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1 Introduction

Signatures of liquid water on planetary bodies may provide evidence for past, present, or future
life elsewhere in the solar system. Multiple current and upcoming planetary science missions are
prioritizing the search for water, using innovative technologies and creative algorithms. For this
project, we explore the capabilities of an instrument similar to the Dragonfly spacecraft [1] to map
water content on the surface of Titan, the largest moon of Saturn. We simulate Dragonfly’s neutron
observations for a variety of soil compositions and develop multiple techniques to extract water
content from the resultant neutron data. Additionally, we supplement neutron observations with
gamma spectroscopy in an attempt to further refine water content estimates. This work is part of
a larger study to employ Gaussian process regression to estimate a map of water content along the
surface of Titan [4, 7, 8]. Using the estimated map, an algorithm based on prediction difference
mapping is employed to optimally move multiple Dragonfly detectors around the surface of Titan,
fully autonomously.

Dragonfly is scheduled to land on Titan in 2034, then spend the remainder of its mission ex-
ploring the Shangri-La dune fields and Selk impact crater [1]. Multiple scientific instruments are
onboard, including the Dragonfly Gamma-ray and Neutron Spectrometer (DraGNS), which con-
tains a pulsed neutron generator, gamma-ray spectrometer, and neutron spectrometer. We are
specifically interested in studying neutron die-away curves recorded at various locations on Titan’s
surface, assuming a range of water content values at each location. Die-away curves record the
time-dependent flux of detected neutrons, following an initial neutron pulse at the source. These
die-away curves primarily include down-scattered neutrons off of the soil sample.

We use Monte Carlo N-Particle R©1 Transport Code (MCNP 6.3) [9] to simulate neutron die-
away curves and gamma-ray spectra for a variety of water compositions. The MCNP simulations
utilize a simple geometry with a slab of soil material surrounded by an atmosphere region. The
source neutrons are 14.1 MeV and are started at time=0 in the simulation.2 The isotropic source is
directionally biased towards the soil, and further variance reduction is achieved with forcing neutron
collisions as well as using type 5 tallies. Due to directional biasing, particles are more frequently
sampled in the direction of interest, at the cost of the statistical weight of the particle. This allows a
source to remain isotropic in the weight-space of the problem, while more tracks are directed toward
important regions. The MCNP type 5 tally is a deterministic estimate of particle flux (or fluence)
at a point following a particle’s birth and all collision events until the particle terminates [9]. This
deterministic estimate is appropriate when there is little to no self-shielding effects from a detector;
additionally, this estimate provides a smaller variance in reported tally bin means. Since details of
the DraGNS detector are not publicly available, we assume a neutron source and detector broadly
similar to the DAN experiment on-board the Mars Science Laboratory rover Curiosity [6].

Several previous planetary science missions relied on passive neutron detection – the detection of
neutrons from cosmic ray spallation – for neutron-based composition studies. The DAN instrument
was the first planetary science mission to employ active neutron detection, from a pulsed neutron
generator, to infer surface composition. Litvak et al. 2008 [6] led the first study to simulate water
content inference on Mars from die-away curves, assuming an otherwise fixed composition. Later,
Hardgrove et al. 2011 [5] improved upon this method and also studied the effect of variations in
chlorine and iron composition on Martian water content identification. Our study builds upon the

1MCNPR© and Monte Carlo N-ParticleR© are registered trademarks owned by Triad National Security, LLC, man-
ager and operator of Los Alamos National Laboratory.

2See Reference [4] for a discussion of more realistic pulse structure.
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work of Hardgrove et al. 2011 [5] by exploring a wider range of chlorine compositions, in addition
to a wide range of boron compositions. Additionally, we present a thorough investigation coupling
neutron die-away curve data with gamma spectroscopy to further refine water content estimates.

This report is structured as follows: in Section 2 we present a method to infer water content from
neutron detections for a fixed soil composition with only variations in water content. In Section 3
we vary boron-10 composition in addition to water content, and in Section 4 we present a method
to combine gamma observations with neutron die-away curves to refine estimates on water content.
In Section 5 we conclude and suggest directions for future work.

