

LA-UR-22-32369

Approved for public release; distribution is unlimited.

Title: Neutron Interferometric methods and quantum sensing

Author(s): Wang, Zhehui; Demarteau, Marcel; Kamiya, Yoshio; Liu, Chen-yu; Makela, Mark F.; Morris, Christopher; Shih, Yanhua; Young, Albert

Intended for: Web

Issued: 2022-11-28

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA00001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Neutron Interferometric methods and quantum sensing

Zhehui Wang¹, Marcel Demarteau², Yoshio Kamiya³,
Chen-Yu Liu⁴, Mark Makela¹, Chris Morris¹, Yanhua Shih⁵, and Albert Young⁶
(email: zwang@lanl.gov)

¹ Los Alamos National Laboratory, Los alamos, NM 87545, USA

² Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

³ The University of Tokyo, Tokyo 113-0033, Japan

⁴ University of Illinois, Urbana, IL 61801, USA

⁵ University of Maryland, Baltimore County, Baltimore, MD 21250, USA

⁶ North Carolina State University, Raleigh, NC 27695, USA

(11/24/2022)

Summary: Advances in material science and engineering make it possible to access artificial materials or ‘metamaterial’ properties and structures on the length scale comparable to the wavelength of ultracold neutrons ~ 100 nm. Strong neutron scattering effects such as Anderson localization, resonance scattering may be studied in the laboratory according to our recent theoretical studies. UCN interferometry and high-resolution spectroscopy (sub-pico-electronvolt resolution) in neutronic metamaterials are examples of new experimental possibilities that can probe quantum gravitational states of neutrons, and quantum sensing based on ultracold neutrons.

Background: Neutron interferometry is one of the most sensitive methods for quantum sensing [RW:2014], including sensing of the minute force of gravity and equivalent due to the unique electric charge neutrality of neutron. By using a thermal neutron beam, gravitationally induced quantum interference of neutron was first demonstrated in the seminal experiment of Colella, Overhauser and Werner (COW) in 1975. By using a very weak ultracold neutron flux, one-dimensional gravitationally bound quantum discrete states of ultracold neutron were reported in laboratory by V. V. Nesvizhevsky and collaborators in 2002. Gravitational quantum states of neutron couples both gravity and quantum physics on an energy scale of femto- eV (10^{-15} eV) or less on the spatial length scale of 10 micrometers [AJLS:2010], and therefore complement quantum gravitational states of cold atoms and laser gyroscopes. On the other hand, the current achievable ultracold neutron density is on the order of 100 /cc, which is much less than that of a ultracold atom cloud. In additional to testing the fundamental quantum physics and concepts using neutrons such as entanglement, contextuality, squeezing, post-selection, intensity interference, some of the open problems that can be probed by neutrons and especially gravitational quantum states of ultracold neutrons include non-Newtonian gravity, the fifth force, Casimir effects, the equivalence principles on sub-micron length scales, sub-keV dark matter search.

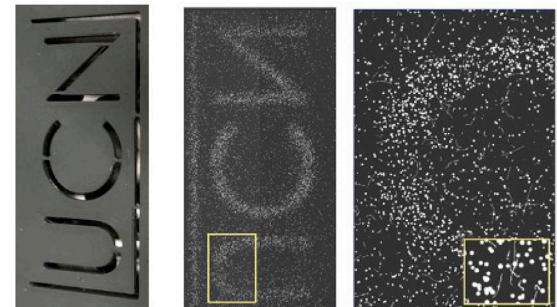


Figure 1. (Left) A 3D printed rectangular mask using thermoplastic material. This mask covered the full size of the detector (6 cm \times 3 cm). The mask was positioned about 3 mm above the borated surface of the bCCD. (Center) A raw bCCD image showing the transmission flux of UCN through the mask. (Right) Zoom into the yellow box at the center panel, showing the hits from the different particles and different energies from the neutron capture reactions. Inset shows a zoom into an even smaller region of the image. More details in [KCC:2021].

Ultracold neutron experiments are currently limited to a few facilities world-wide including LANSCE at Los Alamos. LANL and collaborator have also made significant advances in position-sensitive measurement of UCN. One recent publication reported a time-resolved UCN measurement with a few micro-meter resolution [KCC:2021]. Follow-on work has now demonstrated spatial resolution less than 1 micron, with a potential to approach the wavelength of a ultracold nuetron or less. The new detector allows construction new types of neutron interferometers, for example, with small parallel neutron guides [WDMS:2020] as well as experimental studies of the equivalence principle led by the University of Tokyo.

Timeline: Initial experiment results can be demonstrated on the timeline of two to three years, paving the way towards a comprehensive experimental program in five to ten years.

Resources required: Support for 2.0 FTE senior scientist (Wang, Demartau, Kamiya, Liu, Makela, Morris, Shih, Young), one to two postdocs, two to three graduate students. Access to the UCN facility at Los Alamos.

References:

- [AALS:2010] H. Abele, T. Jenke, H. Leeb, and J. Schmiedmayer, PRD 81 (2010) 065019.
- [RW:2014] H. Rauch and S. A. Werner, *Neutron Interferometry*, 2nd ed. (Oxford University Press, 2014).
- [KCC:2021] K Kuk, C Cude-Woods, CR Chavez, et al, NIMA 1003 (2021) 165306.
- [WDMS :2020] Z. Wang, M. Demarteau, C. L. Morris, Y.-H. Shih, arXiv preprint arXiv:2009.07900 (2020).