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Abstract: Halide perovskites are promising photovoltaic (PV) materials with the potential to lower the cost
of electricity and greatly expand the penetration of PV if they can demonstrate long-term stability
under illumination in the presence of moisture and oxygen. The solar cell service lifetime as
quantified by the T3y (the time required for the power conversion efficiency to drop to 80% of its
starting value) is a useful metric to assess stability. The Tso for utility, commercial, or residential
PV systems needs to be several decades in order to yield low-cost electricity, and thus it is not
practical to directly measure the 73o. It would be useful if 73y could be predicted from the initial
dynamics of a solar cell’s performance, but until now no models have been developed to forecast
Tso. In this work, we report the development of machine learning models to predict Tso of
ITO/NiO,/CH3NH;3Pbl3/Cso/BCP/Ag solar cells operating at maximum power point under 1-sun
equivalent photon flux in air at varying temperatures and relative humidities. Efficiency losses are
driven by short-circuit current and fill factor, indicating that chemical decomposition of the
perovskite is a major contributor to degradation. Spatial patterns evident from in situ dark field
optical microscopy suggest that the electric field gradient at device edges plays a significant role in
perovskite decomposition, along with photochemical reactions with O, and H,O. Models are
trained using a menu of features from three distinct categories: (i) features based on measurements
of the initial rates of change of device parameters, (ii) features based on the ambient conditions
during operation (temperature, & partial pressure of H,O), and (iii) features based on underlying
physics and chemistry. We show that a theory-based physiochemical feature derived from a model
of the chemical reaction kinetics of the rate of degradation of the CH3NH;Pbls is particularly
valuable for prediction. This physiochemical feature was selected as the first or second most
dominant feature in the best performing models. With a dataset consisting of 45 accelerated
degradation experiments with Tgo that range over a factor of 30, the model predicts Tgo with an
accuracy of about 40% (|predicted T3 - observed Tso| / observed Tyo) on samples not used in
training. This hybrid ML approach should be effective when applied to other compositions, device
architectures, and advanced packaging schemes.

Introduction. Halide perovskites are on the cusp of breaking out as mainstream commercial photovoltaic
materials, but there are some concerns about their potential for long-term stability due to the susceptibility
of perovskite absorbers to decomposition in the presence of heat,' light,>* oxygen,> moisture,** and
electrical bias.”!° The success of perovskite solar cells (PSCs) and other perovskite-based technologies
may rest on how accurately manufacturers are able to estimate the service lifetimes of devices. Accurate
predictions will allow manufacturers to identify appropriate markets and provide warranties, while at the

same time allowing customers to assess the economics of the purchase. There have been many promising



advances toward extending the operational life of perovskite solar cells, with several reports of perovskite
solar cells passing the standard IEC solar cell durability tests (e.g., damp heat and thermal cycling).!'"'4
However, the mechanisms of degradation are quite different in perovskites than in conventional solar cells,
and it is currently unclear if PSCs that can survive on the time scale of decades in the wide variety of
potential operational environments. In the early years of perovskite photovoltaics research, the large number
of possible degradation processes, coupled with a lack of information on how to assign a hierarchy of their
effects on material and device degradation, led to many testing protocols (accelerated or otherwise)
generally developed independently by individual research groups. This made comparing the stability data
from lab to lab difficult. Even in cases where standardized accelerated testing regimes (such as the IEC
protocols) were obeyed, the IEC tests were developed for devices based on conventional inorganic
semiconductors, and do not necessarily probe the performance-limiting processes in PSCs. Although the
perovskite research community has started to develop testing protocols that are better designed to capture
the most important degradation mechanisms," the field’s knowledge of these mechanisms remains
incomplete, complicating these efforts. Furthermore, the large number of perovskite compositions and
device architectures introduces massive complexity to the space of possible chemical degradation pathways.
A recent report'® attempting to construct a comprehensive overview of perovskite photovoltaics research
catalogs over 5,500 architectures as determined by the contact materials alone—i.e., not even accounting
for the additional complexities posed by the compositional flexibility of the perovskite absorber itself—of
which over 1,000 were reported to yield PSCs that have power conversion efficiency >18% and thus
represent potentially attractive fabrication strategies for commercialization. Since the principal degradation
mechanisms that limit device lifetimes, and the major environmental factors that dictate them, may vary
considerably across perovskite absorbers and device architectures, the development of “one-size-fits-all”

testing protocols is a risky strategy for lifetime validation.

Development of mathematical models that can predict operational lifetimes can significantly reduce

the uncertainty associated with selecting the correct testing protocols. Prediction offers several crucial



advantages over standardized protocol-focused testing. It can assimilate information gathered under non-
ideal circumstances (e.g., negative results based on “bad” devices or those with short lifetimes, which are
seldom reported in the literature) that can nevertheless furnish useful information for model training.
Through the incorporation of physical variables such as temperature or humidity as predictive features,
these models’ functional forms can also indicate which aspects of degradation are most important. Despite
their advantages, sufficiently accurate models can be challenging to build. In the limit of perfect information
about a device’s construction, packaging, and the conditions it is subjected to, an idealized model would be
able to describe how the chemical interactions resulting from environmental exposure and operation lead
to changes in its performance. Such a model may be envisioned in principle as a set of coupled partial
differential equations that could be solved in a 3-dimensional multi-physics numerical simulation.
However, this approach would require thousands of variables and immense computing resources. Even
assuming resource-intensiveness is not an impediment, many of the relevant physical processes this model
would need to describe are currently unknown, ultimately making this strategy prohibitively difficult to

achieve in practice.

