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El Cap COE Hackathon Outbrief : Capsaicin

• Goals: 
− Hipify cu files
− Figure out how hip interfaces with our build system
− Get up to speed with existing compiler issues 
− Run something in our code on an AMD GPU

• Accomplishments
− Hipify cuda modules ✅
− Find solution to tcmalloc compiler issue so we can actually test✅？
− Figure out how hip interfaces with our build system 🏗

• Blockers encountered:
− Sounds like cce15 will be great! 
− Access to LANL git servers from rzvernal would be handy

• Lessons Learned:
− Make sure you have system access sooner than the day before hackathon...

• To Be Improved:
− All good - looking forward to next event!
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El Cap COE Hackathon Outbrief : Jayenne
• Goals: 

− Get the GPU version of Jayenne (develop) compiling with HIP
− Get Initial performance data for stand alone driver and compare to V100

• Accomplishments:
− Successfully integrated CCE + clang into our Cmake build system!
− Found gaps in our host/device decorations (clang seems to be very careful)
− GPU kernels are compiling with HIP + M. Rowan’s Random123!

• Blockers encountered:
− Cmake picks the clang compiler in the ROCM module unless you tell it to use CCE 

(fine? Bug?)
− Cmake cannot compile a simple HIP test program with CCE because it fails to find the 

“CLANGRT_BUILTINS” library (seems to fail in enable_language(HIP) path only), Alex 
will report bug, workaround points CMAKE directly to the library in rocm module path

− Shared memory array does not allow default initialization of custom types (e.g.
__shared__ Particle particles[64] not allowed), work around with reinterpret cast

• Lessons Learned:
− Don’t declare compiler specific preprocessor variables (__NVCC__) no matter how 

convenient it may seem
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El Cap COE Hackathon Outbrief : xRage
• Goals:

− Understand profile outputs to determine how efficient we’re using UVM
− Explore other profiling tools
− Resolve build issues

• Accomplishments:
− Successfully ran miperf, rocprof, hpctoolkit profilers
− EAP tests in Rage suite ran with the HIP backend

§ 164 passes, 16 diffs, 24 fails

• Blockers encountered:
− Working through Spack buildouts, CMake versioning
− Figuring out the correct set of HW counters for a particular performance metric

• Lessons Learned:
− How to use hpctoolkit and miperf
− Understanding profiling metrics
− If you *think* your interactive allocation is close to ending prior to launching a profile 

that takes > 30 minutes, get a new allocation rather than losing your allocation 29 
minutes into the run

• To Be Improved: Anything that could be improved for future hackathon events
− “One-stop” documentation (various slides/tutorials/how-tos).
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El Cap COE Hackathon Outbrief : xRage

wish list
• pre-defined groups of metrics for omniperf so that it reduces the # of replays
• better documentation of the metrics
• source-level metrics (like Intel Vtune)
• timeline trace that links back to source (which source is generating the 

copyToDevice?)
• GUI tool to help with srun bindings
• Print Kokkos parallel loop name
• Several current and upcoming development efforts rely on the relaxed 

constexpr flag for host/device markups. Not having this feature available could 
be a significant hurdle. 
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El Cap COE Hackathon Outbrief : FleCSI

• Goals: 
− Build and run MPI & Legion backends on GPU
− Initial look at performance profiling
− Stretch: full spack build recipe

• Accomplishments: 
− Ran toy poisson problem on both FleCSI backends

• Blockers encountered:  
− Cray MPICH & bool
− List any problems that need to be resolved by HPE/AMD
− Legion + Kokkos only runs on 1 GPU
− Not building entire stack with spack

• Lessons Learned: 
− Build entire stack with rocmcc@5.3.0

• To Be Improved:
− more docs, tutorials, ...

mailto:rocmcc@5.3.0
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El Cap COE Hackathon Outbrief : PARTISN
• Goals:

1. Run a kernel on an AMD GPU (we are a Fortran code with all GPU capabilities via 
CUDA Fortran, so this is not trivial) and assess performance versus NVIDIA GPU.

2. Identify source of run-to-run variability for a single QA test.
3. Determine long-term path forward for memory management (we explicitly manage 

memory on host vs. device using native CUDA Fortran routines).

• Accomplishments:
1. We ran a kernel on an AMD GPU! Isolated kernel vs. kernel performance is favorable 

to AMD GPUs* vs. NVIDIA GPUs.
2. Diff has only been observed to fail on Cray machines (Trinitite, RZNevada, RZVernal) 

regardless of compiler or MPI flavor. Source not identified.
3. Long-term path forward seems to be unified memory approach.

• Blockers encountered: CCE bugs, potential issue on Cray machines, HIP 
memory management (e.g., hipMemPrefetchAsync not asynchronous)

• Lessons Learned: We have a simpler path forward than porting our entire 
CUDA Fortran code structure to C/HIP

• Lessons *not* Learned: While this model seems highly likely to work for a 
machine w/homogeneous memory, how will it compare for heterogeneous 
memory vs. explicit memory management?


