SAND2022-16514

SAND2019-DRAFT

Printed November 15, 2022 National

Laboratories

SANDIA REPORT @ Sandia

EMPIRE User Manual

M. T. Bettencourt, K. L. Cartwright, E. C. Cyr, N. Hamlin E. Love, W. Mc-
Doniel, D. A. O. McGregor, S. Miller, C. H. Moore, R. P. Pawlowski,
E. G. Phillips, T. D. Pointon, G. A. Radke, N. A. Roberds, N. V. Roberts,
S. Shields, M. S. Swan, C. D. Turner

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550




Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering:  http://www.osti.gov/scitech
Auvailable to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order:  https://classic.ntis.gov/help/order-methods

NYSH

National Nyclear Security Adminisfration




ABSTRACT

This is the user manual for EMPIRE, a simulation code for electromagnetics and plasma physics.
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2. QUICK START

2.1, Running a Simulation

If you already have an executable and your environment is set up, then running a simulation can
be as easy as:

[% /path/to/EMPIRE_PIC.EXE --i=input.yaml j

This is the most basic invocation and should be avoided as it assumes that all available processors
should be used.

For finer control of how the simulation is executed, it is necessary to pass in commands to control
Kokkos, the library that is the basis of the parallel data structures. For single-machine
parallelization, it is sufficient to call it with

[% /path/to/EMPIRE_PIC.EXE --kokkos-threads=3 —--i=input.yaml j
This will run EMPIRE with 3 threads.

When running with OpenMP, it is not uncommon for EMPIRE to complain about not having
environmental variables properly set and will make suggestions about what and how to set them.
Often, setting the following variables will be sufficient:

% export OMP_PROC_BIND=spread
% export OMP_PLACES=threads

2.2, Dissecting an Input File

This section discusses the basics of the input file and covers a handful of common errors when
creating your own input.

2.2.1. What is YAML?

YAML is a recursive acronym standing for YAML Ain’t Markup Language and is the markup
language for input files for EMPIRE. YAML was developed to cover many of the same use cases
as XML, but to be more human-readable and clean. YAML uses indentation to manage sections
of code, colons to delimit keys and values, and the pound sign # to denote comments.

Here is an example of a YAML file that contains information about dog breeds.
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# This is a comment
dog breeds:
# This is a comment
Chihuahua:
average weight: 5 lbs # This is a comment
description: The smallest breed of dog.
Dobermann:
average weight: 75 l1bs
description: |
Dobermann Pinschers were originally developed
by Karl Friedrich Louis Dobermann. # This is not a comment
# This is not a comment

Dobermanns were bred to be guard dogs.
# This is a comment and the end of the multi—-line string

The root block of the tree is dog breeds and is at the lowest level of the file. Notice that
whitespace in block names, keys, and values throughout the file is perfectly valid. Each element
of dog breeds must be indented to the same level using spaces, not tabs. The amount of
indenting is inconsequential so long as it is at least one space and is consistent within the block
(here, the elements are Chihuahua and Dobermann and the block is dog breeds). As an
example, the key-value pairs within both the Chihuahua block and the Dobermann block are
indented uniformly within each block, but there is no requirement for consistency between
blocks.

Multi-line strings are done by either inserting a pipe | or a greater-than sign >. When the pipe is
used, YAML keeps the newlines whereas with the greater-than sign it gobbles the newlines. In
either case, YAML expects the multi-line string to continue until it sees a line with less
indentation than the first line of the multi-line string. This can cause unexpected behavior if
comments are used in or around the multi-line string. This is demonstrated with attempted
comments in the Dobermann :description multi-line string.

2.2.2. Basic Electrostatic EMPIRE Input

The example input file below contains a basic electrostatic example with a single stationary
particle at the origin of a 2D space. To understand the input as a whole, we will discuss each
block individually.

Electrostatic Example:

Physics:
Fields:
ElectrostaticO :
Regions: [eblock-0_0]

Mesh:
13




Inline :
Type: Quad
Elements: [
Blocks: [
Start: [ -
End: [

Initial Conditions:
Andromeda:
Regions: eblock-0_0
Zero:

Fields: [E_Field, ES_POTENTIAL]

Boundary Conditions:
Guanine :
Dirichlet:
Sideset: left
Field : ES_POTENTIAL

Value: 0.0
Element Block: eblock-0_0
Cytosine:
Dirichlet:

Sideset: right
Field: ES_POTENTIAL

Value: 0.0
Element Block: eblock-0_0
Adenine :
Dirichlet:

Sideset: top
Field: ES_POTENTIAL

Value: 0.0
Element Block: eblock-0_0
Thymine:
Dirichlet:

Sideset: bottom
Field: ES_POTENTIAL
Value: 0.0

Element Block: eblock-0_0

Time Stepping:
Final Time: 1.e-20
Number of Timesteps: 10

Mesh History Diagnostics:
Solver_Fields:
Solver Field:
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Mesh History Outputs:

SingleParticle .exo:
Diagnostics:

— Solver_Fields

Initial Particle Conditions:
Spherical Cow:

Point:
Position: 0., O.
Type: e—
Weight: 1e8

Particle Dumps:
SingleParticle . hSpart:

2.2.2.1. Simulation Root

LElectrostatic Example:

This first line is an arbitrary placeholder that acts as the root level for the blocks that define the
simulation. Usually it is set to the name of the simulation, but it is not used inside of EMPIRE.

2.2.2.2. Sublists separated by physics

Every block is divided into sublists according to which physics the options in it are relative to.
For example, anything relating to electromagnetics or electrostatics would be listed under the
Fields sublist, anything relating to particles would be under the Particles sublist, and
anything relating to fluids would be under the F1uids sublist. Input for pure EMPIRE runs will
only see the Fields sublists because no particles or fluid are involved in these problems.

2.2.2.3. Physics Definition

Physics:
Fields:
ElectrostaticO :
Regions: [eblock-0_0]

This block defines the physics desired in the problem. The first line here is the Fields sublist
delimiter, showing that everything under it is related to electromagnetic or electrostatic fields in
some way. Under the Fields sublist there are a number of options that can be defined, along
with the Electrostatic and Elect romagnetic equations sublists. Details of the Physics
block can be found in Chapter 5
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2.2.24. Inline Mesh Generator

Mesh :
Inline :
Type: Quad
Elements : [ 32, 32 ]
Blocks: [ 1, 1 ]
Start : [ -1.0, -1.0 ]
End: [ 1.0, 1.0 ]
Processors: [ 4, 2 ]

While EMPIRE can import meshes in various formats, the easiest way to get a simulation set up
is to use the built-in inline mesh generator. This example creates a 2D mesh comprised of a single
block (from which eblock-0_0 comes from in the section above) with an X- and Y-extent from
-1 meter to +1 meter. Detailed descriptions of mesh options can be found in Chapter 4

2.2.2.5. Initial Conditions

Initial Conditions:
Andromeda:
Regions: eblock-0_0
Zero:
Fields: [E_Field, ES_POTENTIAL]

The Initial Conditions block may contain many elements with arbitrary, unique names,
where each child sets the initial conditions for a single block of the mesh. In this example, the
arbitrary, unique name for the block defining the initial conditions in eblock-0_0 was chosen
the be Andromeda, the name of the closest galaxy to the Milky Way. Inside the Andromeda
block, it must define the Region key with the name of the particular mesh block and then define
the fields in that region. Constant fields (as opposed to fields defined by runtime compiled (RTC)
functions) should be defined in a Constant block. Details of the various options are listed in

7

2.2.2.6. Boundary Conditions

Boundary Conditions:
Guanine :
Dirichlet:
Sideset: left
Field : ES_POTENTIAL

Value: 0.0
Element Block: eblock-0_0
Cytosine:
Dirichlet:

Sideset: right
Field: ES_POTENTIAL
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Value: 0.0
Element Block: eblock-0_0
Adenine :
Dirichlet:
Sideset: top
Field : ES_POTENTIAL

Value: 0.0
Element Block: eblock-0_0
Thymine :
Dirichlet:

Sideset: bottom

Field: ES_POTENTIAL
Value: 0.0

Element Block: eblock-0_0

Each child in the Boundary Conditions block can take an arbitrary, unique name. For this
example, the names are the four DNA nucleobases. Their children must have a specific name
depending on the type of boundary condition that is desired (here, it’s Dirichlet). The
children of the specific type of boundary condition requires all of its children be set and named
correctly. The remaining usage is discernable from similar usage and descriptions in previously
discussed sections. Details of the various boundary condition options are provided in Chapter 8.

2.2.2.7. Time Stepping

Time Stepping:
Final Time: 1.e-20
Number of Timesteps: 10

The Time Stepping block is required but only has two elements which are both optional. All
simulations start at time zero and proceed until the time given by Final Time. Ifthe Final
Time element is missing, a default value of zero is used. The simulation will advance up to the
Final Time in the number of timesteps equal to what is given in Number of Timesteps.
If that is missing, a default value of zero is used. Detailed descriptions of the Time Stepping
options can be found in Chapter 6.

2.2.2.8. Field Output

Mesh History Diagnostics:
Solver_Fields:
Solver Field:

Mesh History Outputs:

SingleParticle .exo:
Diagnostics:

— Solver_Fields

17




The Mesh History Diagnosticsand Mesh History Outputs blocks are optional.
Details on diagnostics and output can be found in Chapter 12.
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3. USER DATA

The User Data section has miscellaneous settings not involved with the actual physics of the
problem

User Data:
Time Barriers: [bool]
Timing File Name: [string]
Dump Timers: [Stride sublist]
Kokkos Timers: [string]

Time Barriers Puts barriers in key points and then reports the time waiting at the barrier,
useful for determining if the run is not load balanced.

Timing File Name Name of file to dump timing information.
Dump Timers Provide a stride sublist to dump timing at interval defined by the stride.

Kokkos Timers String which defines what kokkos stuff to dump in the integrated timer file
or memory file.

empty only regions are dumps

None means nothing is added

Parallel Functions parallel for, scan and reduce are dumped

Views allocation of views are timed.

Memory allocations and deallocations are dumped to a file and size information

A11 all of the above are done
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4. MESH

The mesh block specifies the mesh the problem is run on. Currently EMPIRE supports either
simplex (i.e. triangle or tetrahedron) or tensor product (i.e. quadrilateral and hexahedron)
elements. EMPIRE does not support meshes with more than one type of element.