If a fully mechanistic model represents a “bottom-up” approach proceeding from elementary
physical knowledge, we may consider models constructed via machine learning (ML) as providing an
opposite, “top-down” approach that leverages empirically-determined relationships between the target
behavior (i.e., how power conversion efficiency evolves over time) and easily measured variables of interest
with a clear relationship with the target (e.g., environmental conditions, initial performance metrics, or
details of device architecture and fabrication). ML models have recently been gaining ground in perovskite
research, particularly in areas such as stability where important physical processes are insufficiently known

1.'7 and Srivastava et al.'® have recently

to enable fully mechanistic descriptions. For instance, Howard et a
used neural networks to predict the evolution of perovskite photoluminescence intensity in response to

humidity fluctuations and MAPDI; solar cell power conversion efficiency evolution under thermal stress,

respectively. However, the evolution was not investigated for times long enough to reach the device Txo



(the time taken for the power conversion efficiency, PCE, to drop to 80% of its starting value) that serves
as the traditional figure of merit for device longevity, making it unclear how well these models would fare
in full lifetime prediction. An additional drawback of neural networks is that they are not interpretable.
Machine learning has also been used to optimize perovskite stability: Hartono et al.'” used a variety of
supervised ML techniques to optimize 2D perovskite capping layers for protecting MAPDI; against damp
heat environments, finding that random forest regression performed best among all modeling approaches
tested; Sun et al.?® combined DFT calculations and Bayesian optimization to identify the most stable
members in the ternary cesium-formamidinium-methylammonium lead iodide perovskite family (all

synthesized under identical processing conditions).

Physics-informed machine learning is an especially promising strategy that can address some of
the shortcomings of fully empirical ML by incorporating mechanistic knowledge or imposing physical
constraints on predictive models. This class of models can, in principle, make maximum use of available
mechanistic knowledge while retaining the economy and flexibility of empirical models. With regards to
the challenge of predicting PSC service lifetimes, conventional wisdom dictates that chemical
decomposition of the absorber is a major factor determining the rate of device performance loss.
Mathematical descriptions of perovskite decomposition pathways are therefore expected to be important
ingredients of predictive models that may reduce reliance on potentially useful but uninformative empirical
relationships between service lifetime and environmental conditions. Recently, we have shown that the
initially observed chemical decomposition rate of CH3NH3Pbl; thin films is a good predictor of decay of
the films’ carrier diffusion length over time.?! Furthermore, we have shown that the initial decomposition
rate of CH3NHsPbl; films can be predicted accurately from temperature, above-band gap illumination
intensity, and ambient partial pressures of H,O and O..° In this work, we develop the first predictive
machine learning model of perovskite solar cell operational lifetime (as quantified by the device Tso). Tso is
predicted as a function of the ambient environmental conditions as well as measurements of current-voltage

characteristics taken over the first ~90 minutes of operation. The models are trained using 45 experiments



carried out under 1-sun equivalent illumination in air at a variety of different temperatures and humidities.
This work exemplifies how physics-informed ML models can be used to unite mechanistic physical
information with sample-specific observations of performance evolution to both maximize predictive
accuracy and model interpretability. The time scale for decay of other metrics such as J, Voc, FF, diffusion
length, etc. can be formulated as a time to decay to 80% of its initial value (7%0,sc, 730,voc, €tC.), but unless

otherwise noted, we will use “Ts0” to refer to Tso specifically for the PCE.

Analysis of Device Degradation Data. Device degradation data are collected in a testing station where
temperature, humidity, oxygen, and illumination are controlled (Figure 1a). Solar cells (approximate area:
0.07 cm?) are placed underneath the objective lens of a microscope equipped with a light source and low-
magnification objective that illuminates the entire device with a 1 sun equivalent above-band gap photon
flux of 542417 nm light (i.e., 1.56 x 10?! photons - m? - s™!). Electrical characteristics are measured in situ
using a Keithley 2420 source-measure unit. The device under test is placed on a thermal stage to regulate
temperature, which is then enclosed in a controlled-humidity chamber. Device operating characteristics are
collected periodically (for most runs, every 15 minutes), including steady state open-circuit voltage, short-
circuit current, and maximum power point voltage and current, as well as forward and reverse-scan J-V
sweeps. In the interim period between measurements, devices are held at the bias corresponding to the most
recently determined maximum power point. The device degradation dataset used for 73 modeling
comprises 45 runs representing 37 distinct environmental conditions collected in air at temperatures ranging
from 25 to 85 °C and relative humidities ranging from 0 to 70%. Solar cells are fabricated in a commonly
used inverted ITO/NiO/CH3NH3Pbls/Ceo/bathocuproine (BCP)/Ag architecture. Devices used in this study
have mean initial PCE of 13.8 £ 1.4%, Jsc of 19.6 £ 1.2 mA/cm?, V. of 0.984 + 0.025 V, and fill factor of
71.7 £ 4.8% (uncertainty represented by the standard deviation). Note that we do not use a shadow mask to
constrain device active area, in order to facilitate microscopy across device edges as well as the interior.
Therefore, the active area is assumed to correspond to the overlap area between the ITO and Ag electrodes

and may lead to minor inaccuracy in the estimation of Ji due to light-piping effects or fluctuation of



