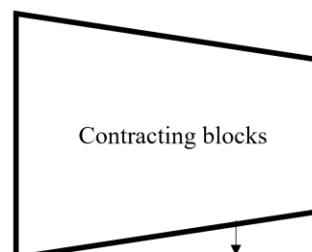
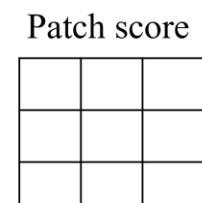


Input: time (t^n)

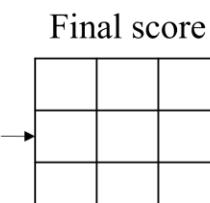
$$0 =: t^0 < t^1 < \dots < t^N := \tau$$

Conditional batch normalization

Critic Heterogeneous field + Output (fake) or real



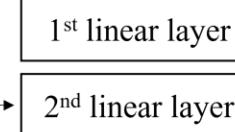
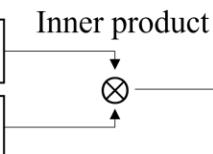
Patch score



Final score

Input: time (t^n)
 $0 =: t^0 < t^1 < \dots < t^N := \tau$

$$0 =: t^0 < t^1 < \dots < t^N := \tau$$



Inner product

Element-wise addition

Methodology - continued

12

Generator architecture - Batch normalization is used by NLI, and it is replaced by ‘conditional batch normalization’ for ILI model

Table S1. Generator: NLI’s detail used in this study (input and output sizes are represented

by $[B, C, \tilde{N}_h^p, \tilde{N}_h^p]$. We use hidden layers $H = 32$). BN refers to batch normalization.

Block	Input size	Output size	BN	Dropout
1 st convolutional layer	$[B, C, 128, 128]$	$[B, 32, 128, 128]$		
1 st contracting block	$[B, 32, 128, 128]$	$[B, 64, 64, 64]$	✓	✓
2 nd contracting block	$[B, 64, 64, 64]$	$[B, 128, 32, 32]$	✓	✓
3 rd contracting block	$[B, 128, 32, 32]$	$[B, 256, 16, 16]$	✓	✓
4 th contracting block	$[B, 256, 16, 16]$	$[B, 512, 8, 8]$	✓	
5 th contracting block	$[B, 512, 8, 8]$	$[B, 1024, 4, 4]$	✓	
6 th contracting block	$[B, 1024, 4, 4]$	$[B, 2048, 2, 2]$	✓	
1 st expanding block	$[B, 2048, 2, 2]$	$[B, 1024, 4, 4]$	✓	
2 nd expanding block	$[B, 1024, 4, 4]$	$[B, 512, 8, 8]$	✓	
3 rd expanding block	$[B, 512, 8, 8]$	$[B, 256, 16, 16]$	✓	
4 th expanding block	$[B, 256, 16, 16]$	$[B, 128, 32, 32]$	✓	
5 th expanding block	$[B, 128, 32, 32]$	$[B, 64, 64, 64]$	✓	
6 th expanding block	$[B, 64, 64, 64]$	$[B, 32, 128, 128]$	✓	
2 nd convolutional layer	$[B, 32, 128, 128]$	$[B, C, 128, 128]$		

Critic architecture

Table S3. Critic: NLI and ILI's detail used in this study (input size is represented by [B, C, \tilde{N}_h^p , \tilde{N}_h^p], and output size is represented by [B, C, PATCH_X, PATCH_Y]. We use hidden layers H = 8).

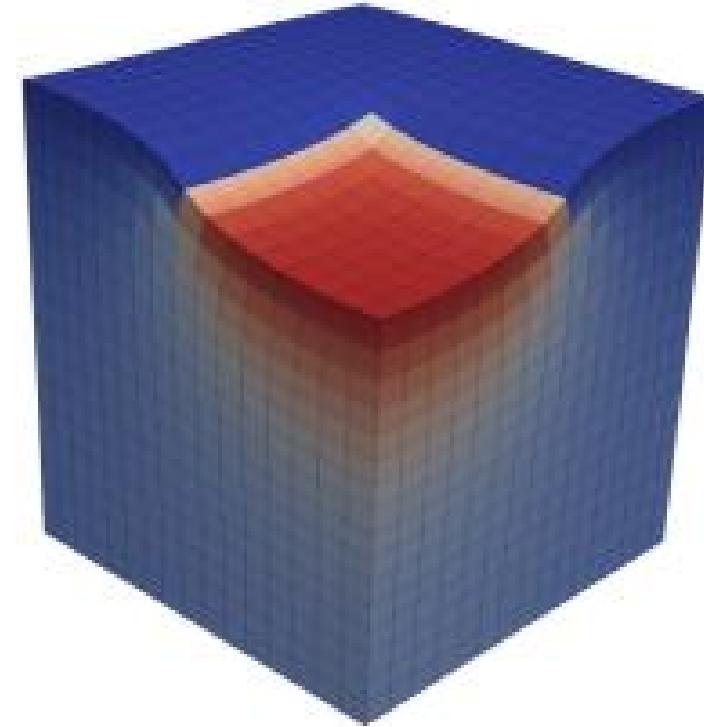
Block	Input size	Output size	BN
1 st convolutional layer	[B, C+1, 128, 128]	[B, 8, 128, 128]	
1 st contracting block	[B, 8, 128, 128]	[B, 16, 64, 64]	
2 nd contracting block	[B, 16, 64, 64]	[B, 32, 32, 32]	✓
3 rd contracting block	[B, 32, 32, 32]	[B, 64, 16, 16]	✓
4 th contracting block	[B, 64, 16, 16]	[B, 128, 8, 8]	✓
2 nd convolutional layer	[B, 128, 8, 8]	[B, C, 8, 8]	