2 Inferring Water Content from Neutron Die-away Curves

Detailed analysis of neutron measurements may reveal underlying molecular compositions in soil
samples, including water content of the soil. For this project, we assume a volume of planetary soil
is analyzed through active neutron die-away measurements and subsequently attempt to extract
water content from the observations. We assume water content refers to the percent of water by
mass fraction, in a given sample.

We present an example of simulated neutron die-away curves for various water content percent-
ages in Figure 2-1, where each color corresponds to a different water content ranging from 0% to 50%
by mass. We assume an identical initial neutron pulse for each die-away curve, and assume a fixed
lunar soil elemental composition for all isotopes other than water. Additionally, we only consider
thermal neutrons, with energies below 0.4 eV. The die-away curves in Figure 2-1 are dominated by
an interplay between neutron scattering and capture reactions. Higher water content correlates with
an increase in neutron scattering, which increases the number of thermal neutrons in the system.
With this increase in available thermal neutrons, the rate of thermal neutron capture also increases,
resulting in fewer neutrons observed at later times.

Figure 2-1: Thermal neutron die-away curves for variouswater contents, presented as percentage of water by atomicmass. The
gray region indicates the integration bounds used in the numerator of Equation 2.
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Using our die-away curves, we seek to define a single quantifiable metric that encompasses the
full die-away behavior. Having one single value is useful for feeding this metric into an interpolation
method, such as Gaussian process regression. Our water quantity metric has multiple necessary
requirements: the metric must exhibit a monotonic relationship with water content percentage, so
we can uniquely infer a single water content percentage to one metric value. Additionally, the water
content should vary more strongly with lower water content values compared to high water content
values, as we are more interested in differentiating lower water contents (i.e. the difference between
no water and slightly more water) than large water contents.

With these factors in mind, we define a water content metric, mW , which correlates to the
integral of a normalized die-away curve. We normalize each die-away curve such that it integrates
to one over the studied time frame. This follows the equations below,

n (t) =
m (t)∫∞

0 m (t) dt
=
m (t)

N
, (1)

where N is the normalization constant, m (t) is the unnormalized die-away curve (similar to those
shown in Figure 2-1), and n (t) is the normalized die-away curve. We define the neutron metric,
mW , as the ratio of the integral of one section of the die-away curve to the entire die-away curve,
which can be represented in several forms:

mW =

∫∞
t0
m (t) dt∫∞

0 m (t) dt
=

∫∞
t0
m (t) dt

N
=

∫ ∞
t0

n (t) dt. (2)

For ease, we often define

mW =
A

B
. (3)

The quantity t0 refers to the lower integration bound for mW . In Figure 2-1, we assume a t0 of
2 ms, where the full shaded (gray) region corresponds to the numerator of the ratio of integrals
in Equation 2. This value of t0 was chosen to minimize uncertainty in water content estimates
at lower values, while also allowing for optimal discrimination between runs with varying boron
concentrations (see Section 3).

2.1 Uncertainty Quantification

We compute two sources of uncertainty on mW : statistical uncertainty in the MCNP simulations
(called σs) and Poisson counting uncertainty in recovering die-away curves, assuming a realistic
detector (called σd). These two sources of uncertainty are combined with a quadrature sum:

σm =
[
σ2s + σ2d

]1/2
, (4)

where σm is the total uncertainty on mW .

2.1.1 MCNP Statistical Uncertainty

We leverage batch statistical analysis to compute σs. Since our die-away curve simulations are
resolved in evenly spaced time bins of width ∆t, we can rewrite the integrals in Equation 2 in the
following form: ∫ b

a
m (t) dt = ∆t

N∑
i

mi, (5)
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where mi refers to the flux in time bin i. The variable N refers to the total number of time bins
within the bounds of integration. The batch mean is then computed as

m =
1

N

N∑
i

mi, (6)

and the batch variance is described by the following equation:

(σm)2 =
1

N − 1

[(
1

N

N∑
i

m2
i

)
−m2

]
. (7)

The batch variance can be related back to A and B which compose the numerator and denominator
of mW (Equation 2), by altering the bins in each summation.