individual device active area relative to the nominal value due to variation in substrate-mask alignment
during Ag contact deposition. The Ty, values in this dataset vary over an order of magnitude, ranging from
under 200 min in high-thermal stress conditions to almost 5000 min at lower temperature and moderate
humidity. Histograms of these quantities and a breakdown of the environmental conditions investigated in

this study are plotted in Figure S1.
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Figure 1. (a) Schematic of device architecture and degradation equipment. (b) Data from a typical run collected under
1 sun illumination at 25 °C in 50% RH air, showing that the power conversion efficiency closely tracks the evolution
of short-circuit current, but is also affected by an early decline in fill factor and a later, more modest decline in open-
circuit voltage. (c) Histograms of short-circuit current density Js, fill factor FF, and open-circuit voltage Vo at Tgo
relative to their initial values show that on average, Jc and FF losses account for most of the decline in PCE, while
Ve increases modestly. Dashed lines in (c) represent mean values of the histograms with the corresponding colors.



Typical device parameter evolution is shown in Figure 1b, using a sample run collected at 25 °C and 50%
RH. The overall trajectory of PCE is dominated by the evolution of Ji, which decays monotonically with
an initial, relatively slow plateau giving way to a more rapid drop-off as the perovskite absorber decomposes
(as indicated by dark field microscopy; see discussion below). PCE is boosted at first by gains in both fill
factor and V., but while ¥V, remains relatively high over the course of degradation, fill factor experiences
a steady decline after the initial rise. The mid-term decay in fill factor also plays a significant role in PCE
decline. Looking across the entire dataset (Figure 1c), PCE losses before 75 are determined mostly by Js
(on average, at 87% of its starting value at Ty), followed closely by fill factor (90% of its starting value),
while V.. increases tend to buffer these losses slightly (102% of its starting value). Overall, this behavior is

2122 and others® have observed when examining the degradation of perovskite

consistent with what we
films’ optoelectronic properties: carrier transport (i.e., mobility and diffusion length) is much more sensitive
to perovskite decomposition than carrier lifetime is, implying that Js should decay much more rapidly than

Voe. The fill factor (FF) is affected by both mobility and lifetime but also potentially by processes in the

device not directly related to absorber decomposition and falls in the middle.
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Figure 2. The short-circuit current evolution of CH3NH3Pbl; solar cells is closely related to material decomposition.
(a) Js evolution of a representative device at 25 °C and 50% RH. (b) Scatterplot of Tso ssc, the time at which Jg reaches
80% of its maximum value, versus the kinetically modeled decomposition rate of CH3;NH;3Pbls at the temperature and
humidity indicated by the symbol color, showing a strong logarithmic correlation. (c-g) Dark field images of the
device taken at representative points in (a) denoted by the labeled vertical lines: (c) Initially, the image is almost
completely featureless, indicating absence of macroscopic defects. (d,e) In early stages of degradation, material
decomposition is most pronounced at the edges and weak points in the device interior, which are most vulnerable to
ingress of atmospheric species. (f) At the knee at which J begins to decrease sharply, decomposition starts to occur
homogeneously throughout the interior. (g) When less than 10% of the initial J,. remains, most of the device has
experienced severe material degradation, with only a small fraction of the active area remaining intact. Approximate
edges of the device, determined by the overlap of the Ag and ITO electrodes, are denoted by dashed lines in (c). Scale
bars in (c-g) are 1 mm. (h-k) Schematic of hypothetical degradation modes in MAPbI; solar cells operating in air. (h)
Photooxidation of the absorber is likely to occur at regions unprotected by the top Ag contact or at the edges of the
device, where moisture and oxygen may diffuse laterally. (i) Fabrication defects (e.g., thin spots in the contact due to
shadowing by dust particles on the surface) may also serve as ingress routes for oxidizing species. (j) [odine may react
with Ag from the contact to produce Agl. (k) Electric field gradients at device edges induce a force on dipolar species
such as MA™ that may break down the perovskite absorber. Defects in the Ag contact as in (i) may also act as device
edges, contributing to gradient-induced degradation as well.



The significant average reduction in Js at T3 indicates that perovskite decomposition is a process
of major importance in device failure. Moreover, the logarithm of the time at which J. reaches 80% of its
starting value (7305sc) obeys a moderately strong correlation (Pearson coefficient p = -0.73) with the
chemical decomposition rate of CH3;NH;3Pbl; predicted by our kinetic model for a given combination of
temperature and humidity (Figure 2b), further suggesting that the photooxidation processes that dominate
perovskite material degradation when films are exposed to the air also represent a major factor in PCE loss
for full devices. Bryant et al.?* have shown convincing corroborating evidence that photooxidation-like
processes driven by injected electrons under dark O,-containing environments lead to rapid degradation
underneath the active electrode of ITO/Ti0,/CH3NH3Pbls/Spiro-OMeTAD/Au PSCs while leaving
adjacent perovskite regions intact, including those under unbiased contacts. Here the impact of material
decomposition in devices is imaged using dark field (DF) microscopy in reflection geometry, which is
sensitive to spatial changes in refractive index (which would occur during the conversion of perovskite to
secondary phases) or film roughening that increase scattering.?! The bright regions in dark field images
correspond to locations where significant portions of the perovskite absorber have decomposed into Pbly,
which is the only solid degradation product of the dominant water-accelerated photooxidation pathway.®
Pbl; is easily recognized by its bright yellow color, which the naked eye can perceive clearly in heavily
degraded devices. Dark field images of pristine devices are initially flat and featureless (Figure 2c¢),
indicating uniform device layers largely free of macroscopic defects. As degradation progresses (Figure
2d-g), material transformation is at first most noticeable at the device edges and at intermediate times,
isolated defects in the interior. The “knee” in J is approximately concurrent with a strong increase in the
scattering of the incident light (the appearance of large numbers of bright spots in the dark field images)
throughout the device (Figure 2f). These more homogeneous patterns suggest that, at longer timescales,
diffusion of O, and H,O directly and more uniformly through the contact (for instance, along grain
boundaries as opposed to regions of poor coverage created by fabrication defects) may cause degradation
as well. This interpretation is supported by the observation that thicker Ag contacts (300 nm vs. the standard