Governing equations

Momentum balance equation

$$\begin{aligned}\nabla \cdot \sigma'(u) - \alpha \nabla \cdot (p\mathbf{I}) + f &= 0 \quad \text{in } \Omega \times \mathbb{T}, \\ u &= u_D \quad \text{on } \partial\Omega_u \times \mathbb{T}, \\ \sigma(u) \cdot \mathbf{n} &= t_D \quad \text{on } \partial\Omega_t \times \mathbb{T}, \\ u &= u_0 \quad \text{in } \Omega \text{ at } t = 0,\end{aligned}$$

where σ' is the effective stress, p is the pore pressure, u is bulk displacement, α is the Biot coefficient, f is the body force.



Mass balance equation

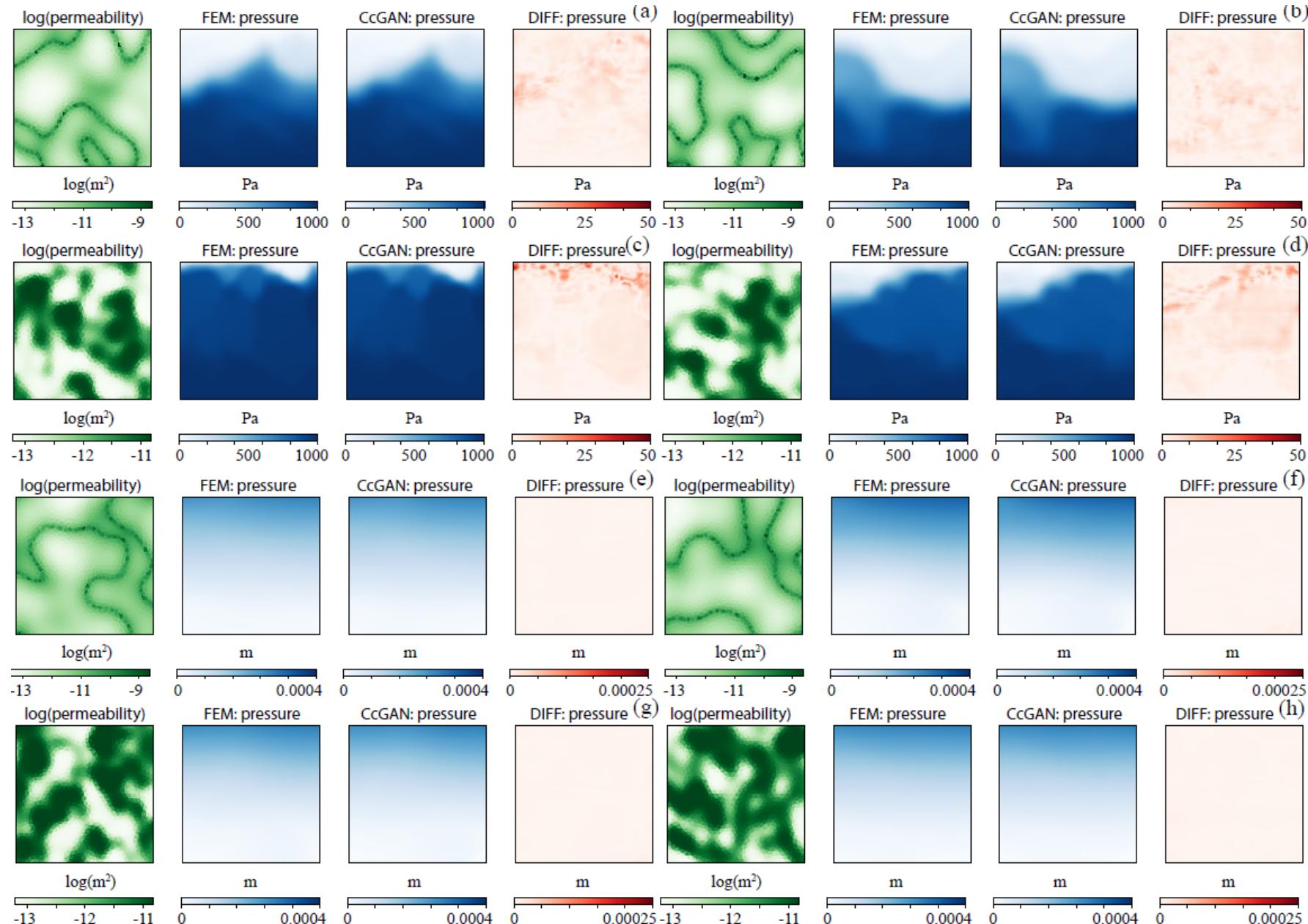
$$\begin{aligned}\left(\frac{1}{M} + \frac{\alpha^2}{K}\right) \frac{\partial p}{\partial t} + \frac{\alpha}{K} \frac{\partial \sigma_v}{\partial t} - \nabla \cdot (\kappa \nabla p) &= g \quad \text{in } \Omega \times \mathbb{T}, \\ p &= p_D \quad \text{on } \partial\Omega_p \times \mathbb{T}, \\ -\kappa \nabla p \cdot \mathbf{n} &= q_D \quad \text{on } \partial\Omega_q \times \mathbb{T}, \\ p &= p_0 \quad \text{in } \Omega \text{ at } t = 0,\end{aligned}$$

