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Abstract—A novel method for fault classification and location
is presented in this paper. This method is divided into an
initial signal processing stage that is followed by a machine
learning stage. The initial stage analyzes voltages and currents
with a window-based approach based on the dynamic mode
decomposition (DMD) and then applies signal norms to the
resulting DMD data. The outputs for the signal norms are used
as features for a random-forests for classifying the type of fault
in the system as well as for fault location purposes. The method
was tested on a small distribution system where it showed an
accuracy of 100% in fault classification and a mean error of
∼30 m when predicting the fault location.

Index Terms—Dynamic Mode Decomposition, Fault Location,
Fault Classification, Random Forests, Machine Learning

I. INTRODUCTION

The main objective of power system protection techniques
is to keep system operations safe with a minimal reduction
in performance. To do so, protection techniques try to isolate
only the parts of the system that are affected by the fault. For
this task to be effective, protection devices must be able to
detect, classify and locate faults with high accuracy. The time
it takes for protection devices to engage their corrective actions
has decreased significantly in the past decades. This has been
partly possible by introducing time-domain protection schemes
like the theory of traveling waves, high sampling resolution
of the monitored signals, and advanced techniques to extract
information from those signals. The most popular of these
techniques are the discrete wavelet transform (DWT) [1] and
mathematical morphology [2]. Research on power system
protection, has also shown the benefits of using machine
learning (ML) and deep learning (DL) algorithms in fault
classification and location tasks [3].
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Combining DWT approaches with machine learning for
protection applications such as fault detection, classification,
and location has been reported previously [4]–[8]. For MM
techniques, this has also been investigated [9]. Other than [8],
these techniques typically requires data of at least a couple
of milliseconds to be able to perform their protective task.
However, the work in [8] demonstrated that even with a
window of 0.1 ms a combined ML and DWT approach is
able to classify and detect faults in a power system.

It has been demonstrated that the dynamic mode decom-
position is a useful tool for analyzing power system signals
with distortions due to power system faults [10]. The approach
proposed in [10] shows that the real part of the DMD eigen-
values varies in cases where faults in the system are present.
This work proposes a novel approach that combines the DMD
technique in [10] with ML for classifying and localizing faults
in power systems. The proposed method initially obtains time
signals related to the DMD eigenvalues of the voltages and
current signals. Then ℓp-norms are used to obtain metrics
from the DMD signals which are then used as the features of
an ML algorithm, which was selected to be a random forest
(RF). The paper shows the importance of the features for the
classification and location tasks. The method is tested in the
same system as [8]. The results of the proposed approach show
that the mean predicted error for the fault location task was
halved with respect to that previous work. Because the results
in [8] show an accuracy of 100%, those results cannot be
improved but were matched by the proposed method.

The rest of the paper is organized as follows. The power
system used in this work is presented in Section II. The
proposed method that uses DMD to process the data and RFs
for fault location and classification is presented in Section III.
The evaluation of the proposed method in the test system
is presented in Section IV. The conclusions and potential
continuations of this work are presented in Section V.

II. TEST SYSTEM

The test power system used in this paper is shown in Fig. 1.
The system consists of a variable-length distribution line at
12.47kV that is connected to a 300 kVA per phase load. The
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generator is connected at the primary side of the transformer
at a 115 kV voltage level. The faults of study in this system
are included at varying locations from 25 m until 4000 m in
steps of 25 m. These faults are always included at the fault
bus. This work considers three different types of faults: single-
line-to-ground (SLG), line-to-line (LL), and line-to-line-to-
line (LLL). It also considers seven different values of fault
resistances: 0.01, 0.05, 0.1, 0.5, 1, 5, and 10 Ω. In total,
3360 simulations were used in this work. The system was
implemented in PSCAD and the simulations were performed
with a resolution of 10 MHz (for a time step of 0.1µs).
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Fig. 1: Schematic of the system used in this work.
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Fig. 2: Voltages for the system in Fig. 1 for the case of a SLG fault applied
at 475 meters with a resistance of 0.1 Ω.
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Fig. 3: Currents for the system in Fig. 1 for the case of a SLG fault applied
at 475 meters with a resistance of 0.1 Ω.

Figs. 2 and 3 show, respectively, the voltages and currents of
the system for a SLG fault with a resistor of 0.1 Ω. These re-
sults are obtained from the measurement point (the secondary
of the transformer) and correspond to a time window of 2 ms,
which extends 1ms before and after the fault inception time.
The signals shown in these figures are those obtained from
the simulations of the system in Fig. 1 but contaminated with
noise. These signals have a signal-to-noise ratio (SNR) of 45
dB, which is the level of noise used in this work.

III. METHOD FOR FAULT LOCATION AND CLASSIFICATION

The proposed method for fault location and classification is
presented in this section. The method uses a window of 100 µs
of voltage and current measurements from the power system
with 50 µs coming before and 50 µs coming after the fault
detection. These data are analyzed with the DMD and then
with norms-based metrics. The data that is generated in the
metrics stage is then used to train a random forest algorithm
for fault location and another for fault classification.