Batch standard deviation is converted to actual sample standard deviation with the following
two equations:

σs,A = ∆t · σm,A ·NA, (8)

σs,B = ∆t · σm,B ·NB, (9)

where NA and NB are the number of time bins in A and B, respectively, and σm,A and σm,B are the
corresponding batch standard deviations. We then compute the total MCNP statistical standard
deviation as follows:

σs =

[(
∂mW

∂A

)2

(σs,A)2 +

(
∂mW

∂B

)2

(σs,B)2
]1/2

, (10)

which can be rewritten as

σs =
A

B

[(
σs,A
A

)2

+

(
σs,B
B

)2
]1/2

. (11)

2.1.2 Poisson Uncertainty Assuming a Realistic Detector

We can compute Poisson counting uncertainties, by converting neutron die-away curve fluxes to
realistic detector counts over time. We assume a pulsed neutron generator which produces 1010

neutrons at 14.1 MeV per second. Additionally, we assume a dwell time of 1800 s for a detector
with 100% efficiency and an effective area of 1 cm2. These are idealized efficiencies and effective
areas, but are broadly consistent with typical detector values. These parameters are combined as
follows, to convert die-away curve fluxes to counts:

d (t) = m (t)
(
1010 neutrons/s

)(
1800 s

)(
1.0 efficiency

)(
1.0 cm2

)
, (12)

where m (t) is flux in units of # / cm2 / source particle and d (t) is the number of detected neutrons.
We can then rewrite Equation 2 in terms of detector counts, as follows:

mW =

∫∞
t0
d (t) dt∫∞

0 d (t) dt
=
Ad

Bd
. (13)
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We then assume both Ad and Bd have Poisson counting uncertainties of σd,A =
√
Ad and σd,B =√

Bd, respectively. These uncertainties can be combined as follows:

σd =
Ad

Bd

[(
σd,A
Ad

)2

+

(
σd,B
Bd

)2
]1/2

. (14)

In general, larger values of d (t), resulting from more neutrons, longer detection times, or increased
effective area, yield a reduction in Poisson counting uncertainty.

2.2 Example Water Content Recovery

In Figure 2-2, we present the mW values with their corresponding σm for each water content per-
centage. We can then use the relationship shown in Figure 2-2 to estimate water contents for new
measurements of mW . First, we interpolate three curves over the scatterpoints with cubic spline
interpolation. Three curves are interpolated based on the measurements (black), 1σ lower limit on
measurement (blue), and 1σ upper limit on measurement (red). We then compare these interpo-
lated curves to a new mW observation, shown as the magenta horizontal line with associated 1σ
uncertainty. The orange shaded region represents the estimated water content for this mW obser-
vation. The median inferred water content corresponds to the intersection of the black interpolated
curve and median observed mW . The lower limit on estimated water content corresponds to the
intersection of the upper limit on the mW measurement with the interpolated blue curve, for the
lower fit, while the upper limit on estimated water content corresponds to the intersection of the
lower limit on the mW measurement with the interpolated red curve. For the example measurement
shown in Figure 2-2, water content was estimated as 39.1+1.86

−1.77%, recovering the true value within
2σ.

Figure 2-2: Neutron die-away curve metric,mW , over water content. The horizontal magenta region representsmW with 1σ
uncertainty bands for a die-away curve with 37%water content. The vertical orange region presents the inferred water content
of 39.1+1.86

−1.77%. The true value is recovered within 2σ.
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We repeat this water content estimation procedure for various true water content percentages
in Figure 2-3. This figure shows the estimated water content percentage, with uncertainty, given
a true simulated water content. We bound resultant water content estimates between 0 and 50%.
In all cases the median estimated water content results in the true value, represented by the black
line.

Figure 2-3: Estimated water content for each simulated value. Error bars represent 1σ uncertainty.