100 nm used in all other devices in this work) suppress the rates of both Ji. decay (0.0043 %/min for the



300 nm contact vs. 0.0102 %/min for the 100 nm contact, both calculated from a linear fit to the time
evolution of Js over the first 1000 min of each experiment) and dark field intensity rise (Figure S2),
indicating that degradation is mediated to some extent by mass transport directly through the contact.
However, performance is already severely compromised by degradation at edges and macroscopic defects

by the time this homogeneous degradation mode becomes significant.

The spatial patterns in the dark field images indicate that photooxidation alone may be an
incomplete explanation for the progression of solar cell degradation. If it were the only factor, we would
expect to see the most degradation where the perovskite is least protected (i.e., the region outside the Ag
contact that defines the device), yet the region most vulnerable to decomposition occurs at the device
boundary. At early stages of degradation, dark field intensity of the exposed areas degrades much faster
than the device interior (probing a region free of macroscopic defects indicates no significant trend of
increasing intensity), signifying that the contact still acts as an effective diffusion barrier during this period
(Figure S3a,b). However, degradation outside the contact is quickly outstripped by the edge region (Figure
S3c¢). Overall, these patterns imply that both photooxidation and a separate degradation mode (or modes)
introduced by the contact combine to make decomposition most severe at the device boundary. Two broad
categories by which the contact might exacerbate degradation are: (i) chemical reactions between halide
ions released by the perovskite and the Ag metal and (ii) the influence of the electric field induced by the

presence of the contact.

The possibility of chemical reactions is supported by observations made by Besleaga et al.>® in
which FTO/Ti0,/CH3;NH;3Pbls/Spiro-OMeTAD devices under Ag contacts spontaneously degrade even
under storage in dark, low-humidity (~10% RH) conditions, while equivalent devices with a protective Mo
layer beneath the Ag or with Au substituted for Ag entirely degrade slower or not at all under the same
conditions, within the limits of detection. This behavior is attributed to the ability of Ag to act as a chemical
sink for I" ions (producing Agl), which, when combined with the rapid diffusivity of the latter in the Spiro-

OMEeTAD hole transport layer, creates a chemical gradient that depletes the perovskite of iodine, causing



it to break down. We expect that if this process were a major trigger of degradation, it would occur more
homogeneously across the device, but we do not exclude the possibility that chemical reactions with the
Ag electrode play some role. Contrary to the report of Besleaga et al.,”> however, when the Ag contact is
replaced with Au, J. decays and dark field intensity rises more rapidly despite the latter ostensibly being
more stable (Figure S2). Kerner et al.3” have noted that Au can also react readily with iodine compounds,
especially the oxidized forms such as I; and I3, the former of which is a likely product of photooxidation
while the latter may be formed by subsequent reaction with fresh I" from the perovskite. It may thus be the
case that, when regions near the edges of the contacts are weakened by photooxidation, that decomposition
products from the perovskite may facilitate additional reactions with the metal electrodes, accelerating the

overall process of degradation.

Alternatively, bias-induced degradation may also be invoked to account for the influence of the
contacts. Leijtens et al.’ observed that sustained application of bias to CH3;NH;Pbl; films leads to
methylammonium accumulation near the cathode and depletion near the anode, eventually leading to
irreversible decomposition of the perovskite. They also observed that this process can be accelerated by the
presence of water (or other polar solvents like dimethylformamide), suggesting that such species can
enhance degradation by enhancing ion mobility. Barbé et al.?® observed patterns of degradation near device
edges similar to those in Figure 2 when biasing them at 1 V in the dark under atmospheres containing
different combinations of O, and H>O. They reported that significant device degradation occurred only
when H,O was present and thus concluded that humidity, not oxygen, was the predominant cause of device
degradation due to its ability to facilitate ion drift. However, since the energy bands in a ~1.6 eV bandgap
solar cell under 1 V bias should be nearly flat, as this condition is generally close to open-circuit, there
shouldn’t be significant internal electric fields to drive ion migration. As a result, bias-induced degradation
does not seem like the most likely explanation for increased decomposition near device edges. However,
even in the reduced field state at maximum power point, the gradient of the electric field between the device

region and the adjacent exposed regions may be considerable. Under an electric field gradient, dipoles such



as MA" cations will experience a force that may also lead to decomposition of the material. We emphasize
that although the observed effect of this proposed mechanism is the same as that proposed by Leijtens et
al.” —i.e., local degradation through depletion of MA" cations — we propose that the physical origin of the
force is an electric field gradient acting on dipoles (F = (p - V)E) rather the electric field itself acting on
charges (F = q&; here, F is the electric force acting on a species either of electric charge q or electric
dipole moment p as a result of electric field £). Since the gradient is localized at the device edges, this

additional stress may account for the rapid degradation there.