A. The Dynamic Mode Decomposition

DMD is a method aimed at estimating system dynamics
from measurement data [11], [12]. This method computes
the best linear dynamics of the system for which the data
is captured even if that system is nonlinear. DMD approx-
imates the Koopman (or composition) operator which is a
linear, infinite-dimensional operator able to represent nonlinear
systems on a (Hilbert) space of measurement functions of
its state. Even though it is linear, the Koopman operator is
able to represent nonlinear dynamics by being an infinite-
dimensional operator [13]. DMD determines the eigenvalues
and eigenvectors of a finite-dimensional linear system that
can be interpreted as approximating, the infinite-dimensional
Koopman operator. DMD is also interpreted as a dimension-
ality reduction approach that, at its core, uses singular value
decomposition.

Given a sequential set of measurements, {x1,x2 . . . ,xm}
where xi ∈ Rn ∀i = 1 . . .m, taken from a system at regular
intervals, DMD estimates

xk+1 = Axk (1)

which is a linear system representation that captures the
dynamics present in the measurement set. Formally, the input
of DMD is a measurement set and its outputs are the following
two matrices:

Φ =

 | | |
ϕ1 ϕ2 . . . ϕr

| | |

 (2)

Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λr

 (3)

where Λ and Φ are matrices that, respectively, contain the
eigenvalues of the system and the corresponding right eigen-
vectors. It is important to note that the index r represents
the relevant dimensions of the DMD algorithm and is user-
defined parameter. Note that r ≤ n and for the case r = n no
dimensionality reduction was performed by DMD.

It has been demonstrated that DMD is a tool capable of
analyzing power system signals with disturbance information.
Particularly, the work in [10] proposes a window-based ap-
proach that uses DMD to detect when power system signals are
distorted due to an event in the system. That work uses the real
part of the DMD eigenvalue for its fault detection task. In this
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work, the DMD method of [10] is used as an initial processing
stage to compute the features for a machine learning algorithm.
The output dimensions of the DMD method are set to 2 (i.e.
r = 2), and the three cases of input signals are considered:
voltages, currents, and a case with both voltages and currents
are analyzed at once. Note that for this latter case both types of
signals, voltages and currents, were normalized before being
used as the input of the DMD method. Fig. 4 shows the real
part of the first eigenvalue, α1, obtained from DMD as a
function of time. The data used to obtain these results is a
window 100 µs around the fault inception from the signals
in Fig. 2. This figure shows that for all DMD window sizes
considered, α1 fluctuates after the fault occurs.
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Fig. 4: Real part of the first DMD eigenvalue (α1) as a function of time for
different window sizes.

B. Signal Norms

The ℓp-norm of a one-dimensional discrete signal in Rn is
defined by

||x||p =

 
nX

k=1

|xk|p
!1/p

∀1 ≤ p ≤ ∞ (4)

This function performs Rn 7→ R≥0, where R≥0 represents
the set of non-negative real numbers. For p = 1, (4) represents
the taxicab norm, for p = 2, (4) represents the Euclidean
norm (which is related to the energy of the signal), and when
p = ∞, (4) describes the infinity norm. These norms have the
following property

||x||∞ ≤ ||x||2 ≤ ||x||1. (5)

This work uses the 1 and ∞ norms which are defined by

||x||1 =

nX
k=1

|xk| (6)

||x||∞ = max
1≤k≤n

|xk|. (7)

The norms in this work are used on the signals obtained
from the DMD approach such as those presented in Fig. 4 as
a way to encapsulate their intrinsic information. Fig. 5 shows
an example of this approach for the 1-norm of α1 as a function
of the fault distance. The results in this figure are for a SLG
fault with the shades highlighting the differences due to the
different fault resistance values.
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Fig. 5: 1-norm of α1 as a function of the distance between the sensor and a
SLG fault. The shades indicate differences due to the fault resistance values.
In this figure, each point corresponds to a different simulation with a fault
applied at a different location.

C. Random Forests for Fault Location and Classification

The simulation setup explained in Section II for the system
in Fig. 1 produces 3360 simulations. For each of these sim-
ulations, the voltage, current, and a combination of voltage
and current signals are analyzed with DMD and metrics are
obtained based on the aforementioned norms in Section III-B.
There are 48 quantities that can be obtained for each simula-
tion, as follows

• Three measurements (voltages, currents, and voltage and
currents together).

• Real part of the two eigenvalues of DMD.
• Four window sizes (100, 250, 500, and 1000 points).
• Two norms (1 and ∞-norm).