where M is the Biot modulus, σ_v is the volumetric stress, K is bulk modulus, κ is the porous media conductivity

Pic from: J.Choo. Stabilized mixed continuous/enriched Galerkin formulations for locally mass conservative poromechanics. CMAME. 2019.

Results

15



Results - continued

16

Table 1. The relative RMSE (Eq. (9)) results for testing data of three example cases as a function of the number of training data (M) for pressure and magnitude of displacement. Each example is evaluated with both NLI and ILI models.

		Example 1	M = 1250	M = 2500	M = 5000	M = 10000
Pressure	NLI (%)		4.63	3.24	2.34	1.74
	ILI (%)		4.55	3.15	2.30	1.67
	Example 2		M = 1250	M = 2500	M = 5000	M = 10000
	NLI (%)		3.60	2.61	1.83	1.24
	ILI (%)		3.73	2.55	1.67	1.22
	Example 3		M = 2500	M = 5000	M = 10000	M = 20000
	NLI (%)		3.36	2.31	1.65	1.32
	ILI (%)		3.07	2.24	1.63	1.29
			M = 1250	M = 2500	M = 5000	M = 10000
Displacement	NLI (%)		4.32	2.98	2.14	1.57
	ILI (%)		4.13	2.78	2.03	1.33
	Example 2		M = 1250	M = 2500	M = 5000	M = 10000
	NLI (%)		3.60	2.51	1.47	1.10
	ILI (%)		3.37	2.07	1.26	0.83
	Example 3		M = 2500	M = 5000	M = 10000	M = 20000
	NLI (%)		3.28	2.28	1.27	1.27
	ILI (%)		2.74	2.15	1.18	1.05

Example 3: a total number of M is the sum of training data from both Examples 1 and 2.

x_i and \hat{x}_i are the ground truth (FOM result) and approximated values (ROM result)

$$\text{relative RMSE} = \sqrt{\frac{\sum_{i=1}^M (x_i - \hat{x}_i)^2}{\sum_{i=1}^M x_i^2}}$$

Results - continued

17

Table S4. Comparison of the wall time (seconds) used for each operation presented in Figure 1 (main text). μ is a set of parameterize spatial fields, and $\mu_i \in \mu$.

	NLI	ILI	remark
Build FOM snapshots	40	40	per μ_i for $N^t = 10$
Train ROM with $M = 1250$	12600	12600	approximately 3.75 hours
Train ROM with $M = 2500$	25200	25200	approximately 7.5 hours
Train ROM with $M = 5000$	50400	50400	approximately 15 hours
Train ROM with $M = 10000$	108000	108000	approximately 30 hours
Train ROM with $M = 20000$	216000	216000	approximately 60 hours
Prediction	0.001	0.001	per testing (t^n, μ_i)

FOM: 36 cores AMD Ryzen Threadripper 3970X

ROM: a single Quadro RTX 6000,

Conclusions

18

1. High dimensional parameterization – the whole heterogeneous field.
2. Reduced order model that could provide much faster calculation and maintain reasonable accuracy.
3. ILI provides a better accuracy than NLI without additional computational cost.
4. Including physics-information (PDEs) is in progress.