Macroscopic defects in the device interior where Ag coverage is low may effectively act as device
edges as well, explaining why degradation fronts from the outer device boundary and interior defects
propagate in similar ways. Degradation caused by the field gradient may further disrupt the integrity of the
device, making it easier for O, and H>O to penetrate the absorber; thus, these multiple modes of degradation
may have a mutual accelerating effect. In a similar experiment to that shown in Figure 2 conducted at the
same conditions (25 °C/50% RH), when the edges of the device are covered with Kapton tape but the
center remains exposed, the dark field images show that degradation is partially but not entirely suppressed
in the protected region, but occurs at similar rates in the center (Figure S4). Comparing this experiment
against the one shown in Figure 2, the initial decline in Jy is significantly slowed by the partial protection.
The fact that degradation can still be observed at the Kapton-protected edges points to the existence of a
mode that does not require environmental stimuli (e.g., electric gradient-induced degradation), but the
suppression in its rate again indicates that photooxidation also plays a significant role. The overall picture
of hypothetical degradation mechanisms is summarized in Figure 2h-k: photooxidation is the major cause
degradation outside the Ag contact but also contributes to degradation at the device edges and macroscopic
defects in the device interior, where H>O and O, can most easily diffuse from areas unprotected by the
contact; chemical reactions between decomposition products from the perovskite and Ag from the contact

may occur within the device; and electric field gradients at the device edges can exert forces on dipolar



species such as MA" cations in the perovskite, leading to field-induced decomposition even in the absence

of other external stresses.

While the effects of material decomposition on Ji. are a major factor in how the PCE evolves over
time, fill factor also plays an important role in the critical period leading up to Tgo. Fill factor is generally
interpreted as being impacted by three major processes: series resistance, shunting, and recombination. To
determine which are dominant in our experiments (and how these might vary with environmental
conditions), we examine the change in series resistance R, and shunt resistance R, at T3o relative to their
starting values (both values are estimated from fits of the reverse-scan J-V sweeps to a diode equation based
on the Lambert W-function).?’?* Starting values of R; range from 4 to 100 Q with an average of 36 Q; the
changes in R; at Ty range from -46 to +131 €, with an average increase of 17 2, and the relative change
ARJ/R(=0) ranges from -87% to +565%, with an average relative increase of +65%. In general, although
series resistance may increase or decrease by nearly an order of magnitude at T3 (Figure 3), there does not
appear to be a consistent tendency towards either. By contrast, Ry, almost always decreases (starting values
range from 6.42 x 103 to 1.30 x 10° Q with an average of 9.56 x 10* Q; absolute changes from -1.30 x 10°
to +3.30 x 10° Q with an average of -8.86 x 10* Q; relative changes from -99.6% to +40.7% with an average
of -64.9%), and in the few cases in which it does not decrease, the increase is marginal (less than 50%).
Thus, shunting can be a significant contributor to fill factor loss. We note, however, that only a minority of
devices we tested shunted catastrophically (as evidenced by linear, or nearly linear J-V curves), and they
are excluded from this analysis on the likelihood that this failure mode indicates significant fabrication
defects unrepresentative of well-made devices. In addition to shunting, recombination also likely plays a
role in the decline of fill factor, particularly at higher temperatures. We can estimate the influence of
recombination by examining the behavior of V.. There is a clear trend of reduced Voc(730)/Voc(t = 0) with
increasing temperature (Figure 3), signifying that physical mechanisms that increase carrier recombination
over time are activated by heat. A similar trend in FF(730)/FF(z = 0) indicates that thermally-activated

recombination processes constraining ¥V, may constrain FF as well (Figure 3). Similar analysis shows that



the tendency to shunt is not strongly affected by temperature, while the increase in series resistance at Ty
is in general much lower at higher temperatures (Figure 3). Plots of normalized Js., Voc, and FF at Tgo
against relative humidity (Figure S5) display no obvious correlations, indicating that the same H,O-
mediated degradation mode or modes are active under all conditions probed in this study. In summary, fill
factor is predominantly affected by shunting (regardless of temperature) and recombination (at higher
temperatures), and the influence of the latter is also evident in the behavior of V.. The physical origin of
temperature-activated recombination is unclear, but it may relate to interdiffusion of device components

that lead to defects at interfaces or in the bulk of the perovskite.
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Figure 3. Relative changes in device performance parameters (parameter at ¢ = 7o compared to its initial value). (a-
e) Scatterplots of relative changes in device parameters as a function of temperature: (a) Vi, (b) Js, (¢) fill factor, (d)
series resistance, and (e) shunt resistance. (f) series and shunt resistance, relative to their initial values, plotted against
one another. The Pearson correlation p between each variable pair and number » of samples plotted are given in the
headings. In general, Ji. losses have a more pronounced effect on PCE at lower temperatures, while fill factor and to
a lesser extent V. losses become more important as temperature rises. Series resistance effects on fill factor tend to
be higher with increased temperature, while shunting effects appear to be insensitive to it. Overall, while series
resistance may have increased or decreased at Tgo, it does not do so in a consistent manner; by contrast, the shunt

resistance almost always decreases. Environmental conditions are indicated according to the symbol legend in Figure
2.