EMPIRE offers three options — externally provided exoduslI files (typically denoted with .g or
.gen when used for input ), a very simple inline mesher capable of meshing brick-like domains
with either uniform tensor elements or simplices, or pamgen which provides tensor product

meshes for a variety of shapes and supporting multi-block. Note that pamgen does not provide the
capability to cut a tensor product mesh into a simplex mesh.

4.1. Mesh Options

41.1. Exodus Mesh

An exodus mesh can be read in using the keyword Exodus as follows.

Mesh:
Exodus:
File: [string]

File name of the exodus file being read in.

For parallel runs the mesh does not need to be decomposed and Zoltan’s Recursive Inertial
Bisection (RIB) will be used. If a decomposition matching the MPI parameters is available, this
will be used instead.

Expert option - control decomposition method. First determine what methods are available

$ io_info —-config

Supported decomposition methods:
LINEAR, BLOCK, CYCLIC, RANDOM, RCB, RIB, HSFC

Then you can set the decomposition method as follows:

[e xport IOSS_PROPERTIES=DECOMPOSITION_METHOD=RCB J
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4.1.2. Inline Mesh

Mesh:
Inline :
Type: [string ]
Elements : [ [int] , [ int] (optional , [int] ) ]
Blocks: [ [int ] , [int] (optional , [int] ) ]
Start: [ [double], [double] (optional, [double]) ]
End: [ [double], [double] (optional, [double]) ]
Processors: [ [int] , [int] (optional , [int] ) ]

Type requires a value of either Quad or Hex when the simulation is either 2D or 3D,
respectively.

Elements list states the number of elements in the X-direction, Y-direction, and (if applicable)
the Z-direction.

Blocks list states the number of blocks in the X-direction, Y-direction, and (if applicable) the
Z-direction with the block numbering starting at zero. Each block will have the number of
elements specified in Elements. The first block created is named eblock-0_0 for 2D
or eblock-0_0_0 for 3D.

Start list contains the lower limits of the mesh extent for the X-, Y-, and (if applicable)
Z-directions.

End list contains the upper limits of the mesh extent for the X-, Y-, and (if applicable)
Z-directions.

Processors list contains the user specified distribution of processors. The length of this list
must match the dimension of the mesh, and the product of all the entries must equal the
number of processors for the run. If the Processors block is excluded then the default is
a one dimensional decomposition in the direction with the most elements.

Elements, Blocks, Start, and End keys each require a list value of the same length as the
number of dimensions.The mesh that is created has some sideset names already set: 1eft and
right for low and high X-faces, bottom and t op for low and high Y-faces, and back and
front for low and high Z-faces (if applicable).

4.1.3. Pamgen Mesh

4.2, Electromagnetic and Electrostatic Accuracy

EMPIRE’s support of high order basis functions is currently limited. As such, the mesh
determines the expected order of accuracy in space for electromagnetics. On simplex meshes we
expect the electromagnetics to be first order accurate. On uniform tensor product meshes (e.g.
squares or cubes) one can expect second order accuracy in the electric field. Electrostatics are
expected to always exhibit second order accuracy in the voltage.
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5. PHYSICS

5.1. Fields

The following yaml excerpt shows all possible options to be defined in the Fields sublist along
with their default values (if the options are not specified, the following defaults will be used):

Physics:
Fields:

Classic Interface: [bool] (default false)
Electric Field Push: [string] (default by physics)
Nodal E Field Correction: [bool] (default false)
Initial Poisson Solve: [bool] (default false)
Implicit Particle Update: [bool] (default false)
Explicit Field Update: [bool] (default false)
Basis Order: [int] (default 1)
Pinning: [int] (default do nothing)
Electromagnetic: [sublist] (special)
Electrostatic: [sublist] (special)

The compatibility of these options is listed in Table 5-1.

m
<

N N N N N SR

Keyword

Classic Interface
Electric Field Push
Nodal E Field Correction
Implicit Particle Update
Explicit Field Update
Basis Order

Pinning
Electromagnetic
Electrostatic

RN R NENENENEN

Table 5-1. Compatibility of Fields Physics options by type: Electromagnetics
(EM) and Electrostatics (ES). X represents incompatible while ' represents
compatibility.

5.1.1. Classic Interface

The Classic Interface option forces the code to use the original, almost deprecated, solver
interface. At this point, the only feature supported in the classic interface, and not the newer,
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more optimized interfaces, is second order electrostatics.

5.1.2. Electric Field Push

The Electric Field Push option has three choices: Lumped Nodal, Consistent
Nodal, and Edge Based. Edge Based is the default for electromagnetics, and Lumped
Nodal is the default for electrostatics.

5.1.3. Nodal E Field Correction

The Nodal E Field Correction optionis only applicable if Electric Field Push
is set to one of the two nodal options. This option uses Gauss’ law to correct the nodal E values
on the boundaries to be second order accurate.

5.1.4. Initial Poisson Solve

The Initial Poisson Solve option is used if the initial particle load does not have a
pointwise zero charge density. This option allows EMPIRE to do an initial electrostatic solve to
compute the E field associated with the initial charge density and sets it as the initial condition.
This option should eliminate ghost charge associated with initial fill of particles.

5.1.5. Implicit Particle Update

The Implicit Particle Update option chooses whether the particles are updated
implicitly or not. Note that the algorithm for implicit pic is different by physics type.

5.1.6. Explicit Field Update

The Explicit Field Update option chooses whether the fields are updated explicitly or
not.

5.1.7. Basis Order

The Basis Order option is an integer that specifies the order of the basis functions used in the
electromagnetics or electrostatics solver. At the moment, only basis orders 1 and 2 are supported
for electrostatics, and only basis order 1 is supported for electromagnetics.
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5.1.8. Pinning

The Pinning option only applies to electrostatic problems. This option is an int that specifies
the index of the node to use as a reference value for the entire problem. There is no default here, if
no pinning is specified the option is left empty. Pinning should be used when solving an
electrostatic problem where a voltage is not specified on the boundary.

5.1.9. Electromagnetic and Electrostatic Blocks

The remaining possible inputs are the Electrostatic and Electromagnetic sublists.
Each sublist represents a set of regions with shared material parameters (permittivity,
permeability, and conductivity) for electrostatic or electromagnetic field solve. Specifying the
material parameters are optional, and if nothing is specified in the input the defaults will be used.
The Regions parameter is a list (surrounded by brackets, comma-separated) of blocks to apply
the physics and parameters specified in the list to. The following yaml excerpts show all possible
options for an Electrostatic or Elect romagnetic sublist, and the relevant defaults:

Physics:
Fields:

Electromagnetic_Unique_Suffix:
Regions: [string] (required)
Relative Permittivity: [double] (default 1.0)
Relative Permeability: [double] (default 1.0)

Conductivity : [double] (default 0.0)
MaterialModel : [sublist] (special)
Physics:
Fields:
Electrostatic_Unique_Suffix:
Regions: [string] (required)

Relative Permittivity: [double] (default 1.0)

An arbitrary number of these sublists are allowed as long as they have unique names and only one
of Electrostatic and Electromagnetic are used at a time. Each one of these sublists
must be uniquely named using the proper keyword (Electrostatic or Electromagnetic) as a prefix
for the name, with some unique suffix. Even if only one of these sublists are described, an
arbitrary suffix must accompany it. For example, ElectrostaticO along with
Electrostatic box are allowed, but ElectrostaticO along with
ElectromagneticO,orjust Electrostatic are not.

Regions is a list of elements governed by the same material parameters.

Relative Permittivity determines the permittivity of the block. Presently only constant
values by block are supported. The permittivity is determined by the dimensionless relative
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permittivity €. by
£=§&& 5.1

where &) is the vacuum permittivity.

Relative Permeability determines the permeability of the block. Presently only
constant values by block are supported. The permeability is determined by the
dimensionless relative permittivity u, by

K= Hrto (5.2)

where L is the vacuum permeability.

Conductivity determines the electrical conductivity of the block. Presently only constant
values by block are supported. The conductivity is specified supplying a value in the units
of S/m (Q~!/m).

MaterialModel is a sublist that specifies properties for specific material models. More
details about the possible material models and how to specify them can be found in 5.1.11.
If no material model is set, then a simple dielectric material given by

D =¢g&FE (5.3)

H= ! B (5.4)
HrHo

J=0E (5.5

is assumed with parameters determined by Relative Permittivity,Relative
Permeability, and Conductivity.

5.1.10. Zero-Dimensional Block

Instead of any Electrostatic orElectromagnetic sublists,a Zero-Dimensional
sublist can be defined. Instead of setting parameters for the field solve, the purpose of this is to
allow the user to prescribe spatially-uniform but potentially time-varying fields for use in
zero-dimensional simulations. Use of this sublist also has effects on EMPIRE-PIC.exe that
support zero-dimensional simulation. In particular it disables particle movement. Particle
velocities will still be updated according to the local fields and collisions, but their positions will
not update according to their velocities, enabling multiple independent realizations to be run in
separate elements. Particle boundary conditions are not disabled, and in general should create
particles which stack up on the domain boundary. Because collisions are agnostic as to particle
position within elements this can be used for certain quasi-OD problems. The following yaml
excerpt shows all possible options for a Zero-Dimensional sublist:

Physics:
Fields:
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Zero—Dimensional_Unique_Suffix:

Regions: [string] (required)

Initial E Field: [double x3] (default [0.0, 0.0, 0.0])
Initial B Field: [double x3] (default [0.0, 0.0, 0.0])
Final E Field: [double x3] (default [Initial E Field])
Final B Field: [double x3] (default [Initial B Field])
Field Rise Time: [double] (default -1.0)

The sublist should have a suffix, and use of more than one Zero—-Dimensional sublist or use
ofaZero-Dimensional with Electrostatic or Electromagnetic sublists is not
supported.

Regions is a list of elements governed by the same material parameters.
Initial E Fieldisa vector giving the initial value of the electric field (V/m).
Initial B Fieldis a vector giving the initial value of the magnetic field (T).
Final E Fieldisa vector giving the final value of the electric field (V/m).
Final B Fieldis a vector giving the final value of the magnetic field (T).

