
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Recent Developments in the Nuclear Data
Processing Code AMPX

AMPX Team: J. Brown, C. Chapman,

J. McDonnell (speaker), D. Wiarda (ORNL)

A. Holcomb (NEA)

ND 2022

July 28, 2022

22

Summary

• Overview about ENDF and GNDS reading in AMPX

• AMPX Covariance Processing Updates

• Thermal Scattering Law Updates

• Data Libraries for SCALE 6.3.0

33

ENDF data in AMPX

MG and CE
libraries

Covariance
libraries

Y12
Kinematics

POLIDENT
Point data

PUFF
Covariance

ORIGEN
library

generation
codes

Modules that read/write
ENDF data

The modules that produce final libraries
use SCALE and AMPX in-memory formats

Other modules use
AMPX/SCALE
internal data
formats

No processing code in AMPX directly
accesses the ENDF files. An ENDF
reading routine fills in-memory structures
that are used in the processing codes.

The same pattern will be incorporated
in SAMMY.

44

AMPX Strategy to Support GNDS
• Internal AMPX C++ structures are the ”API” that AMPX and

SAMMY will access.

• Requirements:
– Reader/Writer that supports GNDS and fills AMPX internal C++

structures.
– Testing via processing ENDF formatted and GNDS formatted files and

compare results.
– An efficient way to support GNDS which also allows us to easily apply

updates, prioritized according to the needs of AMPX/SCALE.

55

GNDS low access classes
• Several low-level access classes are used to access the GND

files.

• Code has been updated to work with the GNDS-2.0 branch in
the NEA GNDS gitlab

• Code is available from
https://code.ornl.gov/RNSD/gnds/

• Branch for GNDS-2.0 is at:
https://code.ornl.gov/RNSD/gnds/-/tree/GNDS-2.0

https://code.ornl.gov/RNSD/gnds/
https://code.ornl.gov/RNSD/gnds/-/tree/GNDS-2.0

66

On-Disk file access
The direct access to the XML (or HDF5 or JSON) GNDS file is
abstracted into access to elements and attributes:

Interface class
Attribute

getName
setName
getValue
setValue

Interface class
Element

getNumAttribute
getAttribute
getNumElements
getElement
getValue
getValueData
….
Setter functions

Interface class
EndfDocument

getRootElement
createRootElement

Based on pugixml. This is a layer on top of the actual XML DOM
reader to allow easy switch to different reader if needed.
Classes are in src/xml

77

Parent classes for all GND classes
• EndfDocument
– The abstract class to allow access to the elements and attributes of the

GNDS file to shield the downstream classes from on-disk format

• Definitions
– Basic conversion roles from text to numbers
– Enumerations for Interpolation rules

• Container
– Establishes the tag name and keeps track of the label and value

attributes
– Has the base implementation to retrieve/cache element information

from disk

Classes are in src directory

88

Classes for selected GPDC objects
In order to make access more fine-grained a couple of low-level
GNDS data container have hand-edited C++ source code:

• ValuesContainer (for ”gpdc::values” child)

• TableContainer (for “gpdc::table” child)

• ArrayContainer (for “gpdc::array” chid)

• ExternalFiles (for “gpdc::ExtrernalFiles” and “gpdc::ExtrernalFile”
children)

Most GNDS classes inherit from GNDElement to manage
references and external files.

Classes are in src directory

99

GNDS specification classes

The remaining classes are generated from the JSON definition
files, using python classes:

• GenerateFromJson and helper files

Input is:

• File containing the JSON files to parse (relevant file for GNDS-2.0
is given as FormatJsonFile in FromJson directory)

• The directory containing the GNDS-2.0 gitlab data

• Final directory for the generated classes

Generated classes are available in src/gnd directory.

1010

GNDS access layers in AMPX
•Python generated C++ classes for all objects described in the GNDS

specification. Generation is based on the JSON files of the GNDS
standard. Approx. 290 classes are generated. All inherit from
GNDElement.

•Special names are selected for GNDS objects such as Double, which
have names not allowed in C++.

•Namespaces are handled as in the GNDS specification, thus the
same name but in different namespaces is allowed.

•Some correction for errors in the specification are built into the
Python generation code. If corrections are applied, they are
reported.

These classes are a very low-level access API to the GNDS content,
that mirror the specification directly.