3 Accounting for Variations in Boron Content

The previous section presents an idealized case of water content estimation, where soil composition
remained fixed relative to the proportion of water content in the soil. However, in actuality, the
composition will be unknown and will deviate from the fiducial lunar sample. Therefore, in this sec-
tion, we explore methods of unambiguously identifying water content, regardless of the composition
of the remaining soil. We assume that mass spectroscopy is not feasible, consistent with instruments
available on the Dragonfly spacecraft.

To explore this problem, we primarily look at variations in boron content in the soil, in addition
to water content variation. Boron has a particularly large microscopic cross section for neutron
absorption, with the number of captured thermal neutrons increasing as boron concentration in-
creases. This is further exacerbated by the water concentration: increased water concentration
results in more scatter, leading to more thermal neutrons available for capture by boron nuclei.
Figure 3-1 presents the large boron-10 cross section as a function of the incident neutron energy,
showing the substantially large boron cross section at thermal energies. We also present the cross
section for chlorine-35, which also incurs measurable variation in neutron die-away curves with
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varying water content.3 Boron produces the most significant variation in neutron interactions out
of all elements realistically expected to appear in non-negligible quantities on planetary surfaces.
Therefore, our analysis primarily focuses on boron variation. Additionally, exploring variation with
only one element increases computational efficiency by reducing the number of MCNP simulations
needed to fully explore the parameter space.

Figure 3-1: Total neutron interaction cross sections on boron-10 and chlorine-35. Both isotopes have large cross sections, with
boron-10 exhibiting a substantially larger cross section at all incident thermal energies.

We assume that boron contents vary between 0 and 10,000 ppm, encompassing the maximum
measured boron content for both lunar and Martian measurements [2, 3]. Figure 3-2 presents
neutron die-away curves for varying boron content. In each panel, we fix the water content, vary
the boron content, then set the remaining mass distribution to match the lunar soil composition.
Die-away curves are dictated by a complex interplay between scattering and capture reactions from
water, in addition to boron capture reactions.

Figure 3-3 displays mW for every die-away curve in our simulation set, including variations in
boron. The metric, mW , is computed according to Equation 2, as described in Section 2, and uncer-
tainty is smaller than the scatterpoints for all but the smallest mW . For identical water contents,
mW significantly decreases with increasing boron content. As a result, the method described in
Section 2 is no longer able to infer water content.

Instead, we use this previous method to infer an upper limit on water content, rather than
estimating the water content itself. We assume a mW measurement with uncertainty and compare

3We performed a similar analysis for variations in chlorine content, which is not presented in this document.
Chlorine produces less variation in die-away curve behavior, and thus mW , than boron, as supported by Figure 3-1.
We only present boron variation in this document, in order to focus on the most drastic example.
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Figure 3-2: Thermal neutron die-away curves for varying boron content. The top (bottom) panel presents 5% (20%) water con-
tent.
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that uncertainty to interpolated curves over the datapoints with 0 ppm boron. Then, we determine
the inferred upper limit on water content, by recording the intersections of the measured mW value
with interpolated curves, taking uncertainty on mW into account. Figure 3-3 presents an identical
measurement to that presented in Figure 2-2; however, we now interpret the orange region as an
upper limit on water content, meaning that the water content is estimated to be below 39.1+1.86

−1.77%.
Again, we restrict all inferred upper limits to values between 0% and 50%. AnymW less than 0.0011
(50% water content with 0 ppm boron) will not intersect the interpolated curves, and results in an
inconclusive upper limit estimate of 50.0+0.0

−0.0%.4 To interpret these fits as upper limits, we must
assume that our baseline lunar soil composition results in the maximum mW for any composition
expected to occur on a planetary body of interest, such as Titan.

Figure 3-3: Variations inmW for di�erent boron concentrations. For fixed water content,mW decreases with increasing boron
content. Three curves (black, blue, red) are interpolated for scatterpoints with no boron. Values ofmW from measured die-
away curves (magenta horizontal lines) are compared to the interpolated curves to produce estimates on the upper limit of
water content (orange vertical lines).

