
Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International, Inc, for the U.S. Department of Energy’s National Nuclear Security Administration under

contract DE-NA0003525.

Advanced Data Structures for Monitoring
Cyber Streams

Michael Bender (Stony Brook U)
Jon Berry (Sandia National Laboratories)

Martin Farach-Colton (Rutgers)
Rob Johnson (VMWare Research)

Tom Kroeger (Sandia National Laboratories)
Prashant Pandey (VMWare Research)

Cynthia Phillips, Sandia National Laboratories
Shikha Singh (Williams College)

SAND2021-15267PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Cyber Streams and Analysis

December 2021 UNM CS Seminar 2

• Stream is fast
• Interesting events can have multiple pieces that are spread in time and can hide

among non-interesting pieces

Query responses

Standing Queries
On-demand Queries

Database(key, value)(key, value)

e.g. Bro logs, ne6low,
rela8onships

Standing Queries

Database requirements:
• No false negatives
• Limited false positives
• Immediate response preferred
• Keep up with a fast stream (millions/sec or faster)
• Also relevant to other monitoring problems: power, water utilities

December 2021 UNM CS Seminar 3

Firehose

• Benchmark that captures the essence of cyber standing queries
– Sandia National Laboratories + DoD

• Input: stream of (key, value) pairs
• Report a key when seen 24th time.

December 2021 UNM CS Seminar 4

Infinite key space

Drifting
window

FIREHOSE
data

structure

Key stream

Expiration

How much working space do we need
relative to the active set size?

http://firehose.sandia.gov/

Heavy-Hitters Problem

• Also called the frequent items problem

• Given a finite stream of N items, find ones that appear most
frequently, e.g., items that occur 10% of the time

• Formally, report all items that occur at least ɸN times

December 2021 UNM CS Seminar 5

Misra Gries Observations

• Suppose we want to find any element in a stream of size N that has
a constant fraction (say ɸ = 1/5) of the elements

• There can be at most 5 such elements
• If we find a count from 5 different elements, we can throw them

away
– Can do that fewer than N/5 times if don’t throw all out
– So any element with count at least N/5 still has a

representative

December 2021 UNM CS Seminar 6

● Maintain counters in memory

● When an item arrives:

○ if there is a counter for it, increment the counter

○ if there is no counter for it

■ and there is space, add a counter and set to 1

■ otherwise, decrement all counters

● In a second pass, get actual counts for items left from first pass

Misra Gries (MG) Algorithm

⁄1 ɸ

[Cormode 05]

December 2021 UNM CS Seminar 7

Misra Gries (MG) Algorithm

4

1 ⌈1/ɸ⌉

3 2 1 1 2 3

Items distinguished by color. Counts as shown

December 2021 UNM CS Seminar 8

4

1 ⌈1/ɸ⌉

3 2 1 2 2 3

Misra Gries (MG) Algorithm

December 2021 UNM CS Seminar 9

4

1 ⌈1/ɸ⌉

3 2 1 2 2 13

Misra Gries (MG) Algorithm

December 2021 UNM CS Seminar 10

4

1 ⌈1/ɸ⌉

3 3 1 2 2 13

Misra Gries (MG) Algorithm

December 2021 UNM CS Seminar 11

4

1 ⌈1/ɸ⌉

3 3 1 2 2 13 1

Misra Gries (MG) Algorithm

Item not in the list and there’s no space

December 2021 UNM CS Seminar 12

3

1 ⌈1/ɸ⌉

2 2 0 1 1 02 0

Misra Gries (MG) Algorithm

Decrement all counters

December 2021 UNM CS Seminar 13

3

1 ⌈1/ɸ⌉

2 2 1 1 2

Misra Gries (MG) Algorithm

Remove if zero

December 2021 UNM CS Seminar 14

Problems with Mishra-Gries for Us

● Requires 2 passes

○ Slow and real cyber streams are infinite

● Requires space. For Firehose, ɸ = 24/N so this
requires Ω(N) space.

15

⌈1/ɸ⌉

December 2021 UNM CS Seminar

Academic Streaming

When there are large lower bounds (space required for an exact
solution):
• Use more than fixed (constant) space, but as little as possible
• Use multiple passes
• Approximation (usually randomized)

– Trade off space for accuracy [Alon et al. 96, Berinde et al.
10, Bhattacharyya et al. 16, Bose et al. 03, Braverman et al. 16, Charikar et
al. 02, 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen et al. 16, Manku
et al. 02., Misra and Gries. 82, etc.]