1111

Generated C++ classes

• The classes, by virtue of being generated directly from the
JSON specifications are very close to the GNDS specification

• Children are:
– One shared pointer to the child class if occurrence is one or optional
– Vector of shared pointer if occurrence is more than one

• Classes allow to read and write GNDS formatted files.

• ToDo: We need to add more unit tests for all the classes.

1212

GNDS access layers in AMPX (cont.)
Classes that fill the AMPX C++ in-memory structures. These classes are

needed to:

•Select the correct “style” of the data the user requested, which includes
following the inheritance chain.

•Convert GNDS units to AMPX units

•Convert GNDS constructs into AMPX constructs.

•More user-friendly access methods to Particle data base

This layer is currently only reading data, but writing will be added as
needed. The first implementation for reading will be for resonance
parameters and corresponding covariance matrices for use in SAMMY.

Classes for GNDS-1.9 are available in SCALE 6.3 release and they are
currently updated as needed for GNDS-2.0.

1313

Covariance Processing: PUFF/COGNAC Improvements

• If it is a minor roundoff problem, we bump the values back into
the valid range, and report it (as in SCALE 6.2)

• If an egregious error (outside of precision) is detected for ANY
matrix element, PUFF and COGNAC (AMPX covariance
modules) will now:
– Set self correlation matrices to the identity matrix
– Set cross correlation matrices to the zero matrix

• In practice, these corrections have only affected a small subset
of isotopes in the ENDF-8 covariance library

1414

Thermal Scattering Law

• Improved angular gridding algorithm & more robust Short
Collision Time subroutine under review for inclusion in future
AMPX release
– More accurate processing of moderators at cryogenic temperatures

• Implementation of proposed mixed elastic scatting format
underway
– Multiple strategies being investigated:

• Combining elastic & inelastic incoherent functions into same MT
• Adding separate MT for incoherent elastic

1515

SCALE 6.3 Data
• ENDF-7.1

– Corrected probability tables for subset of evaluations (in MG & CE)
– New coupled MG libraries, xn252g47v7.1 and xn56g19v7.1

• gamma group structures identical to v7.1-200n47g and v7.1-28n19g
• neutron group structures identical to v7-1.252 and v7.1-56

– New Sodium Fast Reactor (SFR) MG library, 302 groups
– New general-purpose MG library, 1597 groups
– 56 group perturbation libraries for SAMPLER

• ENDF-8.0
– MG libraries

• Distributed in 252 (thermal), 302 (SFR), and 1597 (generic) groups
• Shielding libraries in 200n47g and 28n19g format

– CE library now distributed in HDF5 format
– Covariance data in 56 groups
– 56 group perturbation libraries for SAMPLER

1616

SCALE 6.3 Data (cont.)

• Removed all ENDF-7.0 libraries (kept all ENDF-7.1 libraries)

• Standard composition library is now rev40 (rev38 and rev39
removed)

• Removed ORIGEN JEFF activation libraries with no
corresponding transport library structure (44, 47, 49, 238)

• Removed obsolete helper data no longer required by modern
sequences

Note: SCALE 6.2 data is still fully operational with SCALE 6.3. A
limited set of SCALE 6.3 data can be used with the 6.2.* series.

1717

This work was supported by the Nuclear Criticality Safety
Program, funded and managed by the National Nuclear Security
Administration for the Department of Energy.

1818

Backup Slides

1919

Note on python generator classes
• C++ classes will automatically be generated for all tags listed

in the specified JSON definition files.

• Tags like ”table” or “array” will immediately reference the
hand-coded classes instead of generating new classes.

• Some resolution for ambiguous tags is attempted and
reported (see next slide).

• Some tags need to have special C++ names, as the tag
name is a reserved name ('double’ -> 'gndsDouble’)

• JSON namespace become C++ namespaces

• The project has a CMakeLists.txt file that allows to build a
library. This library is directly built and used in our SCALE builds.