These quantities are used as features for a RF as the selected
ML algorithm in this work for the tasks of fault classification
and location. RFs are a popular ML technique because of its
ability to work with a wide variety of data that does not require
any particular scaling, and because of the interpretability of its
results. RFs are supervised ML algorithms that are built from
decision trees. Using a technique called ensemble learning,
RFs aggregate the output of the decision trees that form part
of it. This technique is powerful and by using it the predictive
power of RFs is enhanced [14]. At its core, ensemble learning
is based on the law of large numbers where good prediction
can be built even from weak learners (that is ML algorithms
that are barely better than random guessing). However, this
only happens when the methods (or algorithms) that make
up the ensemble set are completely independent. For this
reason, when using ensemble learning, there is a need for
the predictors to be as independent as possible. One way to
create an ensemble of different predictors is to use different
algorithms. Another way is to use the same algorithms but to
train them with different subsets of the training set selected at
random. Bagging and pasting are the names of the sampling
techniques, when the sampling occurs respectively with and
without replacement [14]. In RFs the algorithms that are
aggregated are the same, decision trees as mentioned above,
usually trained with the bagging approach.
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IV. RESULTS IN THE TEST SYSTEM

This section presents the results of using the method for
fault location and classification described in Section III to
a set of simulated data obtained from the system in Fig. 1.
In this work two separate RFs are developed, one for the
classification task and the other for the fault-location task. The
3360 simulations were divided into 2730 for the training set
and 630 for the test set.

A. Fault Classification Task

The objective of this task is to determine the type of fault
that occurred, either SLG, or LL, or LLL. The RF obtained in
this work was trained with the 48 features for each one of the
2730 simulations that were labeled accordingly. The metrics
of performance on the testing data for this RF classifier are:

• Accuracy of 100%.
• Precision of 100%.
• Recall of 100%.
• F-score of 100%.

These results are the same as those in [8] where the initial
processing stage was based on the DWT and the signals
considered did not have any noise.

This work also analyzed the feature importance of the RF
for the classification task. Fig. 6 shows the 15 most important
features for the RF classifier. The results in this figure show
these features use both the infinity norm coupled with α1. In
this figure E, I, and C stand respectively for voltages, currents,
and the combination of both types of signals. These results also
show that all signals and window sizes are used in this task.
That is, the RF algorithm finds useful information at different
DMD resolutions.
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Fig. 6: Feature importance for the RF classifier for the fault classification task.

B. Fault Location Task

The objective of this task is to determine how far away
the fault occurred. This is a regression task that was also
approached with a RF trained with the same type of data as
the classifier in Section IV-A. The main difference is that the
labels in this case are the distance at which the fault occurred.
The structure of RFs is defined by a set of variables known
as hyperparameters. These variables define things such as the

number of decision trees in the RF and the minimum number
of leaves that they can have. These parameters ultimately
determine the performance of the RF. This research performs
a randomized search cross validation to determine the best
set of parameters for the fault-location task among a large set
of candidates. Table I shows the hyperparameters that were
part of the randomized cross-validation search. This table also
shows the search space and the optimal value of those hyper-
parameters. Further information about the hyperparameters of
RF can be found at [15]. The predictions with the RF for fault

TABLE I: RF parameters for randomized search (for regressor)

Hyperparameter Range Optimal Value

Number of estimators 40 to 400 in steps of 10 220
Min. samples split [2, 5, 10] 2
Min. samples leaf [1,2,4] 1

Max. features [auto, sqrt] sqrt
Max. depth 10 to 110 in steps of 10 40
Bootstrap [True, False] False

location trained in this work have the mean error and standard
deviation presented in Table II. This table also presents the
same metrics for the work in [8]. The results in this table
show that the proposed approach has around half of the mean
error and around 40% of the standard deviation than the work
in [8].

TABLE II: Comparison between the proposed method and the method in [8]

Method Mean Error (m) Standard Deviation (m)

Proposed approach 31.88 38.19
Approach in [8] 62.95 94.77

Fig. 7 shows the distribution of prediction errors per fault-
type. These results show that all these distributions are fat
tailed but that the distribution for LLL faults has a much
shorter tail than those for the other two fault types. These
results are different from those in [8] where the distribution
for LL faults has a much larger tail than the other two.

0 50 100 150 200 250 300 350

Error (m)

SLG

LL

LLL

F
au

lt
T

yp
e

Error Distribution per Fault Type

Fig. 7: Error distributions per fault-type for the RF regressor.

Fig. 8 shows the 15 most important features for the RF
regressor for the fault location task. Similar to the results for
the classifier in Fig. 6, the results in this figure show these
features use both the infinity norm coupled and real part of
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the first DMD eigevalue (α1). In addition, these features are
based on the voltages and currents but not in the case that
combines them both.
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Fig. 8: Feature importance for the RF regressor for the fault location task.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a new method to classify and locate
faults in power systems. The proposed method initially parses
voltage and current signals with the dynamic mode decompo-
sition. Then metrics based on the ℓp-norms are used on the
signals resulting from the DMD stage. These metrics become
the features for a machine learning approach that is based
on random forests. The proposed method is tested in signals
for a test system in noisy conditions, 45 dBs of SNR. The
data required in the proposed method is just a window of 100
µs which is significantly less than most existing approaches.
The method is shown to have an accuracy of 100% for the
classification task and a prediction error of around 30 m for the
fault location task. The average fault location error is around
half of the one reported for the same system in an earlier work.

This work can be expanded in three ways: (i) the parsing of
the voltage and current signals can be extended from DMD to
other methods such as the Wavelet Transform or Mathematical
Morphology, (ii) different machine learning and deep learning
algorithms can be used instead of (or along with) RFs, and (iii)
perform the test in larger and more complex power systems.
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