• But we require no false negatives (no approximation that drops)
• Need fast response, eventually on infinite streams (no 2-pass)
• Constant space (e.g. the size of RAM) will not be enough

December 2021 UNM CS Seminar 16

Firehose

• Benchmark that captures the essence of cyber standing queries
– Sandia National Laboratories + DoD

• Input: stream of (key, value) pairs
• Report a key when seen 24th time.

December 2021 UNM CS Seminar 17

Infinite key space

Dri>ing
window

FIREHOSE
data

structure

Key stream

Expiration

How much working space do we need
relative to the active set size?

http://firehose.sandia.gov/

Critical Data Structure Size

• Testing with benchmark reference implementation in Waterslide
– 50M keys (varying counts)
– Stable window

• Accuracy of cyber-analytics depends on keeping enough data
• Difficult to determine what to throw away

– Most keys act the same at their start
• Keep as much data as we can!

December 2021 UNM CS Seminar 18

Table
Size

Generator
Window Size

Reportable
keys

Reported
keys

Packet
drops

2^20 2^20 94,368 62,317 0

2^20 2^21 63,673 15,168 0

2^20 2^22 17,063 9 0

https://github.com/waterslideLTS/waterslide

What is Happening?

December 2021 UNM CS Seminar 19

• Waterslide uses ‘d-left hashing’
– Two rows of buckets
– Constant-size
– Fast
– Waterslide adds LRU

expiration per bucket

• 1/16 of all data is always subject
to immediate expiration in
steady state

• As active generator window
grows, FIREHOSE accuracy
quickly goes to zero

Even when window size is only
4x data structure size, most

reportable data are lost before
It is reported.

Broder, Andrei, and Michael Mitzenmacher. "Using multiple
hash functions to improve IP lookups." INFOCOM 2001

External Memory

December 2021 UNM CS Seminar 20

• Disks, SSD (solid-state drives)
• Data transferred in blocks of size B
• Efficient algorithms ensure most of the block is used
• When possible, delay block transfers to fill blocks
• Theoretical analysis uses B, M, and data size N

– Analysis counts only block transfers

Write Optimization

• The basis for TokuDB

December 2021 UNM CS Seminar 21

Write-Optimized
Data Structures
(WODS)

Brodal and Fagerberg
SODA 2003

December 2021 UNM CS Seminar 22

B-trees

• Larger branching factor. B is block size

December 2021 UNM CS Seminar 23

• If B is about 1024, this is log2 B = 9x fewer levels than binary trees
– Fewer I/Os when lower levels are on disk/SSD

Write-Optimized Data Structures

Write optimized data structures like COLA, cascade filters, etc. (WODs)
let you do fast inserts and B-tree like queries

Amortized complexity: for a data structure with N elements

December 2021 UNM CS Seminar 24

Op.mal Insert Optimal Query

𝑂
log(𝑁𝑀)
𝐵

Ω(log!𝑁)

Write optimization:
Cascade filter

[Bender et al. 12, Pandey et al. 17]

3

0

2

1

RAM
FLASH

log(N/M)

● Each level is an efficient hash table with counts

● It greatly accelerates insertions at some cost to queries.

N

M

M

2M

4M

December 2021 UNM CS Seminar

e.g. N = 1T
M = 8B
8 levels

25

3

0 C,1 D,1 F,1

2

1

log(N/
M)

● Items are first inserted into the in-memory hash table.

● When the in-memory table reaches maximum load factor it flushes

N

Ingestion “cascades”

M

RAM

FLASH

December 2021 UNM CS Seminar 26

3

0

2

1 C,1 D,1 F,1

log(N/M)

● During a flush, find the smallest i such that the items in l0, . . . , li can be

merged into level i.