Field Rise Time is the time over which the fields will linearly adjust from their initial
values to their final values (s).

Regions is the only required parameter, and by default there will be no fields. If an initial field
is set with no corresponding final field, then the field will be constant in time. If a final field is set,
then Field Rise Time must be set to a non-negative number. The field will linearly adjust
from its initial value to its final value over the rise time, and will be constant at its final value
thereafter. If any field parameters are set here then field boundary conditions will be overridden.

5.1.11. Material Models

For electromagnetic physics blocks it is possible to specify a material model to exist on those
same element blocks. Generically the material models will be of the form

D =¢E +P(E) (5.6)
H=p '(B—M(B)) (5.7)
J=0E+J(E,B). (5.8)

Only one material model can be specified for each electromagnetic block, and the material model
will apply to the same set of element blocks, set in Regions, as the electromagnetic block. If no
material model is set, then the material parameters are determined solely by the Relative
Permittivity,Relative Permeability, and Conductivity. If the same material
model with different parameters is desired on different blocks, then separate electromagnetic
blocks must be specified. The current, polarization, and magnetization can be visualized using the
Quadrature Data diagnostic, see Section 12.1.2.8.
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Physics:
Fields:

Electromagnetic_Unique_Suffix:
Regions: [string] (required)
Relative Permittivity : [double] (default 1.0)
Relative Permeability: [double] (default 1.0)
Conductivity : [double] (default 0.0)
MaterialModelName_Unique_Suffix: [sublist] (special)

5.1.11.1. Isotropic Cold Plasma

The Isotropic Cold Plasma is a current material model given by
J= ea)gE —VJ, (5.9)

where ), is the plasma angular frequency and V. is a collision constant. Both of these parameters
can vary spatially, but should be constant in time. The permittivity € is determined by the
Relative Permittivity of the electromagnetic block. The initial plasma current can be
set using the sublist Current Initial Condition. The parameters @, and v, are set
using the sublists Omega Plasma and Nu Collision. Presently the initial conditions and
parameters can be set using RTC functions or with file inputs. An RTC specifying the current
initial conditions should set the variables jx, jy, and jz. For two dimensional problems jz can be
omitted. The variables omega_plasma and nu_collision should be set in their respective function
strings. Files to set the parameters generally come from reading CGNS files. The parameters ®),
and Vv, can be visualized with the Quadrature Data diagnostic, see section 12.1.2.8. The plasma
model differential equation has the option to be stepped using an implicit method, Crank
Nicolson, or with an explicit method, Heun method/SSPERK?22. The default is to use the implicit
method.

Physics:
Fields:

Electromagnetic_Unique_Suffix:
Relative Permittivity: [double] (default 0.0)

Isotropic Cold Plasma_Unique_Suffix:
Explicit Timestepping: [bool] (default false)
Current Initial Condition:

Function : [string] (default empty)

File Name: [string] (default empty)
Omega Plasma:

Function : [string] (default empty)

File Name: [string] (default empty)
Nu Collision:

Function : [string] (default empty)

File Name: [string] (default empty)
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6. TIME STEPPING

6.1. General Inputs

There are several basic options for the Time Stepping block which are used regardless of physics.
You need two of the following three options.

Time Stepping:

Final Time: [double] (required 2 of 3)
Number of Timesteps: [int] (required 2 of 3)
Timestep Size: [double] (required 2 of 3)

EMPIRE presently requires a start time of 0. Number of time steps determines the timestep size
taken by the method.

6.2. Fields Timestepping

6.2.1. Tempus Path

The Tempus path for electromagnetics is engaged as follows

Time Stepping:

Fields:
Use Tempus: true (required)
Tempus Field Stepper: [string] (required)

The supported Tempus Field Stepper options are given below.

Friedman A second order, single stage, dissipative method with an adjustable damping
parameter. This method has a third order dissipation which can smooth out under-resolved
high frequency noise. The stability of the method is determined by the damping parameter,
typically denoted as 6. The method is 6 is A-stable for 6 € [0,2] and L-stable for 6 = 1.
Typically 6 < 0.2 is chosen. The default value is 8 = 0.1.

RK Implicit Midpoint A second order, single stage, energy conserving option which
requires all frequencies to be resolved or else results in oscillations.

Backward Euler A first order, single stage, L-stable method.

SDIRK 2 Stage 2nd order A second order, two stage, L-stable method. Note that the
two stages will make each EM time step roughly twice as expensive as Implicit Midpoint,
Friedman, or Backward Euler.
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The integrators Friedman and RK Implicit Midpoint are the preferred options for the
Tempus path. RK Implicit Midpoint should be used in situations where the frequency
content is both linearly bounded and well resolved. Friedman should be used if either of those
assumptions is violated. Both Backward Euler and SDIRK 2 Stage 2nd order are
not recommended for typical use cases. If Use Tempus is set to true, EMPIRE defaults to the
Tempus implementation of Friedman.

Additional time integrators can be accessed by setting the Tempus Field Stepper per Tempus’
documentation. These options are not tested and therefore considered unsupported.

The Friedman damping parameter can be adjusted as follows:

Time Stepping:

Fields:
Use Tempus: true
Tempus Field Stepper: Friedman
Friedman Theta: [double] (optional) (default 0.1)

6.2.2. Non-Tempus Path

The default time integrator for Electromagnetics is Crank-Nicolson implemented without
Tempus. This can be explicitly requested by adding

Time Stepping:

Fields:
Use Tempus: false (default false)

to the block. Crank-Nicolson is theoretically equivalent to the Tempus’ RK Implicit
Midpoint integrator. A non-Tempus Friedman can also be activated by setting Non—-Tempus
Friedman to true. For example:

Time Stepping:

Fields:

Use Tempus: false
Non-Tempus Friedman: true
Friedman Theta: [double] (optional) (default 0.1)
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7. INITIAL CONDITIONS

7.1. Fields

Initial conditions, Fields has a top level default Regions.

Initial Conditions:
Fields:
Regions: [element block array] (default empty)

This top level Regions will be the default for all child blocks beneath it. If you overspecify
initial conditionss — i.e. declare multiple initial conditions for a given field in overlapping Regions
the parser will error out.

7.1.1. Zero Conditions

Zero initial conditions are the default conditions for E and B fieds. If a Regions is specified at
the Fields level then by default Zero blocks for E_Field and B_Field are populated with that
Field’s level region data. To explicitly call a zero condition use the block

Initial Conditions:
Fields:
Zero:
Fields: [arry of field names or single field name] (required)
Regions: [element block array] (required)

The Field input for Zero conditions accepts an single string or an array. The entries must be
E_FieldorB_Field

7.1.2, RTC Conditions

To specify arbitrary initial conditions use the RTC block.

Initial Conditions:

Fields:
RTC:
Regions: [element block array] (see below)
Field: [see below] (required)
Function: [RTC Function ] (required)
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Regions: A valid array of element block string is required.

Field: To set an electric field condition use E_Field_Vector. To set a magnetic flux
condition, in 3D use B_Field Vectorandin2Duse B_Field.

Function: This RTC provides has the standard spatial coordinates (xin,yin,zin). Function
values should match the above field name. Entries E_Field_Vector and
B_Field_Vector are 3D arrays. Entry B_Field is a scalar.

7.1.3. Electrostatics

Electrostatics does not have a notion of initial conditions as the electric field responds
quasi-statically to a given charge.
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8. BOUNDARY CONDITIONS

8.1. Electromagnetic Boundary Conditions

This section describes electromagnetic boundary conditions which are available in EMPIRE.
Certain boundary conditions are mutually exclusive while others can be used in conjunction with
another boundary condition. These relationships are summarized in Table 8-1.

PMC |Exn|Hxn|Z | WL |TL | B-n
PEC X X X X| X | X v
PMC X X X| X | X v
Exn X X | X X v
Hxn vV X | X v
Z X | X v
WL X v
TL X

Table 8-1. Compatibility of Electromagnetic Boundary Conditions. Entries
marked with an (X) on this table are mutually exclusive. Entries marked with
(v) can have multiple boundary conditions prescribed. Here PEC — Perfect
Electric Conductor, PMC — Perfect Magnetic Conductor, Z — impedance, WL
— TEM Wave Launch, TL — Transmission Line.

8.1.1. Perfect Magnetic Conductor

Perfect magnetic conductor (PMC) boundary conditions are the natural boundary condition for
EMPIRE’s electromagnetic discretization. If no other boundary condition is specified then the
method will enforce

Hxn=0 (8.1)
on that boundary. A typical theoretical description of a PMC includes the condition D -n = 0.

This is not directly enforced by our discretization. Instead we enforce the involution condition

0
ED-n—kJ-n:O. (8.2)

Thus D - n = 0 can be guaranteed for all time only if D(0) -n = 0 and if J(¢) -n = 0 for all time. In
order to enforce a PMC condition the following options need to be set:
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Boundary Conditions:
Fields:

PMC Unique_PMC_Name_1:
Sidesets: [sideset ID string<, ...>] (required)
Regions: [region name<, ...>] (optional)

Unique_PMC_Name_1 The boundary condition requires a unique identifier

Sidesets List of sidesets to which the condition will be applied (brackets required)

Regions Masks the boundary condition to a set of regions if a sideset spans more than one
boundary (brackets required)

8.1.2, Perfect Electric Conductor

Perfect electric conducting boundary conditions are typically used to model a metal wall. The
mathematical formulation of the PEC is to enforce

Exn=0 (8.3)

on the boundary. In order to enforce a PEC condition the following options need to be set:

Boundary Conditions:
Fields:

PEC Unique_PEC_Name_1:
Sidesets: [sideset ID string<, ...>] (required)
Regions: [region name<, ...>] (optional)

Unique_PEC_Name_1 The boundary condition requires a unique identifier

Sidesets List of sidesets to which the condition will be applied (brackets required)

Regions Masks the boundary condition to a set of regions if a sideset spans more than one
boundary (brackets required)

Similar to the PMC, for the PEC it is typical to wonder if B -n = 0. This is enforced through an
involution condition

0
5 Bn=0. (8.4)

Thus to guarantee B -n = 0 on a PEC boundary, initial conditions must be chosen consistent with
this constraint.
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8.1.3. Arbitrary E x n

Arbitrary tangential E boundary conditions can be enforced as follows:

Boundary Conditions:
Fields:

E Tangent Unique_ETAN_Name_1:

Sidesets: [sideset ID string<, ...>] (required)
Regions: [region name<, ...>] (optional)
Function: [RTC Function string] (required)

Unique_ETAN_Name_1 The boundary condition requires a unique identifier
Sidesets List of sidesets to which the condition will be applied (brackets required)
Regions Masks the boundary condition to a set of regions if a sideset spans more than one

boundary (brackets required)
Function Determines the E_Field imposed on the boundary. This standard RTC provides

xin,yin, and, if applicable, zin as well as t ime.

