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Why reduced order model?

Full order model (FOM) is computationally demanding

This would take 1-2 hours':2

Imagine if you do 100,000 times of this

FOM 1s computationally very expensive for large-scale uncertainty quantification, optimization, or
inverse modeling

'Kadeethum T, Ballarin F, Choi Y, O'Malley D, Yoon H, Bouklas N. Non-intrusive reduced order modeling of natural convection in porous media using
convolutional autoencoders: comparison with linear subspace techniques. arXiv preprint arXiv:2107.11460. 2021 Jul 23. [Avd. Water Res. In review after
moderate revision]

ZKadeethum T, Lee S, Ballarin F, Choo J, Nick HM. A locally conservative mixed finite element framework for coupled hydro-mechanical-chemical processes in
heterogeneous porous media. Computers & Geosciences. 2021 Jul 1;152:104774.



Why non-intrusive approach?

Flexibility FOMs

° Synthetic data

Schlumberger Eclipse Suite

CMG reservoir simulator

PFLOTRAN
non-intrusive ROM — —

Sierra Mechanics

GEOSX




4 Why non-intrusive approach? - continued

Flexibility

° measurement

measurements

experiments

non-intrusive ROM = —_— surrogate

onsite measurements




Why non-intrusive approach? - continued

Flexibility
° Or both

non-intrusive ROM —

FOMs

Schlumberger Eclipse Suite

Sierra Mechanics

| II

measurements

experiments

onsite measurements

— surrogate



Motivation

ROM typically works on ‘parameterized PDEs’ and ‘reduced subspace’

Different values of Linear reconstruction | Reduced order model
permeability (ROM)
Linear compression
Linear G -
—————— ->
subspace
Full order model
(FOM) Mapping between subspace

and permeability values

— —y H
~
~ .
=~y Nonlinear
Nonlinear compression
P subspace _r =» | Reduced order model
G (ROM)
Nonlinear reconstruction




‘ Motivation - continued
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Mapping between subspace and permeability values

Parameterization for a single value (low dimension) is
straightforward

Permeability = 2 x 10712
Reduced order model

O (ROM)

Permeability
Linear G‘ - -15 x 10~12
subspace

O

However, how could we parameterize the whole
heterogeneous field?

Permeability = 1 X 10712

pressure




‘ Methodology

We want to create a surrogate model that can provide a good accuracy comparable to
that of finite element model with a much cheaper computational cost

(a) Heterogeneous Exact solution Finite element CcGAN
field (u®) F(t"u®) - x FOM(t", u®) - x4, ROM(t", u®) - X,

nwy.v.y.

1. Initialization 2. Full order model (FOM)

Traintng Set # = [n(l} p(z) #(M_l} ﬂ(M)] FOM X CL)(I“ ﬂ{1)) (M)(tﬂ .H-(M))
Foreacht"e[0=: t° < t! <

The same goes for validation and test sets. L< N
3. Training CcGAN (ROM) 4. Prediction (online phase)

(1) o

(tn ﬂvalidatlon test) n Xh

(£, u®, X}, or Xp) real or fake



9 ‘ Methodology - continued

Our framework is developed for parameterized coupled multiphysics processes based

on offline and online phases

offline

(a)  Heterogeneous Exact solution
field (u@) F(t"u®) - x

. A

Finite element CcGAN
FOM(t", u®) - X,  ROM(t", u®) - X,

A A

(b) 1.Initialization

Training set: = [p@, p@, ..., gM-D 5 MD]

v

Ly

The same goes for validation and test sets.

3. Training CcGAN (ROM)

(", u®) " Xn

(£, u®, X}, or Xp) real or fake

2. Full order model (FOM)

FOM = X,V (¢", p®) - X, ™M (¢, u™)

.// . : v \\\4
Foreacht" € [0 =: t° < t! < - <tV := 1]

4. Prediction (online phase) .
online

trained

(i) o
(tn’ ﬂvalidation,test) n Xh




. ‘ Methodology - continued

In short, we extend the work done by Kadeethum et al. (2021) to time-dependent problems.

. S,
przpaatt?tt M, W

Bottleneck

Latent representation

————

Kadeethum, T., O'Malley, D., Fuhg, J. N., Choi, Y., Lee, J., Viswanathan, H. S., & Bouklas, N. (2021). A framework for data-driven solution and parameter estimation of PDEs
using conditional generative adversarial networks. arXiv preprint arXiv:2105.13136.



Generator: Input:

M et h O d O I Ogy with NLI heterogeneous field

e SKIP cONNeECtion w.,,,

1 - continued Y~

Contracting blocks

Bottleneck

We have two models:

®

Input: time (t™)

1. naive label input (NLI)

0= t<tlec...<tV =1 Element-wise addition

Generator: Input: —
with ILL  heterogencous field

Y

2. Improved label input (ILI)

e SKIP CcONNECtion v,

.,

Both models use the same
critic.

Contracting blocks

Bottleneck

Expanding blocks

Expanding blocks

Output

Output

Critic eterogeneous field + Output (fake) or real

1

Kadeethum, T., O'Malley, D., Choi, Y., Viswanathan, H. S. Bouklas, N., & H. Yoon (2021).

Continuous conditional generative adversarial networks for data-driven solutions of e n
poroelasticity with heterogeneous material properties. arXiv preprint arXiv:2111.14984. Input- time (t )
[Submitted to GRL] O = tO < tl < e & tN =T

—

Contracting blocks

Conditional batch normalization

Patch score Final score

— P —

15t linear layer

Inner product . ..
— Element-wise addition

®

27 linear layer

I |




. ‘ Methodology - continued

Generator architecture - Batch normalization is used by NLI, and it is replaced by ‘conditional
batch normalization’ for ILI model

Table S1. Generator: NLI's detail used in this study (input and output sizes are represented

by |B, C, EE, ﬁ:] We use hidden layers H = 32). BN relers to batch normalization.