N

M

Ingestion “cascades”

RAM

FLASH

December 2021 UNM CS Seminar 27

3

0 H,1 J,1 A,1

2log(N/M)

N

M

Ingestion “cascades”

1 C,1 D,1 F,1

RAM

FLASH

December 2021 UNM CS Seminar 28

3

0

2 A,1 C,1 D,1 F,1 H,1 J,1

1

log(N/M)

N

M

Ingestion “cascades”

RAM

FLASH

December 2021 UNM CS Seminar 29

3

0 A,1 D,1 J,1

1

log(N/
M)

N

M

Ingestion “cascades”

2 A,1 C,1 D,1 F,1 H,1 J,1

RAM

FLASH

December 2021 UNM CS Seminar 30

3

0

1 A,1 D,1 J,1

log(N/
M)

N

M

Ingestion “cascades”

2 A,1 C,1 D,1 F,1 H,1 J,1

RAM

FLASH

December 2021 UNM CS Seminar 31

3

0 A,1 F,1 H,1

log(N/
M)

N

M

Ingestion “cascades”

1 A,1 D,1 J,1

2 A,1 C,1 D,1 F,1 H,1 J,1

RAM

FLASH

December 2021 UNM CS Seminar 32

0

2

1

log(N/
M)

N

M

Ingestion “cascades”

3 A,3 C,1 D,2 F,2 H,2 J,2

RAM

FLASH

December 2021 UNM CS Seminar 33

0

2

1

RAM

FLASH

log(N/M)

N

Cascade filter Performance

Number of I/Os per item:

lookup(key)M

3 A,3 C,1 D,2 F,2 H,2 J,2

Look up:

Insertion:

December 2021 UNM CS Seminar

Queries too slow for us

34

Reminder: Standing Queries

Database requirements:
• No false negatives -> Keep at much data as possible; use external memory
• Limited false positives
• Immediate response preferred
• Keep up with a fast stream (millions/sec or faster) -> write-optimization

– Standing queries have a query per time step
– Can delay reporting to keep up with stream

December 2021 UNM CS Seminar 35

Time Stretch

● Can’t afford multiple look ups per element
● Compromise: allow a little delay

36

Birthtime
(I1)

24-th occurrence
(I24)

Report time
(IR)

Timeline
Time in system

Delay

delay  ↵ ⇤ time in system

December 2021 UNM CS Seminar

Time-stretch filter

2

0

1

RAM

FLASH
log(N/M)

● Arrays at each level split into l = (𝛼+1)/𝛼 equal-sized bins. Here l = 2 and ⍺ = 1.

● Flushes at bin granularity on fixed round-robin schedule.

● Will always see the oldest element in time to report

● Bounded delay time, factor (𝛼+1)/𝛼 slower ingestion

● This example: 1 hour for 24 instances to arrive report up to 1 hour late and

system runs 2x slower than when we gave no promises on delay

N

December 2021 UNM CS Seminar 37

Optimal insert cost for EM &
write-optimized dictionaries

Theorem. Given a stream of size N, the amortized cost of solving firehose

with a time stretch is

𝑂
1 + 𝛼
𝛼

1
𝐵 log

𝑁
𝑀

1 + 𝛼

Time-Stretch Filter Analysis

December 2021 UNM CS Seminar 38

Theorem. Given a stream of size N, the amortized cost of solving firehose

with a time stretch is

𝑂
1 + 𝛼
𝛼

1
𝐵 log

𝑁
𝑀

1 + 𝛼

Time-Stretch Filter Analysis

Factor lost because we only flush
a fraction of each level;
Constant loss for constant 𝛼

Almost-online reporting with no
extra query cost!

December 2021 UNM CS Seminar 39

How to do immediate reporting

2 A,1 B,1 C,1 D,1 E,1 F,1 G,1 H,1 I,2 J,1 K,1 L,1

0 I,1

1 B,1 E,1 F,1 I,4 J,1 L,1

N

log(N/
M)

Lookup (I)

● In a cascade filter, we would need to perform multiple I/Os for every new

item arriving in the RAM QF.

RAM

FLASH

December 2021 UNM CS Seminar 40

Level Thresholds

2 A,1 B,1 C,1 D,1 E,1 F,1 G,1 H,1 I,2 J,1 K,1 L,1

0 I,1

1 B,1 E,1 F,1 I,4 J,1 L,1

N

log(N/
M)

Level
bounds

● At most 𝜏i counts of a key can be stored at level i. Higher closer to RAM.

● Shuffle merge: combine total count for a key on all visible levels, report if

appropriate, otherwise push as low as possible respecting level thresholds.