We present a scatterplot of all upper limits inferred from every MCNP simulation in our data
set in Figure 3-4. In all cases, the upper limit does not exclude the true water content value. There
are numerous overlapping upper limit estimates for estimates of 50% water content, consistent with
the large number of boron simulations which results in inconclusive water content constraints.

4We do not report uncertainty for inconclusive upper limit estimates.
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Figure 3-4: Estimated upper limit on water content for each simulation, including variation in boron content. Estimated values
are bound between 0 and 50%. Inconclusive fits result in scatterpoints at 50%, plotted without error bars.

4 Refining Water Content Estimates with Gamma Spectroscopy

Water content estimates are improved by combining estimates from gamma spectroscopy with the
neutron die-away curve analysis presented in the previous section. Gamma spectra are computed
with MCNP simulations, using an identical configuration to the neutron die-away curve simulations,
with an additional tally to capture gamma spectra produced from neutron interactions. We note
that our simulated spectra are produced at far higher energy resolutions than would be anticipated
on near-term planetary science instruments. Figure 4-1 presents two normalized gamma spectra,
for 5% water content (top) and 20% water content (botton) for a variety of boron concentrations.
Normalized spectra refer to gamma spectra where the spectral fluxes integrate to one over the full
simulated energy range.

Figure 4-1 highlights gamma-ray detections between 0.4 MeV and 0.5 MeV, which encompassed
the boron-10 energy peak at 0.477 MeV indicated by the gray dot-dashed lines. Higher boron
concentrations result in a larger spectral flux measurement around 0.477 MeV, with the flux falling
as boron concentration decreases. Normalization encompasses the effect of hydrogen spectral peaks
at other simulated energies not included in the figure. Higher water contents lead to an increase in
the quantity of available thermal neutrons due to scattering, thus resulting in more opportunity for
boron capture reactions.

To capture the dependency on boron concentration, we define the boron content metric, mB,
as the height of the normalized spectral bin between 0.477 MeV and 0.478 MeV. Similarly to the
procedure in Section 2.1.2, we must convert fluxes to detector counts to compute Poisson counting
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Figure 4-1: Normalized gamma spectra for 5% water content (top) and 20% water content (bottom), at a variety of boron con-
centrations. The vertical dot-dashed line indicates the boron peak at 0.477 MeV.
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uncertainties. Batch statistical analysis is not feasible for gamma spectra, due to irregular energy
binning, so we consider Poisson uncertainty as the main source of uncertainty. We assume an
identical detector setup to Section 2.1.2 and convert flux to counts with the following equation:

d (E) = m (E)
(
1010 neutrons/s

)(
1800 s

)(
1.0 efficiency

)(
1.0 cm2

)
, (15)

where m (E) is flux in units of # / cm2 / source particle and d (E) is the number of detected
gamma-rays. We assume all gamma-rays are produced through neutron interactions.

We define mB with the following equation:

mB =
dk
M
, (16)

where dk is the unnormalized gamma count in the energy bin between 0.477 MeV and 0.478 MeV.
The variable M represents the normalization factor, computed as follows:

M =
∑
i

di∆Ei, (17)

where ∆Ei is each energy bin width and di is the gamma count in energy bin i. We assign Poisson
counting uncertainties, such that σM =

√
M and σdk =

√
dk. The final uncertainty on mB is then

represented by

σB =
dk
M

[(
σdk
dk

)2

+

(
σM
M

)2
]1/2

. (18)

Figure 4-2 presents mB estimates for every water content and boron concentration simulated.
The thick solid lines represent the median measurements, with uncertainty smaller than the width
of the lines. Points for the same water content estimate are connected through linear interpolation.
While mB generally increases with boron content, water content variations dominate estimates of
mB.

