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Stellar structure primer

Wikimedia Commons
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Collapse

Hall, Magasjukur2, Wikimedia Commons
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Powering The Explosion

T. Janka
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Neutron Stars

Wikimedia Commons
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The Nuclear Equation of State

Lonardoni et al., PRR 2 022033
(2020)
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Nuclear EOS Impacts Explosion and Remnant

T. Janka
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Observation vs Theory
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Compare Distributions!

Meskhi,...,JMM et al., ApJL 932 L3 (2022)
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...Implies constraints on EOS!
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Cosmic Gold

Ashley Mackenzie for Quanta Magazine, March 23, 2017
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The 170817 Merger

Abbot+, 2017
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Neutron Star Mergers: A 2+ Component Model

∼ GW170817
Viewing angle

n-rich
Tidal Ejecta
∼ 5× 10−3M⊙

n-poor
disk wind
∼ 10−2M⊙

Disk
∼ 10−1M⊙

Black Hole
∼ 2M⊙

Co-design summer school, 2016
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The r-process

Courtesy of J. Lippuner
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The r-process

Courtesy of J. Lippuner
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Opacity

Opaque to visible lightNot opaque
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The Kilonova

M2H/UC Santa Cruz and Carnegie Observatories/Ryan Foley
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Neutrino Transport Matters!

JMM, B. R. Ryan, J. C. Dolence. ApJS 241 30 (2019)
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Ingredients In Kilonova Disk Modeling

General relativity

Rotating black hole spacetime

Plasma physics

Ideal magnetohydrodynamics

Nuclear physics

Hot gas treated as being in nuclear-statistical equilibrium via
equation of state
Cooling outflow treated in postprocessing via nuclear reaction
networks

Radiation physics

Material is opaque to photons, can be incorporated in plasma
physics
Material not opaque to neutrinos.
Neutrinos can change the composition of the material by converting
neutrons to protons and vice versa.
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Ingredients in Kilonova Disk Modeling

Mass conservation:
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Presenting νbhlight!

General relativistic radiation magnetohydrodynamics for kilonova
disks

Magnetized gas via finite volume methods

Standard second-order Gudonov scheme
Cell-centered constrained transport for magnetic fields
WENO5 reconstruction
Local Lax-Friedrichs Riemann solver

Neutrinos via Monte Carlo methods

Explicit integration along geodesics
Probabilistic emissivity, absorption, and scattering
Novel biasing scheme ensures all processes well-sampled

Coupled via operator splitting

Built on top of HARM, grmonty, and bhlight.
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Presenting νbhlight! github.com/lanl/nubhlight
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The August 2017 Disk (Miller et al., 2019)
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Neutrino Transport (Miller et al., 2019)

JMM et al. PRD 100 023008 (2019)
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Electron Fraction of the Outflow

JMM et al. PRD 100 023008 (2019)
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disk wind
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Extraction
surface
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Nucleosynthetic Yields
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Spectra
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Collapsars, and how it all circles back to supernovae

Accretion times t ∼ 10s

Ṁ between

10−4M⊙/s
10−1M⊙/s

ρ ∼ 1010 g/cm3

log10 t

log10 Ṁ

Siegel, Barnes, Metzger. Nature 241 (2019)
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Big Open Questions and Uncertainties

Initial conditions matter. What are the right ones? Massive
diversity:

BH mass and spin (V. Urrutia-Hurtado)
Disk mass (S. Curtis)
Magnetic field strength, topology. Transient due to MHD forces
real? (K. Lund)
In collapsar case, disk feeding (B. Barker)

Late time physics.

Mapping the central engine to observations (Several topics by
itself!)

Neutrino oscillations—Elephant in the room. cm-scale physics
impossible to treat.
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Future: Leveraging Next-Generation HPC

Parthenon AMR library: arXiv:2202.13209

Fast logs: arXiv:2206.08957

spiner performance-portable tables:
joss.04367

singularity-eos performance-portable EOS:
https://github.com/lanl/singularity-eos

Phoebus Performance portable GRνRMHD:
https://github.com/lanl/phoebus
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Conclusions

Astrophysical transients are a rich
laboratory!

Very big things (stars, supernovae,
neutron star mergers) tell us a lot
about very tiny things (nuclear
physics)

Need GRRMHD and neutrino
transport!

NS Mergers are awesome!

Likely source of heavy elements in
our universe
Disks can produce blue component
of kilonova

Stay tuned for more
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The story differs for more massive disks, BHNS Mergers

Remnant + Disk parameters, chosen to sample
edge of what’s possible:

MBH = 10, a = 0.8,Md = 0.082

MBH = 6, a = 0.75,Md = 0.1425

MBH = 7, a = 0.9,Md = 0.25

MBH = 5, a = 0.9,Md = 0.42

Curtis, JMM, Frohlich. In Prep.
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Electron Fractions and Yields
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Preliminary: Black hole spin influences jet + wind

Black hole properties, such as spin change jet opening angle, and
interaction of jet with wind.
(Preliminary. V. Urrutia-Hurtado et al.)
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Collapsar Disks: A Cautionary Tail

τ = 1
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Electron Fraction With and Without Absorption

Electron Fraction With
Absorption

Electron Fraction With
Optically thin Cooling
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Absorption and Initial Conditions
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How is Ye vs Lattitude Set?

Traced paths of Lagrangian fluid packets through the disk.
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Turbulence and Ye

z

Y eq
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Ye is set by the balance of Turbulence and Neutrinos!
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Ye is set by the balance of Turbulence and Neutrinos!
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Ye is set by the balance of Turbulence and Neutrinos!
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Future

Large optical depths, such as inside a neutron star present issues
for Monte Carlo

Need a method that can span the range of optical depths and
solve the full transport equation

Great progress community. See work by Radice, Mullen, Foucart,
others.

;

Ryan and Dolence, ApJ 891 118 (2020)
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