RAM

FLASH

December 2021 UNM CS Seminar 41

Popcorn filter: immediate reporting

2 A,1 B,1 C,1 D,1 E,1 F,1 G,1 H,1 I,2 J,1 K,1 L,1

0 I,1

1 B,1 E,1 F,1 I,4 J,1 L,1

RAM
FLASH

N

L=
log(N/M)

● Avoid unnecessary I/Os if we can upper bound the total instances on disk

Lookup if

Lookup (I)

December 2021 UNM CS Seminar 42

Popcorn filter

2 A,1 B,1 C,1 D,1 E,1 F,1 G,1 H,1 I,2 J,1 K,1 L,1

0 I,1

1 B,1 E,1 F,1 I,4 J,1 L,1

RAM
FLASH

N

log(N/M)

Lookup (I)

• Immediate reporting
works if keys have power-
law distribution:
probability key count is c
is Zc-θ, where Z is a
normalization constant

Key frequency

N
um

be
r o

f k
ey

s

December 2021 UNM CS Seminar 43

The number of I/Os per stream element is

Popcorn filter: immediate reporting

<latexit sha1_base64="ffREs65RCy0xd8ClRn2MTbhZQuU=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmIzGxIneEqJUh2lhiAkiEC9lb9mDD3t5ld86EEP6FjYXG2Ppv7Pw3LnCFgi+Z5OW9mczMCxIpDLrut5NbW9/Y3MpvF3Z29/YPiodHLROnmvEmi2Ws2wE1XArFmyhQ8naiOY0CyR+C0e3Mf3ji2ohYNXCccD+iAyVCwSha6bHbGHKk5JpUesWSW3bnIKvEy0gJMtR7xa9uP2ZpxBUySY3peG6C/oRqFEzyaaGbGp5QNqID3rFU0YgbfzK/eErOrNInYaxtKSRz9ffEhEbGjKPAdkYUh2bZm4n/eZ0Uwyt/IlSSIldssShMJcGYzN4nfaE5Qzm2hDIt7K2EDammDG1IBRuCt/zyKmlVyt5FuXpfLdVusjjycAKncA4eXEIN7qAOTWCg4Ble4c0xzovz7nwsWnNONnMMf+B8/gAey4/p</latexit>

⇥ > 2
When

Note: for θ < 2.96
<latexit sha1_base64="u7lwRIA7iCh6VJDV/p/1rs+vIQw=">AAACGnicbVDJSgNBEO2JW4xb1KOXxiDEQ+J0iMvBQ9CLxwjZIImhp1NjmvQsdPcIYZjv8OKvePGgiDfx4t/YWQ6a+KDg8V4VVfWcUHClbfvbSi0tr6yupdczG5tb2zvZ3b2GCiLJoM4CEciWQxUI7kNdcy2gFUqgniOg6Qyvx37zAaTigV/ToxC6Hr33ucsZ1UbqZUnHlZTFcBeTk3ynNgBNC+Q4SRaUAknwJS4VT3vZnF20J8CLhMxIDs1Q7WU/O/2ARR74mgmqVJvYoe7GVGrOBCSZTqQgpGxI76FtqE89UN148lqCj4zSx24gTfkaT9TfEzH1lBp5jun0qB6oeW8s/ue1I+1edGPuh5EGn00XuZHAOsDjnHCfS2BajAyhTHJzK2YDarLSJs2MCYHMv7xIGqUiOSuWb8u5ytUsjjQ6QIcojwg6RxV0g6qojhh6RM/oFb1ZT9aL9W59TFtT1mxmH/2B9fUDz4CeLQ==</latexit>

e1/(⇥�1)

e1/(⇥�1) � 1
< 2.5

<latexit sha1_base64="Be33oS08Kce7qeKBK6QZMloxyLY=">AAACTHicbZDNSxtBGMZn40dt/Gi0x14GgxAPxt0i1Ysg7aUXRcGokI3h3cm7yeDM7jLzrhCW/QO99ODNv8KLh0opOPk42KQvDDw8z/swM78oU9KS7z95lYXFpeUPKx+rq2vrG59qm1tXNs2NwJZIVWpuIrCoZIItkqTwJjMIOlJ4Hd39GOXX92isTJNLGmbY0dBPZCwFkLO6NRH2QWvgxzyMDYgCb4tgvxFeDpBgL9gtyzlnLyh5KHop8VBhTI1J76wsTsvQyP6AdmcK1W6t7jf98fB5EUxFnU3nvFt7DHupyDUmJBRY2w78jDoFGJJCYVkNc4sZiDvoY9vJBDTaTjGGUfId5/R4nBp3EuJj932jAG3tUEduUwMN7Gw2Mv+XtXOKjzqFTLKcMBGTi+JccUr5iCzvSYOC1NAJEEa6t3IxAAeHHP8RhGD2y/Pi6msz+NY8uDion3yf4lhhX9g2a7CAHbIT9pOdsxYT7IE9s9/s1fvlvXh/vL+T1Yo37Xxm/0xl+Q2RaLFJ</latexit>