We can refine water content estimates by comparing new mB measurements to the curves in
Figure 4-2. The thick magenta horizontal line indicates a new mB measurement. In this example,
the measurements correspond to a simulation with 18% water content and 85ppm boron. We then
record intersection locations of the measured mB with the median values of the curve for each water
content value, corresponding to the feasible boron concentration for a given water content value.
Uncertainty on the range of feasible boron values is determined by recording the intersections of
the mB ± σB measurement with ±σB estimates on each water content curve. We can place a lower
limit on water content if a measured mB does not intersect with a curve of potential mB values
for a given water content value at any boron concentration. In the example of Figure 4-2, water
contents ≤ 2% are ruled out by the data.

For each feasible water content value, we can interpolate a distribution of mW as a function
of boron content, given the distribution of scatterpoints shown in Figures 3-3 and 4-3. Then, we
can infer a range of feasible mW values, by comparing the range of feasible boron values for each
water content to the distribution of mW vs. boron content. In Figure 4-3, red scatterpoints indicate
the range of mW values consistent with the gamma data, incorporating Poisson uncertainty in mB

estimates. We can then compare the red scatterpoints to the magenta horizontal line, corresponding
to the measured mW value. Three cubic splines are used to interpolate mW as a function of water
content for the median, upper uncertainty, and lower uncertainty red scatterpoints. The magenta
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Figure 4-2: Variations in mB with di�erent boron concentrations, for a wide range of water contents. Uncertainty on mB is
smaller than the line width. The horizontal magenta line corresponds tomB measured from an example gamma spectrum.

measurement is then compared to these interpolated curves, where we define any value that falls
within the uncertainty bands of the interpolation as consistent with the data. We check that the
estimated range of water content values is consistent with the upper limit on water content, inferred
from only neutron detections.

In the example in Figure 4-3, water contents between 13.3% and 31.4% are estimated using
both the gamma and neutron observations. This encompasses the true water content of 18% and is
refined from the upper limit inferred from only neutron observations, shown in orange.

While this method is generally able to produce estimates on the water content, several prob-
lems still exist. Water content estimates are often weak or inconclusive, and, for some regions of
parameter space, interpolation and estimation are not mathematically possible. The method only
offers a partial solution to determining water content. Gamma and neutron measurements
are highly dependent and correlated, meaning that gamma measurements are insuffi-
cient to identify, let alone break, degeneracies in water content estimates from neutron
measurements.
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Figure4-3: Estimateonwater content (gray region)basedonacombinationof gammaandneutronmeasurements. Thehorizon-
tal magenta line corresponds to the measuredmW value, while the vertical orange region is the upper limit inferred from only
neutron data. Red scatterpoints indicate estimatedmW values at a given water content, based on the gamma data. The large
gray region indicates the recoveredwater content between 13.3%and31.4%at the 1σ level, including both gammaandneutron
data. This encompasses the true water content of 18%. For almost all points, uncertainty is smaller than the scatterpoint.

5 Conclusions & Future Work

We present a statistical study coupling gamma observations with neutron die-away measurements
in an attempt to capture water content. Our method successfully identifies water content for a large
set of MCNP simulations, spanning multiple water compositions while fixing all other elemental
contributions by-mass. However, our methods are unable to robustly identify water content when
including variation in boron-10 or chlorine-35, which both exhibit substantial neutron cross sections
leading to significant variation in observational signatures due to composition changes. In reality,
planetary missions such as Dragonfly will attempt to infer water content for an unknown underlying
soil composition, with variations in multiple elements beyond just boron or chlorine. The method
presented in Section 4 is only able to weakly infer water content when boron-10 and water content
are varied, and the proportion of all other isotopes remains constant. As a result, this method will
not scale for soil samples where many elemental compositions are unknown.

There are multiple avenues to expand upon this work, and potentially provide stronger con-
straints on water content beyond the constraints presented in Section 4. Additional MCNP simula-
tions will tighten water content estimates, especially by including simulations for variation in boron
composition between 20% and 50% water content. Furthermore, more statistical techniques can be
explored, including random forest or simple neural network regression techniques to estimate water
content from multiple input features from neutron die-away curves and gamma spectroscopy. These
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machine learning methods will likely require a significantly larger sample of MCNP runs and, thus,
require significant computational resources beyond the scope of this work.
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