This enforces the condition
EXHZEEXT xXn (85)
on the boundary. Here Egxt is the data the user provides through the RTC function. Note that any

normal components of the electric field will not be set by this condition. This boundary condition
is essential and may be referred to in literature as a “hard source."

The RTC string is a C function which sets the array E_Field as a function of time, xin,
yin, =zin. The array E_Field requires two entries in 2D and three entries in 3D. An example

follows:

Function: |
double r2 = xinxxin+tyin*yin+zinxzin;
double a = 11.8/(log(4.0)-10g(2.0));
E_Field[0] = —-a*xin/r2;
E_Field[l] = —-axyin/r2;
E_Field[2] = 0.0;
8.1.4. Arbitrary H x n

An arbitrary tangential H boundary condition can be imposed as follows:

Boundary Conditions:
Fields:

H Tangent Unique_HTAN_Name_1:

Sidesets: [sideset ID string<, ...>] (required)
Regions: [region name<, ...>] (optional)
Function: [RTC Function string] (required)
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Unique_HTAN_Name_1 The boundary condition requires a unique identifier

Sidesets List of sidesets to which the condition will be applied (brackets required)

Regions Masks the boundary condition to a set of regions if a sideset spans more than one
boundary (brackets required)

Function Determines the H_Field imposed on the boundary. This standard RTC provides
xin,yin, and, if applicable, zin as well as t ime.

This enforces the condition
HXHZHEXT Xn (86)

on the boundary. Here Hgxr is the data the user provides through the RTC function. Note that
any normal components of the imposed magnetic field will not be set by this condition. This
boundary condition is sometimes called a “soft source" in the literature.

The RTC string is a C function which sets the array H_Field as a function of t ime, xin,
yvin, zin. The array H_Field requires two entries in 2D and three entries in 3D. An example
follows:

Function: |
double r2 = xinxxin+yinxyin+zinxzin;
double a = 11.8/(log(4.0)-1log(2.0));
H Field[0] = —-a*xin/r2;
H_Field[1l] = —axyin/r2;
H_Field[2] = 0.0;
8.1.5. Arbitrary B -n

The normal component of the magnetic flux density can be imposed as follows:

Boundary Conditions:
Fields:

B Normal Unique_BFLUX_ Name_1:

Sidesets: [sideset ID string<, ...>] (required)
Regions: [region name<, ...>] (optional)
Function: [RTC Function string] (required)

Unique_BFLUX_Name_1 The boundary condition requires a unique identifier

Sidesets List of sidesets to which the condition will be applied (brackets required)

Regions Masks the boundary condition to a set of regions if a sideset spans more than one
boundary (brackets required)

Function Determines the B_Field imposed on the boundary. This standard RTC provides
xin,yin, and, if applicable, zin as well as t ime.

This enforces the condition
B-Il::BEXT-n (87)
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on the boundary. Here Bgxr 1s the data the user provides through the RTC function. Note that any
tangential components of the imposed magnetic field will not be set by this condition.

The RTC string is a C function which sets the array B_Field as a function of t ime, xin,
yin, =zin. As this boundary condition sets B_Field on boundary faces, it does nothing in 2D.
The array B_Field requires three entries in 3D. An example follows:

Function: |
double r2 = xinxxintyinxyin+zin*zin;
double a = 11.8/(log(4.0)-1log(2.0));
B_Field[0] = —-a*xin/r2;
B_Field[1l] = —axyin/r2;
B_Field[2] = 0.0;

This boundary condition should be used with EXTREME CAUTION. Under most
circumstances the normal magnetic flux is a degree of freedom! If the problem is initialized with
a magneto-static field and the boundary values of field must be kept fixed, then this may be an
appropriate boundary condition.

This boundary condition can be used in conjunction with an E x n boundary condition. It can be
used in conjunction with an H x n condition but great care must be taken to make sure the two
constraints are consistent.

8.1.6. Impedance

EMPIRE includes a simple impedance boundary condition. This boundary condition functions
only in electromagnetics. This model truncates the domain by a dielectric interface. This
truncation is only first order accurate. If one selects the impedance of the boundary to match the
impedance of the domain then this boundary condition is a simple open or absorbing boundary
condition for electromagnetic fields. This boundary condition enforces

Hxn=Z 'nx(Exn). (8.8)

Here Z is the impedance on the boundary given by

7=z [Ho— [HHO (8.9)
€ &r&

where Z, is the relative impedance.

Boundary Conditions:
Fields:

Impedance Unique_IBC_Name_1:
Sideset: [sideset ID string] (required)
Relative Impedance: [double] (default = 1.0)

Unique_IBC_Name_1 The boundary condition requires a unique identifier
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Sideset Sideset to which the condition will be applied (brackets required)
Relative Impedance Determines the relative impedance at the boundary

Note that this boundary condition can be used to truncate a load for a powerflow simulation.
However, at present we do not support dynamic impedance on these boundaries.

The impedance condition can be used in conjunction with a H X n condition to impose what is
known in the literature as a Robin or mixed condition:

Hxn=Hgxy xn+Z 'nx (Exn) (8.10)

This can be done by imposing both an arbitrary H X n condition and an impedance condition on
the same boundary. An example is given as follows:

Boundary Conditions:
Fields:

Impedance Robin_Impedance_1l:
Sideset: sideset_101
Relative Impedance: 2.3

H Tangent Robin_Source_l1:
Sidesets: [sideset_101]

Function: |
t0 = 1le-9;
tscale = 1.e10;
iscale = 2.e6;

targ = tscalex (time-t0) x (time-t0);
theta = atan2(xin,yin);

H_Field[0] = -sin(theta)+iscalexexp(targqg);
H_Field[1l] = cos(theta)xiscalexexp(tarqg);
H_Field[2] = 0.;

8.1.7. TEM Wave Launch

This boundary condition sets a TEM mode on a sideset given voltages on two nodesets. That is,
given a d — 1 dimensional sideset I" and two d — 2 dimensional nodesets Ny and N, with
corresponding voltages V; and V,, we solve the surface Laplace equation

_AF¢:07 ¢|N1 :V17 ¢|N2:V2 (811)

for ¢. Vi and V, are assumed to be constant on the entire nodeset, but may be functions of time.
Then we set the Dirichlet condition

Elr = —-Vr9. (8.12)

This boundary condition has two forms using either a constant voltage or an RTC:
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Boundary Conditions:
Fields:

Wave Launch Constant Unique_WaveLaunch_Constant_Name:
Sideset: [sideset ID string] (required

)
Nodeset 1: [nodeset ID string] (required)
Nodeset 2: [nodeset ID string] (required)
Voltage 1: [double] (required)
Voltage 2: [double] (required)

Wave Launch RTC Unique_WaveLaunch_RTC_Name:

Sideset: [sideset ID string] (required)
Nodeset 1: [nodeset ID string] (required)
Nodeset 2: [nodeset ID string] (required)
Voltage 1: [RTC function] (required)
Voltage 2: [RTC function] (required)

Unique_WaveLaunch_Constant_Name_1 The boundary condition requires a unique
identifier

Sideset Sideset to which the condition will be applied (corresponding to I" above)

Nodeset 1 and Nodeset 2 are strings specifying nodesets on the sideset where Dirichlet
conditions are applied to the surface Laplace equation (corresponding to Ni and N;)

Voltage 1andVoltage 2 define the voltages on these nodesets (V| and V, above)

Each voltage may be set as either a double to set it to a fixed value for all time or as a string
defining an RTC function. The RTC function is a C function that defines the variable voltage
and can be a function of t ime, for example

Voltage 1: |
voltage = sin(time);
8.1.8. Transmission Line Coupling

|

R,

— P |V Prep =

Voolt)

£=0 B
€=0 E=1

Figure 8-1. Schematics of transmission line coupling. Left: A 1D transmis-
sion line of length ¢ coupled to the electromagnetic domain Q through sideset
I'. Right: Detail of the transmission line model showing the voltage source
and resistor and & = 0.

EMPIRE can couple a 1D transmission line model to a full 2D or 3D electromagnetics simulation
through a sideset. This feature is only available in electromagnetics simulations, not
electrostatics. There is no limit on the number of transmission lines EMPIRE can couple to, but
each transmission line must be coupled to a unique sideset. The transmission line requires a
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discretization of the 1D domain as well, and is assumed to be driven by a voltage source through a
resistor (see Figure 10-1).

The details of the transmission line model are described in the Circuit Network block, see Chapter
10 for details. In order to enable this coupling boundary condition an EM Coupling node must
be added to the circuit network. If you declare one of these nodes then no other boundary
conditions can be enforced on the coupling sideset.

8.1.9. Periodic Boundary Conditions

Periodic boundary conditions are supported for rectangular and wedge meshes. The input file
requires two sideset names and the direction for coordinate matching. Periodic boundary
conditions will match and merge the electromagnetic degrees of freedom for the geometric
entities (nodes, edges and faces) of the two sidesets using a coordinate search. The user can
specify an optional relative tolerance for the coordinate matching algorithm (defaults to 1.0e-8).
If the coordinates fail to match, adjusting the tolerance in the matching is a good place to start
debugging. For a rectangular mesh, the periodic faces must be axis aligned. The face orientation
is given by an axis direction. An example input file is:

Boundary Conditions:
Fields:

Periodic Unique_Periodic_Name_1:
Sidesets: [surface_1,surface_2]
Direction: x
Coordinate Matching Tolerance: 1.0e-12
Periodic Unique_Periodic_Name_2:
Sidesets: [surface_3,surface_4]
Direction: y
Coordinate Matching Tolerance: 1.0e-10
Periodic Unique_Periodic_Name_3:
Sidesets: [surface_5,surface_6]
Direction: z

The direction x specifies that the planes with normals in the x direction (y-z planes) on the
rectangle will be matched. Valid directions for a rectangular mesh are %, v and z. For a wedge
mesh, the axis of rotation is the z-axis and the symmetry plane splitting the wedge in half must be
the x-z plane. To enable a wedge periodic condition, use wx for the direction. IMPORTANT:
The wedge must subtend an arc which is centered about the POSITIVE x-axis otherwise
particles will get stuck when they hit the periodic boundary.