Development of Machine Learning Models to Predict 75. Having developed a basic understanding of
how CH3;NH3Pbls solar cell degradation proceeds in different environments, we now turn to the task of
developing machine learning models to forecast the evolution of their power conversion efficiency (PCE).
Predicting a variable such as Ty falls under the category of supervised learning: each degradation
experiment is “labeled” by the value of Tso, and the objective of the machine learning algorithm is to
discover a mathematical relationship between the labels and other data characteristic of each experiment,
termed “features.” To maximize the models’ predictive utility, the features should be calculated from data
measured during the early stages of degradation. The data that are available depends on how the experiment
is set up and conducted, and might in principle include J-V measurements, environmental conditions, device
architecture and processing, photoluminescence or dark field measurements, capacitance spectroscopy, or
any other data available from device or film characterization. Which of these data to include in the feature
set is a critical decision. On one hand, more extensive feature sets improve the chances of obtaining high
predictive accuracy by incorporating as many potentially relevant effects into the model as possible. On the
other hand, incorporating too many variables may needlessly increase the experimental burden of data
acquisition, and reduce the model’s general applicability if it relies on data from techniques that are not
readily available to the PV research community. Moreover, models that attempt to incorporate too many
features are vulnerable to overfitting—that is, learning noise, rather than the true patterns in the dataset—
and generalize poorly when applied to new data beyond the training set. Therefore, we focus on two major
classes of features available from instruments that are relatively inexpensive and ubiquitous in photovoltaics
research laboratories: a priori data that are known from the environmental conditions the solar cells are
subjected to, and sample-specific measurements based on J-J measurements made during the first few
cycles of data acquisition. Explicitly, the a priori variables are temperature, partial pressure of H,O, and
the natural logarithm of the kinetically modeled CH3NH;3Pbls decomposition rate determined from the
ambient environmental conditions, as we have recently reported elsewhere.® Features constructed from J-V

measurements include the initial values of Ji, Voc, and fill factor, as well as the first and second time



derivatives of each parameter at the start of each degradation experiment normalized to its starting values.
Between the a priori and sample-specific variables, this construction yields a total of 12 features,

summarized explicitly in Table 1.

Table 1. Features provided to machine learning models that predict perovskite solar cell Tgo, and how they are
calculated.

feature symbol units physical interpretation/calculation method

TMAPI mol-m?-s’! Decomposition rate of CH;NH;Pbl; film under the specified environmental conditions; calculated
from kinetic model described in Siegler et al.®

T °C Solar cell temperature, controlled during the experiment

Py,0 kPa Partial pressure of ambient H,O, calculated from relative humidity measurement

Jsc(t =10) mA-cm’ Short-circuit current at the start of the experiment, taken from steady state measurements at short
circuit

Voe(t=0) \Y Open-circuit current at the start of the experiment, taken from steady state measurements at open
circuit

FF(t = 0) % Fill factor at the start of the experiment, taken from steady state measurements at open circuit, short
circuit, and maximum power point

djs./dt min’! 1% time derivative of the normalized short-circuit current (by its initial value), estimated from the
first 90 minutes of each experiment

dV,./dt min’! 1% time derivative of the normalized open-circuit voltage (by its initial value), estimated from the
first 90 minutes of each experiment

dFF/dt min™! 1* time derivative of the normalized fill factor (by its initial value), estimated from the first 90
minutes of each experiment

d?J,./dt? min 2™ time derivative of the normalized short-circuit current (by its initial value), estimated from the
first 90 minutes of each experiment

d?V,./dt? min 2™ time derivative of the normalized open-circuit voltage (by its initial value), estimated from the
first 90 minutes of each experiment

d?FF/dt? min? 2" time derivative of the normalized fill factor (by its initial value), estimated from the first 90

minutes of each experiment

Relative to the size of the dataset (45 runs), the feature set is still large enough to pose a risk of
overfitting. To avoid this, we employ modeling techniques that enforce sparsity of the dataset, including
linear regression with greedy feature selection (GFS) by orthogonal matching pursuit,*® LASSO,*! and ridge
regression.’>*? In all of these models, the natural logarithm of T is expressed as a linear combination of
the features, but the methods for determining the coefficients of each feature are different. In greedy feature
selection, features are selected sequentially based on which one most reduces the error of the prior model
(starting from a model that includes no features at all); the search is terminated before the number of selected
features exceeds 10% of the number of features in the training set (note that it is also possible to terminate
the search using error-based criteria, although doing so may not enforce sparsity as stringently as constraints
based on the size of the feature set). LASSO and ridge regression assign coefficients by attempting to

simultaneously minimize the least squares error of the regression in addition to a penalty term that is



proportional to the ;- (LASSO) or {>-norm (ridge) of the vector of feature weights. With LASSO,
insignificant features are often assigned a weight of precisely zero, strictly enforcing sparsity; with ridge,
the weights of insignificant features are suppressed but do not vanish entirely. The models are tested through
leave-one-out cross-validation — that is, each experiment in the dataset is sequentially removed as a test
sample, and the remaining data are used to train the model. Statistics from the distribution of testing error
furnish an unbiased estimate of the model’s predictive accuracy on unseen data, representing its ultimate
figure of merit. Stability of the models relative to the training set may be assessed by comparing the feature
weights across iterations of the test/train split: stable models will repeatably select the same features and

assign weights with consistent magnitudes, while feature weights in unstable models may fluctuate

considerably.
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Figure 4. Modeling results for greedy feature selection (a,d), LASSO (b,e), and ridge regression (c,f) with leave-one-
out testing. (a-c) Parity plots show that predictions on samples withheld in leave-one-out prediction are in fairly good
agreement with the observed values, with average error generally in the range of 40-50%, and that error metrics are
relatively close to one another across modeling approaches. (d-f) Bar plots of feature coefficients show that the models



also tend to agree on which features are most important. That is, those selected by sparsity-enforcing models (greedy
feature selection, LASSO) comprise the top 5 features in the model trained using ridge regression. For clarity, only
features for which the mean value is larger (in absolute value) than the standard deviation across all test/train splits
are shown; a more complete breakdown of the coefficients is given in Figures S6-S8. The standard deviation of
coefficient values across all test/train splits is represented by the black bars in (d-f). Environmental conditions are
indicated according to the symbol legend in Figure 2.