� =
e1/(⇥�1)

e1/(⇥�1) � 1
·
✓
N

M

◆1/(⇥�1)

<latexit sha1_base64="Ve6+kEgCPiKjjH8DkFdNje2+q3k=">AAAB+HicbVBNSwMxEM3Wr1o/uurRS7AInsquiHqSohdPUsF+QHcps2m2DU2yS5IVaukv8eJBEa/+FG/+G9N2D9r6YODx3gwz86KUM20879sprKyurW8UN0tb2zu7ZXdvv6mTTBHaIAlPVDsCTTmTtGGY4bSdKgoi4rQVDW+mfuuRKs0S+WBGKQ0F9CWLGQFjpa5bDtIBw3f4Cgd9EAK6bsWrejPgZeLnpIJy1LvuV9BLSCaoNISD1h3fS004BmUY4XRSCjJNUyBD6NOOpRIE1eF4dvgEH1ulh+NE2ZIGz9TfE2MQWo9EZDsFmIFe9Kbif14nM/FlOGYyzQyVZL4ozjg2CZ6mgHtMUWL4yBIgitlbMRmAAmJsViUbgr/48jJpnlb98+rZ/Vmldp3HUUSH6AidIB9doBq6RXXUQARl6Bm9ojfnyXlx3p2PeWvByWcO0B84nz9BvZIy</latexit>

�N > �

December 2021 UNM CS Seminar

< 1/100 for Firehose for θ=2.96 and N/M=25
About 1/1000

44

Count stretch

A count-stretch of ⍵, we must report an element no later than

when its count hits (1+ ⍵)T. In immediate reporting ⍵ = 0.

Birthtime T-th occurrence Report count
CR

Timeline

December 2021 UNM CS Seminar

⍵T instances arrive

45

Popcorn filter: Count Stretch

<latexit sha1_base64="ffREs65RCy0xd8ClRn2MTbhZQuU=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmIzGxIneEqJUh2lhiAkiEC9lb9mDD3t5ld86EEP6FjYXG2Ppv7Pw3LnCFgi+Z5OW9mczMCxIpDLrut5NbW9/Y3MpvF3Z29/YPiodHLROnmvEmi2Ws2wE1XArFmyhQ8naiOY0CyR+C0e3Mf3ji2ohYNXCccD+iAyVCwSha6bHbGHKk5JpUesWSW3bnIKvEy0gJMtR7xa9uP2ZpxBUySY3peG6C/oRqFEzyaaGbGp5QNqID3rFU0YgbfzK/eErOrNInYaxtKSRz9ffEhEbGjKPAdkYUh2bZm4n/eZ0Uwyt/IlSSIldssShMJcGYzN4nfaE5Qzm2hDIt7K2EDammDG1IBRuCt/zyKmlVyt5FuXpfLdVusjjycAKncA4eXEIN7qAOTWCg4Ble4c0xzovz7nwsWnNONnMMf+B8/gAey4/p</latexit>