Boundary Conditions:
Fields:

Periodic Unique_Periodic_Name_1:
Sidesets: [surface_1,surface_2]
Direction: wx
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The topological entities (nodes, edges and faces) associated with the sidesets must match exactly,
however the interior entities of the cells attached to the periodic surfaces do not have to match.
Mesh construction must be very careful in matching the side entities. The Panzer inline mesh
generators are guaranteed to match. Cubit and Pamgen meshing tools require careful
construction. For example, using a paving algorithm on the surfaces of a square can look to match
by visual inspection but in reality may have small differences that cause the matcher to fail. The
periodic wedge tests in EMPIRE have examples for Exodus and Pamgen that create perfectly
aligned surfaces and are the recommended procedure for mesh construction.

Since the periodic field merges mesh entities in the global numbering, ALL degrees of freedom
(DOF) in the field solve will be periodic. You cannot specify that only certain DOFs are
periodic.

Note that visualizing periodic meshes can sometimes look confusing on coarse meshes since the
output for edge and face bases are stored as cell centered quantities. The interior entities of cells
on the periodic boundary are not required to be symmetric leading to an unaligned cell centers.
An example is shown in Figure 8-2 for a 2D tri mesh. While the side entities (nodes and edge) for

y x

{

Figure 8-2. Periodic sideset with non-matching interior cells. The center of
mass denoted by red x are not alighed so output of cell centered values is
not symmetric.

the two elements match (e.g. nodes 1 and 2 match 4 and 5 respectively) the center of mass for the
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elements are offset in the x direction. Viewing a periodic solution in Paraview will show different
solution values for the matching cells. As a mesh is refined, this discrepancy diminishes.

8.2. Electrostatic Boundary Conditions

8.2.1. No Surface Charge

No surface charge conditions natural condition for the electrostatic (Poisson) equations. Thus if
nothing else is specified on a sideset,

eEE-n=0 (8.13)

will be enforced on the boundary. If only natural conditions are imposed in the problem then the
Pinning option in the Physics: Fields: should be set.

Boundary Conditions:
Fields:

Ground Unique_Ground_Name_1:
Sidesets: [sideset ID string<, ...>] (required)
Regions: [region name<, ...>] (optional)

Unique_Ground_Name_1 The boundary condition requires a unique identifier

Sidesets List of sidesets to which the condition will be applied (brackets required)

Regions Masks the boundary condition to a set of regions if a sideset spans more than one
boundary (brackets required)

8.2.2. Fixed Voltage

A simple fixed voltage can be imposed as follows:

Boundary Conditions:
Fields:

Potential Constant Unique_Voltage_Name_1:

Sidesets: [sideset ID string<, ...>] (required)
Regions: [region name<, ...>] (optional)
Value: [double] (required)

Unique_Voltage_Name_1 The boundary condition requires a unique identifier

Sidesets List of sidesets to which the condition will be applied (brackets required)

Regions Masks the boundary condition to a set of regions if a sideset spans more than one
boundary (brackets required)

Value Determines the voltage imposed on the boundary
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8.2.3. Arbitrary Voltage

Boundary Conditions:
Fields:

Potential RTC Unique_Voltage_Name_1:

Sidesets: [sideset ID string<, ...>] (required)
Regions: [region name<, ...>] (optional)
Function: [RTC Function string] (required)

Unique_Voltage_Name_1 The boundary condition requires a unique identifier

Sidesets List of sidesets to which the condition will be applied (brackets required)

Regions Masks the boundary condition to a set of regions if a sideset spans more than one
boundary (brackets required)

Function Determines the voltage imposed on the boundary. This standard RTC provides
xin,yin, and, if applicable, zin as well as t ime.
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9. CURRENT SOURCE

9.1. Current Sources

The Current Source block is used to specify an external source.

Current Source:
Regions: [element block array] (default empty)

This top level Regions is used to populate default Zero current source blocks if there are
element blocks unspecified by the user. If you over specify element blocks the parser will error
out. If you are using a mesh with multiple blocks conditions need to be specified on every block.
As such it is recommended that this top level Regions be populated with all of the element
blocks in the mesh.

As a warning the Current source specified in this block should be tangentially continuous to avoid
serial-parallel inconsistencies and reduction in convergence order.

9.2. Zero Conditions

Current Source
Zero:
Regions: [element block array] (required)

This denotes no source in a given region. To specify multiple zero source the list name Zero
must be appended with a unique suffix.

9.3. RTC Conditions

This specifies arbitrary current source with an RTC.

Current Source:
RTC:
Regions: [element block array]
Function: [RTC Function]

To specify multiple RTC sources in a given problem each the sublist name RTC must be given a
unique suffix.

Regions: A valid array of element block strings is required.
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RTC: This is a run time compiler function. The user has access to spatial variables

(xin,yin,zin) and a time t ime. The user must specify an array named CURRENT which
has dimension appropriate to the prblem. E.g.

double alpha = 7.;

CURRENT[0] = O0.;

CURRENT[1] = sin(alphaxxin—time );
CURRENT[2] = O0.;
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10. CIRCUIT NETWORK

Figure 10-1. A basic schematic of a single conductor transmission line. We
call this a single conductor as we assume the bottom conductor is grounded.
Our convention for labelling the ens of the cable is that £ = 0 is referred to as
the left and and & = 7 is the right end.

EMPIRE provides the ability to model a circuit network whose edges are modeled as
transmissions lines and whose nodes are various circuit elements. For EM, PIC, and HF problems
this requires EMTL coupling on through a sideset. Presently this mode requires a “single
conductor" transmission line similar to 10-1.

Circuit Network:
Transmission Lines:
Unique TL Group Name 1:

Mode : [TEM or TM] (default=TEM)
Sideset: [sideset ID string] (see below)
Surface Mesh: [surface file name] (see below)
Conductors: [array of nodeset IDs] (see below)
Ground : [nodeset ID string] (see below)
Parameters File: [filename string] (see below)
Matrix Market: [filename string] (see below)
Capacitance Per Meter: [double ] (see below)
Inductance Per Meter: [double ] (see below)
Wave Number: [double ] (default=0.0)
Length: [double ] (see below)
Number of Cells: [int] (see below)
Names: [array of TL names] (required)
Relative Permittivity : [double ] (default = 1.0))
Relative Permeability: [double] (default = 1.0))

45



Conductivity : [double ] (default =
Voltage Initial Condition: [RTC function string] (defaults
Current Initial Condition: [RTC function string] (defaults

0.0
to O
to 0

-, ~— ~—

Normal Voltage Initial Condition: [RTC function string ] (defaults to 0)
Nodes:
EM Coupling 1:
Type: EM Coupling
Transmission Lines: [array of TL names] (required)
Sideset: [sideset ID string] (reguired)
Conductors: [array of nodeset IDs] (see below)
Ground: [nodeset ID string] (see below)
Open Circuit BC 1:
Type: Open Circuit Source
Transmission Line: [TL name string] (required)
Resistance: [double ] (defaults to matched)
Voltage Source Function: [RTC function string] (see below)
Voltage Source File: [dat file string] (see below)
Kirchhoff Junction 1:
Type: Kirchhoff Junction

Input Lines: [array of TL names] (required)
Output Line: [array of TL names] (required)
Solver Parameters:
Voltage Threshold: [double] (optional)
Linear Tolerance: [double] (default = 1.0e-16)

The Circuit Network block is broken up into three sections: Transmission Lines

which defines the transmission line edges of the network, Node s which defines various types of
nodes on the network, and Solver Parameters which determines how the circuit network

system is solved algorithmically.

10.1. Transmission Lines

Each transmission lines group defines the parameters of a set of transmission lines. Transmission

lines have several possible models

1. TEM: The transverse electromagnetic model is the default in EMPIRE. TEM modes have a

no normal voltage or current components. TEM modes are only supported on geometries
with separated conductors — e.g. parallel plates or coaxial geometries. TEM wave support
arbitrary frequencies and have an impedance independent of frequency.

2. TM: The transverse magnetic model are generalization of the TEM mode. TM modes have
a normal voltage component. TM modes can be supported on more general geometries, e.g.
a waveguide or coaxial geometry. TM modes are dispersive with a high-pass dispersion

02— (ck)2
relationship CL®? = k? + k2 and a frequency dependent impedance Z(®) = meT(k)
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where Z., = (é)l/ 2 is the infinite frequency impedance. Here k is a modal wave number
with the mode and &, is the a wave number associated with data along the transmission line.

Otherwise one transmission line is generated. The Name s parameter requires a list of names for
the resulting transmission lines of the correct size. There are several ways to specify parameters
on a transmission line:

1. Sideset Parameterization: This option takes a sideset on the main EM mesh, and sets a
number of nodesets on that sideset as conductors. One of these conductors must be
grounded for well-posedness. The C and L parameters on the transmission line are obtained
by solving Poisson systems on the sideset. Relative Permittivity and Relative
Permeability will scale the resulting values of C and L. A Conductivity along the
line may be optionally added. The transmission line Length and Number of Cellsin
its discretization are required. Take for example:

Circuit Network:
Transmission Lines:
Sideset TL Group:

Sideset: sideset_1
Conductors: [nodeset_1, nodest_2, nodeset_3]
Ground : nodeset_1
Length: 1.0
Number of Cells: 100
Names : [TL_1, TL_2]

This example will generate two transmission lines from sideset_1 associated with
conductors nodeset_2 and nodeset_3, each of length 1.0 with 100 cells.

2. Parameters from a Table: A spatially varying transmission line can be defined by is
tabular file specified by Parameters File. The required format of this model is
specific to the Mode specified The rows of this file correspond to different sections of the
transmission line.