Models trained using GFS, LASSO, and ridge are relatively consistent with one another. Parity
plots of test set predictions (Figure 4a-c) show that average prediction accuracy for all models lies in the
range of 35-45% while the models themselves are structured similarly. The mean test error is almost the
same for each model, while the median is slightly lower for LASSO and ridge than for GFS. The R? values
for the test set predictions are also similar at 0.69, showing that the models can explain about 2/3 of the
variance in unseen samples. Bar plots of the feature weights (Figure 4d-f) show that similar features are
typically assigned high weights across all three modeling algorithms despite the differences in how they
are selected. The models trained by GFS and LASSO are considerably sparser than those trained by ridge
regression yet retain comparable predictive accuracy, indicating that most of the features selected by the
latter are superfluous and do not meaningfully contribute to prediction. We therefore focus our discussion
of model interpretation below on the features selected by GFS. The features selected with mean value
greater than their standard deviation across all test-train splits are almost identical for GFS and LASSO
(which is a good sign). A full breakdown of the coefficients for each test-train split is given in Figures S6-

S8.

Interpretation of the Model Predictions. Explicitly, the model trained by GFS (using the values obtained
for the test/train split with median error) may be written as:
ot D, D, ()., O
TMAPI — TMAPI r—-T dt /.=y \dt dt /,_, dt /,_,

In(Tgo) = ¢ + + + =0 ¢ = =
n(Tgy) =c+py o, B o7 B3 o Ba o

Here, the terms f5; are the feature coefficients learned by the model; the constant c is the intercept, also
learned by the model; and the terms under the bars and g; are the means and standard deviations resulting

from feature standardization. The standardization parameters are not learned by the model, but are



introduced before training to put all features on statistically equivalent (mean of zero and standard deviation

of 1) and unitless footing. Coefficient values are provided in Table 2.

Table 2. Parameters of the model trained by greedy feature selection corresponding to the test/train split with median
testing error.

L
In(To) =c+ Y pH
=1 0;

i

Feature x; Units Coefficient f3; Mean y; Std. Dev. o;
Intercept ¢ In(min) 6.967 -- --

T™MAPI mol-m?-s’! -0.3473 1.218x107 3.731x10%*
T °C -0.3662 52.05 21.69
dFF/dt min™! 0.2969 1.848x10* 7.515%10*
v, /dt min™! -0.08609 8.245x10% 1.708x10*

The most consistently important features in all models described above are the kinetically modeled
CH;NH;Pbls decomposition rate, temperature, and the first derivative of fill factor with respect to time. The
former two are negatively related to Tso, while the latter is positively related. The major role of the
kinetically modeled CH3NH3Pbl; decomposition rate rmapr reinforces the observation that photooxidative
absorber degradation is an important constraint on solar cell lifetime. As noted above, however, there are
likely other processes besides photooxidation that contribute to the observed spatial patterns of degradation
that may be specific to the device architecture. The similarly large influence of temperature is in accord
with the observed increases in fill factor and V. losses under heating noted previously, embodying the
effects of physical processes that increase recombination (or otherwise compromise performance). There
are many possible thermally activated processes that might do so. NiOx has also been shown to undergo a
thermally-induced reaction with MAI, compromising performance of CH;NH3Pbl; PSCs processed under
short high temperature anneals; it is possible that this reaction may occur at lower temperatures, albeit at
a slower rate that nevertheless can compromise device performance over longer periods of operation at
more moderate temperatures. Numerous studies have reported that diffusion of other structural components

can occur rapidly in perovskite solar cells: In** from ITO;*** contact metals such as Au;**37 and even Na”,



Ca®’, and other components of soda-lime glass substrates.*®*° Although halide perovskites are generally
tolerant of metal ion impurities, sufficient levels may still lead to deterioration of their optoelectronic
properties. In view of the many possible avenues by which temperature-activated processes could occur,
we take no position on its precise origins here, but note that future generations of predictive models stand

to benefit from detailed studies of the relevant physical processes.

