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Rotation-vibration non-equilibrium is
important for plasmas and hypersonics
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What is hybrid fs/ps CARS? ps probe 7T
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*Use broadband femtosecond pulse for simultaneous

acquisition of many Raman transitions and picosecond : : energy level
) w !
probe for spectral resolution [1-2] | |
*Several advantages: ' ' w
o f.\ W , - pae
* I rpps X Ifzs * [,¢ & 1-D or 2-D imaging of temperature and ! Sdes !
species concentrations within 50 um of surface [3-5] | .
* No need to scan Stokes frequency and only needs 2 beams i / i \ t (ps)
< - g
T

[1] Pestov et al., Science (2007), [2] Prince et al. J. Chem Phys (2006), [3] Bohlin et al. J. Chem.
Phys (2013), [4] Retter et al. Combust. Flame (2018) [5] Bohlin et al. Proc. Combust. Inst. (2017)
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We can use pure rotational fs/ps CARS for
simultaneous T, . and T, measurements

rot

o
~

——With slit function ——T =500K

ROtatlonal energy IE."VE.‘I F(U,]) g 1 T|——Without slit function | g _T:=1DDDK
>0.8 J=14 0377, = 1500K
e @ ——T, = 2000K
F(U,]) = Bv(](] + 1)) — Dv(jz(] + 1)2) £06 £ 0.2 [|——T, = 3000K
) EOA | E _TV=4000K
B —_— B _ +i _I_ _|_l E J=13 J=15 EOJ
v = DPe ™ A\VT7 Ye\V T35 BO_QJA\ 5 1 E
. A2

0 . .
V= vlbre!tlonal quantum number 110 11V%ave1r$8mb;r2?cm‘1 ?0 135 12%Vavenug$§er (Cm-1;24
J = rotational guantum number

B, = rotational constant

a = rotation-vibration coupling constant

D,, = centrifugal constant

Chen T.Y. et al. Opt. Lett. (2020)
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We can use pure rotational fs/ps CARS for
simultaneous T, . and T, measurements
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a = rotation-vibration coupling constant vibration non_equi“brium

D,, = centrifugal constant

Chen T.Y. et al. Opt. Lett. (2020)
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We can use pure rotational fs/ps CARS for
simultaneous T, . and T, measurements
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Chen T.Y. et al. Opt. Lett. (2020)




. ooy
s there a simpler method?

Dual pump fs/ps CARS is sensitive uses one
fs laser but needs 4 beams

(a) 'SHBC ' Equilibrium Non-equilibrium
f
T23 4 n‘ H Sousrce _ '
(D CARS - ; " yA g
v} TR =
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“ol

If we know probe delay and beating

pattern, can we extract T, and T__, ?

SHG

Dedic, C.E. et al., Optica, (2017)
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We can use coherence beating for
simultaneous T, and T , measurements
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How does the sensitivity compare to W CER
frequency domain detection?

High spectrometer resolution needed
for measurement of T, = 1000 K

Sensitive to T;, = 1000 K
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Experimental setup for model validation

75 Torr pure N, 2 kV DC, 100 k(2 resistorin series, | ~ 15 mA
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Simulated spectra fit well with the
measurements
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Time traces at two probe delays show
consistent temperatures and dynamics
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Conclusions

* Developed new diagnostic for simultaneous T, ., and T,
measurement using pure rotational fs/ps CARS coherence beating

* Can be more sensitive than detection in frequency-domain

* Demonstrated this technique with a N, DC discharge and

successfully fit and extracted non-equilibrium T,,and T,

* Enables high speed 1-D and 2-D CARS measurements of rotation-
vibration non-equilibrium in plasmas and hypersonic flows
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