For the TEM mode the user must specify a length, number of cells, capacitance, inductance,
and conductivity. The conductivity is optional. For example,

# length num_cells C_1 L_1 G_I
0.5 50 0.25 1.0 0.0
0.5 40 1.0 1.0 0.0

would define a transmission line of length 1.0 with two sections, each of length 0.5. The
capacitance per unit length in the first section is 0.25, and in the second section it is 1.0.
The discretization edge length dx in the first section is 0.01 in the first section and 0.0125 in
the second section. An example input block would be:

Circuit Network:
Transmission Lines:
Parameters File Group:
Parameters File: tl_params . dat
Names : [TL_1]
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For a TM mode the user must specify length, number of cells, capacitance, inductance,
wave number, and conductivity. Conductivity is the only optional parameter

# length num_cells C_1 L_1 k_1 G_I
0.5 50 0.25 1.0 1.0 0.0
0.5 40 1.0 1.0 2.0 0.0

3. Hard-coded Parameters: The user can alternatively specify uniform values of C, L, and if
necessary k over the line with Capacitance Per Meter, Inductance Per
Meter, and Wave Number. For TM Mode a non-zero k is required. For TEM Mode a
non-zero k will result in an error. The parameters Length and Number of Cells are
also required in this case. Take for example:

Circuit Network:
Transmission Lines:
Sideset TL Group:

Capacitance Per Meter: 1.0e-8
Inductance Per Meter: 1.0e-10
Wave Number: 1.0e2
Length: 1.0
Number of Cells: 100
Names: [TL_1]

4. From a Matrix Market File: You can characterize a transmission line using matrix market
which output from a Cross Section Mesh option. This can be done with the following inputs

Circuit Network:
Transmission Lines:
Cross—Section_TL_Group:

Matrix Market: Cross—Section_TL_Group.matrix . market
Conductors: [ground,conductorQ ,conductorl ]
Ground: ground
Length: 0.3
Number of Cells: 100

The name of the group do not have to match the name of the matrix market file.

Additional optional parameters are available to set initial conditions on the transmission lines.
Voltage Initial Conditionand Current Initial Condition are optional RTC
functions that can define the initial voltage and current in the transmission line. These should be
C functions that define the variables V and I respectively and can be functions of xin, which
corresponds to & in Figure 10-1. If not supplied, the initial condition will be set to zero.

10.2. Nodes

EMPIRE currently supports the following node types:

1. EM Coupling: This node type is used to connect a set of transmission lines to a sideset of
the main EM mesh. Each transmission line is coupled through a conductor on the sideset,
and a ground must also be supplied.
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2. Open Circuit Source: This option applies a boundary condition at the end of a
transmission line of the form

Voc(t) =V (0,t) =RsI(0,¢) or V(lt)—Voc(t) =R({,t1). (10.1)

The difference in sign between right and left endpoints guarentees a sensible energy
estimate for the system. Here R; is the resistance at the transmission line source (R in
Figure 10-1) and V¢ is the voltage at the source. The parameter Resistance is used to
define R;. If this parameter is not specified, the source resistance will be set to be
impedance matched for the transmission line, i.e. R = y/L/C. When an analytic solution is
know for both V and 7, the boundary condition relation can be used to define the open
circuit voltage Vpc. When driving with a know voltage, if the source is impedance matched
to the transmission line, the driving voltage at the source needs to be doubled to deliver the
expected voltage to the EM domain. Voltage Source Function is a string defining
an RTC function for the source voltage, Vpc. This should be a C function that defines the
variable Voc and can be a function of t ime, for example

Voltage Source Function: |
Voc = sin(time);

Alternatively, the voltage can be defined via a tabular data file with the parameter
Voltage Source File. This parameter is a string supplying the name of the data file.

Vol

junctionl

Vo2

Figure 10-2. Schematic of transmission line coupling including a junction.

3. Kirchhoff Junction: This option supports simple junctions of transmission lines that are
governed by Kirchhoff’s laws. It takes a set of Input Lines and Output Lines and
enforces that the sum of currents entering equals the sum of currents leaving and that the
voltages at the junction are all equal. For example, the junction in Figure 10-2 would be
defined by

Circuit Network:
Transmission Lines:
Trunk Group:

Names: [trunk ]

Sideset : [Gamma |

Conductors: [cathode_nodeset, anode_nodeset]
Ground: cathode_nodeset
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Branchl Group:
Names :
Parameters File:

Branch2 Group:
Names :
Parameters File:

Nodes:

EM Coupling:
Type:
Transmission Lines:
Sideset:
Conductors:
Ground :
Open Circuit BC 1:
Type:
Transmission Line:
Voltage Source File:
Open Circuit BC 2:
Type:
Transmission Line:
Voltage Source File:
Kirchoff junctionl:
Type:
Input Lines:
Output Line:

[branchl ]
branchl_params. dat

[branch2]
branch2_params. dat

EM Coupling

[trunk ]

[Gamma ]
[cathode_nodeset ,
cathode_nodeset

anode_nodeset]

Open Circuit Source
branchl
VOCl1. dat

Open Circuit Source
branch?2
VOC2. dat

Kirchhoff Junction
[branchl ,
[trunk ]

branch2]

10.3. Solver Parameters

Within Solver Parameters,Voltage Threshold sets a minimum voltage at the TL
interface before which the EM solve will not be performed. This option is useful when a
simulation has zero initial conditions in the EM domain and it takes a large number of timesteps
for the TL dynamics to influence the electromagnetics. Then we save computation time by skip
unnecessary EM solves against essentially zero righthand sides while the early TL dynamics
evolve. The EM solves will not start until the shared voltage between the EM and TL domains
reaches a minimum magnitude of Voltage Threshold

Linear Tolerance specifies the convergence criteria of the transmission line linear solver.
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11.

SOLVER PARAMETERS

Solver Parameters:

Maximum Iterations : int | (default see description)
Tolerance : double ] (default 1e-8)
Preconditioner Type: string ] (default Testing Multigrid)
Num Blocks: int ] (default 200)

[
[
[
[
Linear Solver Output: [
Linear Solver Output File: [
Multigrid Output: [
Multigrid Output File: [string ] (default multigrid.log)
Linear Sovle xml: [
Nonlinear Maximum Iterations: [
Nonlinear Relative Tolerance: [
Nonlinear Absolute Tolerance: |
Nonlinear Solver Output File: [
Nonlinear Solver Failure: [

bool ] (default true)
string ] (default solver.log)
bool ] (default true)

filename] (optional)

int] (default 2)

double] (le-8)

double] (1le—-12)

str] (default EM\_newton.log)
str] (default Warn)

Maximum Iterations Maximum iterations is determined by Preconditioner Type.
If Multigrid is used the default is 200, if Jacobi is selected then 1000.

Tolerance The minimum accepted relative residual for the iterative solver.

Preconditioner Type EMPIRE supports the following preconditioner paths:

Testing Multigrid An Algebraic Multigrid approach that is best suited for small

At

(fewer than 1 million element) problems, such as those in EMPIRE’s ctest suite. The
refMaxwell multigrid method is employed which reformulated Maxwell’s equations
to solve two auxiliary sub-problems. The particular parameters for this option can be
found in the file EMPIRE/xml_files/em _multigrid_classic.xml. These
parameters use multi-threaded Gauss-Seidal smoothing and coarsen to a 2500 DOF
coarse mesh on which a direct solve is applied.

Scale Multigrid Algebraic Multigrid with parameters tuned for performance at
large scale. When compiled with CUDA, the parameters in the file
EMPIRE/xml_files/em_multigrid_cuda.xml are appended to the
Testing Multigrid parameters to obtain the At Scale Multigrid
parameters. Otherwise, the parameters in
EMPIRE/xml_files/em_multigrid.xml are appended. In both cases, the
mesh is coarsened only once and the coarse problem is approximately solved with a
Chebysheyv iteration. The CUDA version is tuned for use on GPUs.

Jacobi A simple diagonal scaling.
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Default This will swap between Testing Multigrid for very small problems,
Jacobi for medium sized problems and At Scale Multigrid for large
problems. These definitions of problem size are in a state of flux and will be
documented later.

Num Blocks Maximum number of solver blocks.

Linear Solver Output This option controls whether linear solve data is written to a log
file. As it defaults to true, this need only be specified if no output is desired. Note that linear
solver output can be helpful in debugging failed jobs and is thus always useful to produce.

Linear Solver Output File The name of the file to write linear solver output to.

Multigrid Output This option controls whether multigrid setup data is written to a log file
when a multigrid preconditioner is used. As it defaults to true, this need only be specified if
no output is desired. Note that multigrid output can be helpful in debugging failed jobs and
is thus always useful to produce.

Multigrid Output File The name of the file to write multigrid output to.

Linear Solver xml More complex custom settings can be set by providing a MuLue xml
file. The formatting of this file is documented in the MueLu documentation. It is the design
principal of EMPIRE that fine tuning the linear solve is uncessary. This option is a back
door and is intentionally obtuse. This option should only be used to fix corner cases or as a
work around; thus the development team will likely provide the user if necessary.

Nonlinear Maximum Iterations Maximum number of nonlinear iterations allowed at
each time step.

Nonlinear Relative Tolerance The minimum relative residual accepted by the
nonlinear solver.

Nonlinear Absolute Tolerance The minimum absolute residual accepted by the
nonlinear solver. This may need to be tuned for problems achieving steady state.

Nonlinear Solver Output File File name for an output file describing the
performance of the nonlinear solver.

Nonlinear Solver Failure Selects behavior of the solver when residual tolerance is not
reached in the maximum number of iterations. Options are Er ror which halts the code
and Warn which prints warning to the screen and output file.

If the requested residual is not achieved within the maximum iterations then EMPIRE will
exit and report an error.

The nonlinear solver toleraence is given as the sum of the noliinear relative and absolute
tolerance.
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12. DIAGNOSTICS AND OUTPUT

In order to generate diagnostic output to the screen or to files, the user must specify both a History
Diagnostics block and a History Outputs block. A History Diagnostics block has the same
structure for time and mesh histories, differing only by top level name (i.e. Time History
Diagnostics vs. Mesh History Diagnostics). In every diagnostic block, we have the option to
include a scalar multiplier for the diagnostic. This can be used to change the units of the
diagnostic, or to scale the value by a wedge factor.