2020

Future Plans

• Continue integration of AMPX and SAMMY components, focus
on modern design and de-duplication, efficient storage

• Migrate AMPX R-Matrix calculation to take advantage of new
SCALE/AMPX/SAMMY linear algebra interface

• Modernize PURM to improve run-time performance (perhaps
use SLBW + Leal-Hwang doppler broadening)

• GNDS 1.9 -> 1.10 after 1.10 is finalized

2121

Example output for GenerateFromJson
bash-3.2$ python GenerateFromJson.py FormatJsonFile ~/fudge/formats/ ../src/gnd/
Reading: /Users/dw8/fudge/formats//Styles/summary_styles.json
…
Reading: /Users/dw8/fudge/formats//Pops/summary_pops.json
mass refered to from tsl was found in common and pops

Disregarding the pops version and use common
Failed to find xs in context gpdc

using xs_in_xs_pdf_cdf1d in gpdc
Failed to find cdf in context gpdc

using cdf_in_xs_pdf_cdf1d in gpdc
Failed to find PoPs in context resonances

using PoPs_database in pops
Q refered to from resonances was found in common and pops

Disregarding the pops version and use common
uncertainty refered to from abstract was found in gpdc and pops

Disregarding the pops version and use gpdc
Failed to find functional in context abstract

using functionalNode in abstract
product refered to from fissionFragmentData was found in common and pops

Disregarding the pops version and use common
energy refered to from processed was found in common and pops

Disregarding the pops version and use common
energy refered to from processed was found in common and fpy

Use the common version
Failed to find angular in context processed

using angular_uncorrelated in transport
products refered to from transport was found in common and pops

Disregarding the pops version and use common
Failed to find PoPs in context transport

using PoPs_database in pops

2222

Note on python generator classes cont.
All data classes like XYs1D, regions1D, etc now contain an
”abstractNode” listed as “functional” or “functionalNode” in the
GNDS definitions.
– The python code checks that it is in namespace gpdc and that is one

of the classes denoted below

• The content of “function1ds” is rewritten as having children:
– 'XYs1d', 'regions1d', 'gridded1d', 'Ys1d', 'Legendre' , 'polynomial1d’,

'constant1d', 'xs_pdf_cdf1d’

• The content of “function2ds” is rewritten as having children:
– 'XYs2d', 'regions2d', 'gridded2d’

• The content of “function3ds” is rewritten as having children:
– ‘XYs3d', 'regions3d', 'gridded3d’

2323

GNDS access layers in AMPX (cont.)
Classes that fill the AMPX C++ in-memory structures. These classes are

needed as:

•To select the correct “style” of the data the user requested, which includes
following the inheritance chain.

•Convert GNDS units to AMPX units

•Convert GNDS constructs into AMPX constructs.

•More user-friendly access methods to Particle data base

This layer is currently only reading data, but writing will be added as
needed. The first implementation for reading will be for resonance
parameters and corresponding covariance matrices for use in SAMMY.

These classes are available in the SCALE 6.3 release.

2424

SAMMY/AMPX and GNDS – future plans

•SAMMY has its own ENDF reading and writing routines.

•We plan on switching to the AMPX reading and writing routines.
This was delayed in favor of using in-memory C++ AMPX classes
for resonance parameter and all covariance information.

•Having the relevant information in the in-memory classes will
make it much easier to switch out the reading and writing to
use AMPX methods.

•AMPX is in the final stages to add support for reading GNDS
formatted ENDF files.

•Switching to these routines will bring GNDS support to SAMMY. In
this context, writing of GNDS files will also be added.

2525

SAMMY/AMPX and GNDS – future plans

• SAMMY has its own ENDF reading and writing routines.

• We plan on switching to the AMPX reading and writing routines. This was delayed in favor of using in-
memory C++ AMPX classes for resonance parameter and all covariance information.

• Having the relevant information in the in-memory classes will make it much easier to switch out the
reading and writing to use AMPX methods.

• AMPX is in the final stages to add support for reading GNDS formatted ENDF files.

• Switching to these routines will bring GNDS support to SAMMY. In this context, writing of GNDS files will
also be added.

2626

SAMMY AND AMPX Release

• SAMMY source code is available from
https://code.ornl.gov/RNSD/SAMMY

• The code currently needs SCALE 6.3 beta 9 and up to compile,
instructions are provided.

•AMPX is part of SCALE and available with SCALE 6.2 and up.
Can be requested from the NEA Databank and RSICC.

•We are allowed to distribute AMPX as open source but have
not yet completed the correct mix of decoupling and sharing
with SCALE.

https://code.ornl.gov/RNSD/SAMMY

2727

GNDS access layers in AMPX (cont.)

Python code for generating low-level C++ routines as well as the
generated files are available open source:

https://code.ornl.gov/RNSD/gnds

Currently works for GNDS-1.9.

C++ classes support reading and writing.

We are in the process of updating to the upcoming GNDS-2.0.

https://code.ornl.gov/RNSD/gnds