Block Input size Output size BN | Dropout
I** convolutional layer [I_’lT C, 128, 128] [B._ 32, 128, 123]

1** contracting block | [B, 32, 128, 128]| |B, 64, 64, 64] | v v
274 contracting block B, 64, 64, 64| | B, 128, 32, 32| | v v
3" contracting block 1B, 128, 32, 32| | [B, 256, 16, 16| | v v
4™ contracting block B, 256, 16, 16 |B, 512, 8, 8| v

5™ contracting block |B, 512, 8, 8] B, 1024, 4, 4] | v

6" contracting block B, 1024, 4, 4| B, 2048, 2, 2| | v

1** expanding block B, 2048, 2, 2] | |B,1024,4, 4] | v

2" expanding block B, 1024, 4, 4| B, 512, 8, 8] | v

3" expanding block B, 512, 8, 8] | [B, 256, 16, 16| | v

4" expanding block B, 256, 16, 16| | |B, 128, 32, 32| | v

5" expanding block B, 128, 32, 32| | B, 64, 64, 64| | v

6" expanding block B, 64, 64, 64] | |B, 32, 128, 128|| v

2" convolutional layer | [B, 32, 128, 123] B, C, 128, 123]




; Methodology - continued

Critic architecture

Table S3. Critic: NLI and ILI's detail used in this study (input size is represented by |B, C,

n
£

NP, N?|, and output size is represented by |B, C. PATCHy, PATCHy|. We use hidden layers

H=8).

Block Input size Output size BN
1¥* convolutional layer | |B, C+1, 128, 128| | |B, 8, 128, 128§
1¥* contracting block |B, 8, 128, 128| B, 16, 64, 64

2"¢ contracting block B, 16, 64, 64 B, 32, 32, 32| | v
3™ contracting block B, 32, 32, 32| B, 64, 16, 16| | v
4™ contracting block B, 64, 16, 16| B, 128 8,8] | v

2" convolutional layer 1B, 128, 8, §| B, C, 8, BJ-




‘ Governing equations
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Momentum balance equation
V-o'(u)—aV-(pI)+ f=0 in QxT,
u=up on 0Q, xT,
o(u)-n=tp on 9 xT,
u=1up in Qatt =0,
where ¢’ is the effective stress, p is the pore pressure,

u is bulk displacement, « is the Biot coefficient, f is
the body force.

Mass balance equation

1 oa*\dp w«ado,
( + ) p+_ G'—V-(pr):g in QxT,

M K ) dt K dt
Pic from: J.Choo. Stabilized mixed
p=pp on aQF x T. continuous/enriched Galerkin formulations for
locally mass conservative poromechanics. CMAME.
—kVp-n=gp on dQ, xT, 2019.

p=po in Qatt=0,
where M is the Biot modulus, o, is the volumetric

stress, K is bulk modulus, k is the porous media
conductivity



‘ Results
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Results - continued
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Table 1. The relative RMSE (Eq. (9)) results for testing data of three example cases as a

function of the number of training data (M) for pressure and magnitude of displacement. Each

example is evaluated with both NLI and ILI models.

Example 1 | M = 1250 | M = 2500 | M = 5000 | M = 10000
NLI (%) 3.24 2.34 1.74
ILI (%) 3.15 230 167
Example 2 | M = 1250 | M = 2500 | M =5000 | M = 10000
Pressure NLI (%) 2.61 1.83 1.24
LT (%) 2.55 1.67 1.22
Example 3 | M = 2500 | M = 5000 [ M = 10000 | M = 20000
NLI (%) 2.31 1.65 1.32
ILI (%) 2.24 1.63 1.29
Example 1 | M = 1250 | M = 2500 | M = 5000 | M = 10000
NLI (%) 2.08 2.14 1.57
ILI (%) 2.78 2.03 1.33
Example 2 | M = 1250 | M = 2500 | M = 5000 | M = 10000
Displacement | NLI (%) 2.51 1.47 1.10
ILI (%) 2.07 1.26 0.83
Example 3 | M = 2500 [ M = 5000 [ M = 10000 | M = 20000
NLI (%) 2.28 1.27 1.27
ILT (%) 2.15 1.18 1.05 S
Example 3: a total number of M is the sum of training data from both Examples 1 and 2. relative RMSE = — ™

[En, =
x; and ; are the ground truth (FOM result) and approximated values (ROM result) M



Results - continued
17

Table S4. Comparison of the wall time (seconds) used for each operation presented in Figure

1 (main text). g is a set ol parameterize spatial lields, and g, € p.

NLI ILI remark

Build FOM snapshots 40 40 per p; for N* =10
Train ROM with M = 1250 | 12600 | 12600 | approximately 3.75 hours
Train ROM with M = 2500 | 25200 | 25200 | approximately 7.5 hours
Train ROM with M = 5000 | 50400 | 50400 | approximately 15 hours
Train ROM with M = 10000 | 108000 | 108000 | approximately 30 hours
Train ROM with M = 20000 | 216000 | 216000 | approximately 60 hours
Prediction 0.001 | 0.001 per testing (1", p,)

FOM: 36 cores AMD Ryzen Threadripper 3970X
ROM: a single Quadro RTX 6000,



Conclusions
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1. High dimensional parameterization — the whole heterogeneous field.

2. Reduced order model that could provide much faster calculation and maintain reasonable accuracy.

3. ILI provides a better accuracy than NLI without additional computational cost.

4. Including physics-information (PDEs) 1s in progress.