Time History Diagnostics:
[Name for diagnostic 1]:
[Diagnostic type for diagnostic 1]:

Multiplier: [float, default 1.0]

[Block specific to the diagnostic type]

[Name for group A]:
[Name for diagnostic 2]:

[Diagnostic type for diagnostic 2]:
Multiplier: [float, default 1.0]
[Block specific to the diagnostic type]

[Name for diagnostic 3]:

[Diagnostic type for diagnostic 3]:
Multiplier: [float, default 1.0]

[Block specific to the diagnostic type]

Now we specify an output block which will output diagnostics 1 and 2 to the screen, output
diagnostics 1 and 3 to the file output.txt and all diagnostics under "group A" to file group-A.txt.
Note that two different syntaxes are accepted for the field Diagnostics (this is a YAML list).
Users may group diagnostics together under an arbitrary group name in the Time History
Diagnostics and Mesh History Diagnostics blocks. Groups of diagnostics may be output using
only the group name. Groups of groups up to an arbitrary recursion depth are possible, so that a
group of groups may be output to file by specifying only the top level group name to the
Diagnostics entry in the history output block.

Time History Outputs:
Screen:
Diagnostics: [diagnostic 1, diagnostic 2]
output.txt:
Diagnostics:
— diagnostic 1
— diagnostic 3
Field Width: [int, default is an automatically computed width]
Field Precision: [int, default 6]
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Separator: [string , default (space)]
Enable Banner: [bool, default true]
Print Version: [bool, default true]
Echo Input: [bool, default true]
Stride :

Averaging:
Window: [string , default Current]
Size: [int, default 1]
Factor: [float]
Stride :

group—-A. txt:
Diagnostics: [group A]

The entries parsed from each output file in the Time History Outputs block are as follows:

Field wWidth: Width, in number of characters, of the printed fields.
Field Precision: Number of significant digits to print for each field.
Separator: Separator used between fields.

Enable Banner: Specifies whether a descriptive banner having the diagnostic names is
printed at the top of the output file.

Print Version: Specifies whether the code version is printed in the header.
Echo Input: Specifies whether to echo the entire input deck into the header.
Stride: A stride block which describes the intervals at which output is printed.

Averaging: An averaging block which describes the averaging to be applied to the diagnostic
output. Note that averaging is not applied to certain diagnostics (e.g. Timestep).

Window: The averaging algorithm to be used. Accepts "Sliding", "Continuous", "Single" and
"Current".

Size: Only used for "Sliding" averaging.

Factor: Only used for "Continuous" averaging. Must fall in the range (0,1].

The structure of a Mesh History Outputs block is slightly different:

Mesh History Outputs:
filel .exo:
Diagnostics: [mesh diagnostic 1, mesh diagnostic 2]
file2 .exo:
Diagnostics:
— mesh diagnostic 1
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— mesh diagnostic 3
Blocks: [string , default All]
Stride :

Averaging:
Window: [string , default Current]
Size: [int, default 1]
Factor: [float]
Stride :

Other than Blocks, The meaning of the entries under each output file are the same as for those in a
Time History Outputs. For mesh histories, "Screen" does not have a special meaning as a file.

Blocks: Blocks over which to output diagnostics.

12.1. Electromagnetic Diagnostics
12.1.1. Time History Diagnostics
12.1.1.1.  Field At Point

This diagnostic allows the user to output the time history of the value of a field at a point (x,y,z)
in the mesh. For a 2D mesh, the z-coordinate has no influence.

Field At Point:
Field: [string , default E]
Point: [string , default "0.0, 0.0, O.
Projection: [string , default "0.0, O.

0
0, 0.0"]
Use Nodal Fields: [bool, default true ]

Field: Field to sample. May be either a solver field or a mesh history diagnostic.

Use Nodal Fields: If set to true will use projected electric and magnetic fields, otherwise
samples shape functions directly.

Point: Point X,y,z at which to sample field

Projection: A vector parallel to the normal along which to project the field for output. If
(0,0,0) is specified and Field is a solver field, then the X, y and z components will be
output separately. If (0,0,0) is specified and Field is the name of a mesh diagnostic
(representing either a scalar or vector field), then the magnitude of that field is output.
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12.1.1.2. Line Integral

This diagnostic allows the user to output the time history of the line integral of a field through a
set of points in the mesh or around a circular loop in the mesh. Note that a mesh history field can
be specified so that one could, for example, compute the line integral over particle density. Note
that this diagnostic will output a file diagnosticName_points.h5part which holds the points at
which the integrand is evaluated.

To compute a line integral along line segments connecting a set of points:

Line Integral:
Field: [string , default E]
Points: [list of strings]
Num Points: [int, default 2]
Use Nodal Fields: [bool, default false]

Field: Field to integrate. May be either a solver field or a mesh history diagnostic.
Points: List of points that define the path.
Num Points: Number of integration points for each line segment.

Use Nodal Fields: If set to true will use projected electric and magnetic fields, otherwise
samples shape functions directly.

To compute a line integral along a circular loop:

Line Integral:
Field: [string , default E]
Circle Center: [string]
Circle Radius: [float]
Circle Normal: [string]
Num Points: [int]
Use Nodal Fields: [bool, default false]

Circle Center: Center of a circle to be used for the line integral.
Circle Radius: Radius of the circle to be used for the line integral.
Circle Normal: Normal to the plane of a circle to be used for the line integral.

Num Points: Number of integration points for the circle.
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12.1.1.3. Surface Temperature At Point

Outputs the value of the surface temperature, as computed by the specified Surface Temperature
mesh history diagnostic, near a point (x,y,z) in the mesh. The point must be specified in an
element which owns a face belonging to a sideset that is being processed by the Surface
Temperature. If more than one face of the element is associated with a temperature then, in the
current implementation, the face for output will be randomly selected.

Surface Temperature At Point:
Point: [string , default "0.0, 0.0, 0.0"]
Surface Temperature Diagnostic Name: [string ]

Point: Point X,y,z near which to sample temperature

Surface Temperature Diagnostic Name: Name of the "Surface Temperature" mesh
diagnostic

12.1.1.4. Field Energy

Outputs the specified, integrated energy quantity.

Field Energy:
Quantity: [string]

Quantity: Quantity to output.
The following quantities are currently available,
* Electric Energy: £ [ E-Edv

* Magnetic Energy: ﬁ [B-Bav

Electromagnetic Energy: § [ E-Edv+ ﬁ J B-BdV

Joule Heating: [J-E dV

Electrostatic Potential Energy: % [po dv

12.1.1.5. Poynting Flux

Computes the Poynting flux, [ E“XOB -1 dS, over the specified surface S, where muy is the vacuum
permeability in SI units. Currently Monte-Carlo integration is used. Note that this diagnostic will
output a file diagnosticName_points.h5part which holds the points at which the integrand is
evaluated. For 3D simulations use the following,
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Poynting Flux:
Resolution: [int, default 2000]
Geometry: Rectangle
Normal Vector: [string , default "0.0, 0.0, 0.0"]
Tangent Vector 1: [string , default "0.0, 0.0, 0.0"]
Center: [string , default "0.0, 0.0, 0.0"]
Width (Direction 1): [double, default 0.0]
Height (Direction 2): [double, default 0.0]
Use Nodal Fields: [bool, default false]

For 2D simulations, "Line" Geometry must be used,

Poynting Flux:
Resolution: [int, default 2000]
Geometry: Line
Normal Vector: [string , default "0.0, 0.0, 0.0"]
Point 1: [string, default "0.0, 0.0, 0.0"]
Point 2: [string , default "0.0, 0.0, 0.0"]
Use Nodal Fields: [bool, default false]

A brief description of all of the Poynting Flux entries follows,

Resolution: Number of sampling points

Geomet ry: Geometry type for flux surface (Rectangle or Line)

Normal Vector: Vector normal to the rectangle

Tangent Vector 1: Vector tangent to the rectangle (Rectangle geometry only)
Center: Point at center of rectangle (Rectangle geometry only)

Width (Direction 1): Width of rectangle in direction 1 (Rectangle geometry only)
Height (Direction 2): Width of rectangle in direction 2 (Rectangle geometry only)
Point 1: Point at beginning of line (Line geometry only)

Point 2: Point at end of line (Line geometry only)

Use Nodal Fields: If set to true will use projected electric and magnetic fields, otherwise
samples shape functions directly.

12.1.1.6. Transmission Line

This diagnostic allows the user to print time histories of voltages and currents within a given
transmission line coupled to the electromagnetic domain. Currently, one can choose to sample the
voltage or current at either the source of the transmission line or at the boundary where the
transmission line couples to the EM domain. The syntax for this diagnostic is as follows:
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Transmission Line:
Sideset: [sideset ID string] (required)
Field: [Current or Voltage] (defaults to Voltage)
Location: [Source or Boundary] (defaults to Boundary)

Sideset here is a string defining the sideset to which the transmission line of interest is
coupled. This is a unique identifier for the transmission line. Field is a string defining what
field to sample and can be only Current or Voltage, the degrees of freedom in the
transmission line model. Location is a string defining where to sample the field. Setting
Location to Source gives the value of the field at the transmission line source, the end of the
transmission line farthest from the EM domain. Setting Locat ion to Boundary gives the
value of the field at the end of the transmission line that couples to the EM domain.

12.1.1.7. Memory Highwater

Outputs the minimum, average and maximum amount of memory (in MB) used by EMPIRE on
the compute nodes.

{ Memory Highwater: }

12.1.1.8. Norm Diagnostic

This diagnostic allows the user to evaluate a norm on any Mesh History Diagnostic. Norms
include Ly/root-mean-square (RMS), L;, and L. as defined by

Vo =RMS(v) = [} v? (12.1)

vli =Y Ivi (12.2)

[V]eo = max(|v|) (12.3)

The input deck takes the form

Norm Diagnostic:
Mesh Diagnostic Name: [string , default ""]
Norm Type: [string , default "L1"]

Mesh Diagnostic Name: Mesh history diagnostic to read data from.