⇥ > 2

When

Note: for θ < 2.96
<latexit sha1_base64="u7lwRIA7iCh6VJDV/p/1rs+vIQw=">AAACGnicbVDJSgNBEO2JW4xb1KOXxiDEQ+J0iMvBQ9CLxwjZIImhp1NjmvQsdPcIYZjv8OKvePGgiDfx4t/YWQ6a+KDg8V4VVfWcUHClbfvbSi0tr6yupdczG5tb2zvZ3b2GCiLJoM4CEciWQxUI7kNdcy2gFUqgniOg6Qyvx37zAaTigV/ToxC6Hr33ucsZ1UbqZUnHlZTFcBeTk3ynNgBNC+Q4SRaUAknwJS4VT3vZnF20J8CLhMxIDs1Q7WU/O/2ARR74mgmqVJvYoe7GVGrOBCSZTqQgpGxI76FtqE89UN148lqCj4zSx24gTfkaT9TfEzH1lBp5jun0qB6oeW8s/ue1I+1edGPuh5EGn00XuZHAOsDjnHCfS2BajAyhTHJzK2YDarLSJs2MCYHMv7xIGqUiOSuWb8u5ytUsjjQ6QIcojwg6RxV0g6qojhh6RM/oFb1ZT9aL9W59TFtT1mxmH/2B9fUDz4CeLQ==</latexit>

e1/(⇥�1)

e1/(⇥�1) � 1
< 2.5

● Do as with the popcorn filter, but report when count in RAM is ɸN
● Set level thresholds such that maximum on disk is ωɸN
● Amortized I/Os per stream element is:

<latexit sha1_base64="OWzp7p34Vq1qx66lbMSzkm2xpUY=">AAACK3icbVDLSgNBEJz1bXxFPXoZDIIeEndF1JOIXjyJQqKBbAyzk95kcHZnmekVwrL/48Vf8aAHH3j1P5w8DmosaCiquunuChIpDLruuzMxOTU9Mzs3X1hYXFpeKa6uXRuVag41rqTS9YAZkCKGGgqUUE80sCiQcBPcnfX9m3vQRqi4ir0EmhHrxCIUnKGVWsVTP+kKekF93lZIfRVBh9Fj6oea8QxuM2932692AVnZ28nzMaXs5YVWseRW3AHoOPFGpERGuGwVn/224mkEMXLJjGl4boLNjGkUXEJe8FMDCeN3rAMNS2MWgWlmg19zumWVNg2VthUjHag/JzIWGdOLAtsZMeyav15f/M9rpBgeNTMRJylCzIeLwlRSVLQfHG0LDRxlzxLGtbC3Ut5lNia08fZD8P6+PE6u9yreQWX/ar90cjqKY45skE2yTTxySE7IObkkNcLJA3kir+TNeXRenA/nc9g64Yxm1skvOF/f6jGlBA==</latexit>

�N · ! >
e1/(⇥�1)

e1/(⇥�1) � 1

<latexit sha1_base64="FsblxEJHPSzS+Ly2uReO3YX6gGU=">AAACI3icbZDLSgMxFIYz9VbrbdSlm2AR6qbMSFFxVerGjVrBXqBTSibNtKGZC8kZoQzzLm58FTculOLGhe9i2s5CWw+E/Hz/OSTndyPBFVjWl5FbWV1b38hvFra2d3b3zP2DpgpjSVmDhiKUbZcoJnjAGsBBsHYkGfFdwVru6Hrqt56YVDwMHmEcsa5PBgH3OCWgUc+8Ktw7gnlQcjxJaGKnSS3FjggHeI7xnN+lya3mkg+GcJpdPbNola1Z4WVhZ6KIsqr3zInTD2nsswCoIEp1bCuCbkIkcCpYWnBixSJCR2TAOloGxGeqm8x2TPGJJn3shVKfAPCM/p5IiK/U2Hd1p09gqBa9KfzP68TgXXYTHkQxsIDOH/JigSHE08Bwn0tGQYy1IFRy/VdMh0SHAjrWgg7BXlx5WTTPyvZ5ufJQKVZrWRx5dISOUQnZ6AJV0Q2qowai6Bm9onf0YbwYb8bE+Jy35oxs5hD9KeP7Bwqmo/E=</latexit>

O

✓
1

B
log

✓
N

M

◆◆

December 2021 UNM CS Seminar 46

Multithreading and Deamortization
● Data structures run well on average, but some operations take a

long time
● Do a little work for each arriving element

○ Serial count-stretch guarantees still hold.

○ Time-stretch does not in general, does if input stream randomized

47

2

0

1

RAM

FLASH
Cones

December 2021 UNM CS Seminar 47

Multithreading/Deamortization

2

0

1

RAM
FLASH

Threads

Cones

Each thread operates by first taking a lock at the cone and then performing the
insert operation.