The initial rate of fill factor rise is the only sample-specific feature consistently assigned high
weight in the models. At lower temperatures, below 55 °C, the fill factor initially increases before settling
into its longer-term decline (as seen in Figure 1b). At higher temperatures (>65 °C), an initial rise in FF is
rarely observed, and there is an overall negative linear correlation between dFF/dt and temperature (Figure
Sa). However, the initial value of the fill factor also increases with temperature (Figure 5b), indicating that
the initial rise observed at lower temperature may also occur at higher ones, but much faster, within the first
data acquisition cycle. This initial rise correlates very weakly with initial changes in shunt resistance and
modestly with series resistance (Figure Sc,d). These results suggest that multiple thermally activated
processes influence fill factor: a beneficial process acting on short-moderate timescales that increases it,
and a longer-timescale process that deteriorates it along with V., as discussed above. In the model, the fill
factor time derivative captures the shorter-timescale beneficial processes (or more accurately, the net effect
of the beneficial processes and the detrimental ones), while temperature captures the longer-term effects of
the adverse ones. We consider two hypotheses for the origin of processes that initially benefit the fill factor:
either they are related to ion redistribution as a result of the device transitioning from equilibrium in the
dark (its storage state) to maximum power point under illumination (its main operating condition); or they
may reflect irreversible improvements associated with elimination of trap states in the bulk or at interfaces.
In the former case, when the device is in the dark, mobile ions (e.g., iodine or methylammonium vacancies)
will drift under the built-in electric field and accumulate at the contacts until the electrochemical potential
associated with their buildup is strong enough to resist further drift. Domanski et al.*’ investigated transient

changes in perovskite solar cell power output and concluded that different ionic species drift on different



timescales, with halide vacancies moving relatively quickly, on the order of 0.1-100 s, and cation vacancies
moving much more slowly, on the order of >1000 s. This difference in ionic mobility implies that halide
vacancies are responsible for J-V hysteresis, while cation vacancies are more likely to account for longer-
term evolution in device performance. When the device is measured, it spends most of its time operating
near the maximum power point—i.e., at relatively high forward bias. When placed under these conditions,
the applied bias acts in opposition to the built-in electric field, and thus the ions will no longer be pushed
as strongly toward the contacts as they were in the dark. As they reestablish a new equilibrium, the
perovskite energy bands will also shift in response to the changing charge distribution. Reconfiguration of
the bands in this manner may also change the relative positions of the Fermi level and midgap trap states,
with the possibility of these states shifting from mostly unfilled (active) to mostly filled (inactive) and thus
resulting in reduced recombination. Band bending due to ion accumulation at the interfaces driven by the
built-in field may also create charge extraction barriers there. When the device shifts from its dark
equilibrium state to maximum power point, these barriers may be alleviated as mobile ions diffuse back
into the bulk. To test whether ion migration plays a role in fill factor improvement, we assess whether these
effects are reversible when the device is transitioned between periods of operation under illumination at
maximum power point (when the electric field is low) and in the dark at short circuit (when it is high). The
results of this experiment indicate that the initial FF improvement is partially reversible and strongly
correlated with series resistance. (Figure S9). We note also that the rise in fill factor over the first light
cycle is anti-correlated with the change in Vo, suggesting that its initial enhancement occurs in spite of
increased carrier recombination rather than due to a reduction in defect activity and implying that interface
barrier alleviation may be the best explanation. However, during successive cycles FF and V. display a
similar upward trend, indicating that increases following the initial rise may have a different physical origin
such as passivation of trap states by O, or H2O. After several light/dark cycles, the FF improvement is
maintained across the dark periods (i.e., appears to become less reversible). This may indicate that drift of
ions in the dark is slower than their diffusion in the light, allowing performance gains to build up over time

with a 50% light/dark duty cycle. Hysteresis in the device begins low and remains so over the course of the



experiment, indicating that there are no major changes in the mobile ion population. In view of the partially

reversible nature of the initial fill factor improvement and its clear connection with series resistance, we

therefore believe it can be plausibly explained by interfacial band reconfiguration due to ion migration.
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Figure 5. (a) Scatterplot of initial 1* time derivative of fill factor against temperature. (b) Scatterplot of
initial fill factor against temperature. (c) Scatterplot of initial 1% time derivative of fill factor against initial
I* time derivative of shunt resistance. (d) Scatterplot of initial 1 time derivative of fill factor against initial
1* time derivative of series resistance. The Pearson correlation p between each variable pair and number n
of samples plotted are given in the headings.



Conclusions. In this work, we have experimentally examined the degradation of 45
ITO/NiO,/CH3NH3Pbl3/Cs0/BCP/Ag solar cells under a wide range of environmental conditions. We find
that power conversion efficiency tends to decline mostly because of losses in short-circuit current and fill
factor, while open-circuit voltage typically remains high over the useful lifetime of the devices. Short-
circuit current losses are strongly associated with water-accelerated photooxidation and electric field-
related decomposition of the perovskite absorber (via electric field gradients). Fill factor losses are almost
universally attributable at least in part to reduction in shunt resistance, but increases in recombination play
a larger role at higher temperatures, at which open-circuit voltage also starts to become affected. Machine
learning models trained to predict 730 have accuracy of 35-45% on average, and can attain this level of
performance using sparse feature sets relying on the kinetically modeled CH3NH3Pbls decomposition rate,
the temperature, and the initial time derivative of the device’s fill factor. Both our analysis of the data and
the model’s choice of features suggests that decomposition of the perovskite plays a large role in the gradual
loss of power conversion efficiency by way of short-circuit current reduction, but additional thermally-
activated processes likely contribute to increased recombination over time, contributing fill factor and V.
losses (particularly under higher temperatures). This work demonstrates how incorporating physical
knowledge of the processes constraining device performance can contribute to ML model accuracy when
the size of the dataset is restricted by allowing the development of highly informative features. The success
of our models should motivate future efforts to develop quantitative understanding of decomposition
processes of other perovskites of interest (particularly compositions rich in formamidinium), as well as

interlayer device interactions that may lead to increased carrier recombination rates.
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