December 2021 UNM CS Seminar 48

Local
CQF

Multithreading/Deamortization

2

0

1

RAM
FLASH

Local
CQF

Local
CQF

Local
CQF

Threads

Cones

If there is contention, thread inserts the item in its local buffer (consolidating
counts) and continues. When buffer full, waits for locks to clear buffer.

December 2021 UNM CS Seminar 49

Multithreaded Count Stretch

● P = # of threads
● If I thread acquires local count for an element > T/P,

waits to store that one element
● For multithreading, given ⍵ and T > P, guarantees a

count stretch of 2 + ⍵.

5050

Experiments

Machines:
• Most experiments: Skylake CPU, 4 cores, 2.6 GHz, 32GB RAM, 1TB

SSD
• Scalability experiments: Intel Xeon(R) CPU, 64 cores, 512 GB RAM,

1TB SSD

Input stream: mostly Firehose, power-law generator, active set of 1M
key, drifting in larger key space. Read from file.

Stream size: 64M-512M for validation experiments (needs offline
analysis; artificially reduce RAM); 4B for scalability experiments

Baseline comparison: Cascade filter

December 2021 UNM CS Seminar 51

Time stretch
Ti

m
e

st
re

tc
h

December 2021 UNM CS Seminar

Deamortization and multithreading had negligible effect on empirical time stretch

RAM level: 8388608 slots, levels: 4, growth factor: 4, cones: 8, threads: 8, number
of observations: 512M. (I think ⍺ = 1)

52

Time stretch

Values of ⍺ left to right: 1, 0.33, 0.14, 0.06.

Ti
m

e
st

re
tc

h

December 2021 UNM CS Seminar 53

Time stretch - robustness

Robustness to key-count distribution:
24M: RAM Size (M) keys 24-50 times, rest u.a.r from large universe
24M-23: M keys appear 24 times, rest appear 23
Round-robin: M keys in a round robin, all > 24
Count-UR: key counts all u.a.r 1 to 25

December 2021 UNM CS Seminar 54

Count stretch

● Deamortization and multithreading had negligible effect on average count stretch.
Multithreading had more variance.

● level thresholds: (2, 4, 8)

C
ou

nt
 st

re
tc

h

December 2021
UNM CS Seminar 55

Total I/O

December 2021
UNM CS Seminar

● Immediate reporting has about the same I/O as time-stretch with ⍺ = 1
● RAM level: 4194304 slots in the CQF, levels: 3, growth factor: 4, number of

observations: 64M
56

Scalability – count stretch

December 2021 UNM CS Seminar

Reports all reportable keys. Stream size 4B.

57

Instantaneous Throughput

December 2021 UNM CS Seminar

About 3x improvement of throughput with 4 threads, more steady

RAM level: 8388608 slots, levels: 4, growth factor: 4, cones: 8, threads: 8, number
of observations: 512M. (I think ⍺ = 1) – same as before

58

Final Thoughts

Missing detail: Separate data structure in RAM of reported keys
– Reporting a key twice is an error

Summary:
• Algorithms and data structures allow rapid stream monitoring using

“normal” architecture such as SSDs
• Compromise between fast ingestion and queries, but can approximately

have both
• Store as much as you can, while keeping up with the stream, to get the

best information
• This work bridges the gap between streaming and external memory
Next Steps:
• Intentional data expiration for infinite streams (preliminary results)

December 2021 UNM CS Seminar 59

Prashant Pandey, Shikha Singh, Michael A Bender, Jonathan W Berry, MarVn Farach-Colton, Rob Johnson, Thomas M Kroeger, and
Cynthia A Phillips. 2020. Timely Repor[ng of Heavy Hi]ers using External Memory. In Proceedings of the 2020 ACM SIGMOD
Interna[onal Conference on Management of Data. 1431–1446.

And journal version. Same authors (first two authors swapped), same [tle, ACM Transac[ons on Database Systems (TODS) 46.4 (2021):
1-35.

Extra Slides

December 2021 UNM CS Seminar 60

External-Memory Misra Gries

• A sequence of geometrically increasing Misra-Gries tables

• The smallest table is in memory and is of size M, the last
table is of size

• Total levels = 𝑂(log1/𝜀𝑀)

⌈1/𝜀⌉

Structure

• The top level receives its input from the stream

• Decrements from one level are inputs to the level below

• Decrements from the last level leave the structure

Algorithm

December 2021 UNM CS Seminar