Norm Type: Type of norm. Options are: L1, L2, RMS, Linf
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12.1.1.9. Time and Solver Diagnostics

The following diagnostics are computed by default and can be requested directly in the Time
History Outputs list:

Timestep: The size of the timstep At

Simulation_time: The time ¢ reached in the simulation

Elapsed_time: The wall clock time elapsed

Iteration_count: The number of iterations required for linear solver convergence
Achieved_tolerance: The tolerance reached by the linear solver

As an example,

Time History Outputs:
Screen:
Diagnostics: [Iteration_count]

would print iteration counts to screen without requiring any Time History Diagnostics
being defined.

12.1.2. Mesh History Diagnostics

12.1.2.1. Solver Field

This diagnostic outputs all CG electromagnetic/electrostatic solver fields.

Solver Field:
Fields: [string , default All]
Sampling: [string , default Default]

Fields: Specify which solver fields are to be output; if "All" is present, dump all solver fields.

Sampling: Specify what processing to apply to solver field data before outputting: takes
Nodal, Centered, Average or Default.
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12.1.2.2. DG Field

This diagnostic outputs all DG fields (often associated with fluids). DG fields can be written
either as the cell-centered average or as individual Degrees of Freedom. The individual Degrees
of Freeedom are written as Exodus element variables with the DoF ordinal as a suffix. The DoF
ordering matches that given by the Intrepid2 basis classes.

This diagnostic can also create Exodus Information Records that identify the Intrepid2 basis and
the names of the DG fields written.

To visualize the DG fields using the Paraview Finite Element Field Distributor filter (available
starting in Paraview 5.11.0), set Sampling to None or Default and set Create Basis
Info Recordsto true.

DG Field:
Fields: [string , default All]
Sampling: [string , default Default]
Create Basis Info Records: [bool, default false]

Fields: Specify which solver fields are to be output

Sampling: Specify what processing to apply to DG field data before outputting: None,
Average or Default

Create Basis Info Records: If set to true, Exodus Information Records will be created

12.1.2.3. Edge Field

This diagnostic outputs edge fields (HCurl coefficients). Edge fields can be written to either an
Exodus edge block or to an Exodus element block. When written to an edge block, there is one
coefficient for each shared edge in the mesh and the orientation map is not applied to the
coefficients. When written to an Exodus element block, an element variable is created for each
edge of each element and the orientation map is applied to the coefficients. The element variables
are suffixed with the edge number as described by the Intrepid2 basis class.

This diagnostic can also write the orientation map to an Exodus element block using element
variables.

This diagnostic can also write Exodus Information Records that identify the Intrepid2 basis and
the names of the edge fields written.

To visualize the edge fields using the Paraview Finite Element Field Distributor filter (available
starting in Paraview 5.11.0), set Write Oriented Coefficients totrue and set
Create Basis Info Recordsto true.
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Edge Field:
Fields: [string , default E_Field]
Create Basis Info Records: [bool, default false]
Write Edge Block: [bool, default false]
Write Orientation Map: [bool, default false]
Write Oriented Coefficients: [bool, default false]

Fields: Specify which solver fields are to be output
Create Basis Info Records: If set to true, Exodus Information Records will be created
Write Edge Block: If set to true, write edge coefficients to an Exodus edge block

Write Orientation Map: If set to true, write the orientation map to an Exodus element
block

Write Oriented Coefficients: If set to true, write oriented edge coefficients to an
Exodus element block

12.1.2.4. Face Field

This diagnostic outputs face fields (HDiv coefficients). Face fields can be written to either an
Exodus face block or to an Exodus element block. When written to a face block, there is one
coefficient for each shared face in the mesh and the orientation map is not applied to the
coefficients. When written to an Exodus element block, an element variable is created for each
face of each element and the orientation map is applied to the coefficients. The element variables
are suffixed with the face number as described by the Intrepid2 basis class.

This diagnostic can also write the orientation map to an Exodus element block using element
variables.

This diagnostic can also write Exodus Information Records that identify the Intrepid2 basis and
the names of the face fields written.

To visualize the face fields using the Paraview Finite Element Field Distributor filter (available
starting in Paraview 5.11.0), set Wwrite Oriented Coefficients to true and set
Create Basis Info Recordsto true.

Face Field:
Fields: [string , default B_Field]
Create Basis Info Records: [bool, default false]
Write Face Block: [bool, default false]
Write Orientation Map: [bool, default false]
Write Oriented Coefficients: [bool, default false]

62




Fields: Specify which solver fields are to be output
Create Basis Info Records: If set to true, Exodus Information Records will be created
Write Face Block: If set to true, write face coefficients to an Exodus face block

Write Orientation Map: If set to true, write the orientation map to an Exodus element
block

Write Oriented Coefficients: If set to true, write oriented face coefficients to an
Exodus element block

12.1.2.5. D Dot N

This diagnostic computes D - n on the boundary and outputs it on the mesh. The diagnostic is
based on the equation

/Qp(l) dx+/m(1).n)¢ ds:/Qpc(p dx+/QD.V¢ dx (12.4)

for each nodal test function ¢. The diagnostic first evaluates the volume integrals on the righthand
side. It then restricts this to nodes on the boundary and applies a bounary mass matrix solve to
obtain D - n at nodes on the boundary. This mass matrix can be lumped, making the inverse a
diagonal scaling, or consistent, requiring an iterative solve. This diagnostic is evaluated only on
nodes, as it is inaccurate anywhere else.

D Dot N:
Lumped: [bool, default true]

Lumped: Used a lumped mass matrix for the mass matrix solve

12.1.2.6. Div D Minus Rho

This diagnostic computes V - D — p and outputs it on the mesh. When not using "integration by
parts" (the default behavior), the quantity is evaluated in a straightforward manner at cell centers.
A mass matrix inversion is required to evaluate the charge density at cell centers in this
calculation. Solver and preconditioner options for the mass matrix inversion are accessible to the
user in the input deck. When using the "integration by parts" path, the diagnostic is computed by
first evaluating

/Q(V-D—p)(p dx:—/QD-V(p dx—/gp(b dx-l—/aQ(D-n)(p ds (12.5)
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for each nodal test function ¢ and then applying a mass matrix inverse to remove the integral.
This mass matrix can be lumped, making the inverse a diagonal scaling, or consistent, requiring a
solve. If a "lumped" mass matrix is used, the solver and preconditioner parameters do not apply.

Div D Minus Rho:
Sampling: [string , default Default]
Lumped: [bool, default false]
Use Integration By Parts: [bool, default false]
Boundary Element Values Are NaN: [bool, default true]
Preconditioner: [string , default R-ILU(K)]
Preconditioner XML: [string , default ""]
Solver Tolerance: [double, default 1.0e-16]
Maximum Iterations: [int, default 100]

Sampling: Specify what processing to apply to solver field data before outputting: takes
Nodal, Centered, Average or Default.

Lumped: Used a lumped mass matrix for the mass matrix solve
Use Integration By Parts: Specify the method for computing the quantity
Boundary Element Values Are NaN: Setthe diagnostic value to NaN at boundaries

Preconditioner: Preconditioner for the mass matrix inversion if a lumped mass matrix is
not used: takes R-ILU(K), Jacobi or None

Preconditioner XML: File specifying the Ifpack2 RILUK or RELAXATION
preconditioner parameters

Solver Tolerance: Solver tolerance for the mass matrix inversion

Maximum Iterations: Solver max iterations for the mass matrix inversion

12.1.2.7. Collision Rate

This diagnostic computes quantities which are related to the number of collisions in each mesh
cell,
1 i

N,
Y wij, (12.6)

r; =
l fgi j=1

where N; is the number of computational collision events in mesh cell i. The quantities w; ;, f and
gi are defined according to the user specified options as described below,
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Collision Rate:
[name of collision rate quantity 1]:
Reaction: [string]
Scale by Volume: [bool, default true]
Scale by Time: [bool, default true]
Scale by Weight: [bool, default true]
[name of collision rate quantity 2]:

[name of collision rate quantity 3]:

Reaction: Reaction name.

Scale by Volume: If true, g; is the volume of the i™ mesh cell, otherwise it is unity.
Scale by Time: If true, f is the timestep At, otherwise it is unity.

Scale by Weight: If true, sum the real # of collisions (w; ; is the weight associated with the
jth collision in the i™ mesh cell), otherwise sum the computational # of collisions (w; ; = 1)

for output.

12.1.2.8. Quadrature Data

This diagnostic outputs data stored at quadrature points onto a mesh. The data on quadrature
points is averaged over each element and is output to exodus as a cell quantity. Presently only
material models store data on quadrature points that is available to this diagnostic. The fields that
are available are current, omega_plasma, and nu_collision. If a field is selected that
applies to multiple material models, then all will be output to the same field in exodus. Since the
material models are on different element blocks, they will not overlap.

Quadrature Data:
Fields: [list of strings , required]

Fields: List of fields to output, needs to regex match names.

12.1.2.9. RTC

The runtime-compiler (RTC) diagnostic is used mainly for testing purposes. The goal of the
operator is to supply an analytic evaluation of an arbitrary function as a mesh quantity.

This diagnostic outputs all solver fields.

RTC:
Function: [string , default ""]
Location: [string , default "Cell Center"]
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Function: Source code (C) for function evaluation. Output field name is “output”. Inputs
include time, Xin, yin, zin, as well as various constants (e.g. PI).

Location: Specify where the function is located on the mesh. Currently only “Cell Center” is
supported.

12.1.2.10. Far Field

The Far Field diagnostic computes the near to far field transformation. The user specifies a set of
frequencies, Frequencies, for which the far fields will be computed. Then, equivalent sources
(Love’s Equivalance Principle) for each frequency are determined over the specified sideset,
Integration Sideset Name, over the course of the entire simulation. Note that a region, Nearfield
Region, must be specified in order to disambiguate the direction of the surface normal on the
specified sideset. If the domain is split into two regions, one containing all of the electric currents
which radiate and one which contains only vacuum, then the former region should be specified. At
the end of the simulation, the far fields are computed by integrating over the equivalent sources.

sideset, Integration Sideset Name,

Far Field:
Frequencies: {farfield_frequencies}
Integration Sideset Name: [string]
Nearfield Region: [string]
Far Field Grid Type: [string , default "Arc"]
Point 1: [string]
Point 2: [string]
X Axis: [string , default "1.0, 0.0, O.
Y Axis: [string , default "0.0, 1.0, O.
Z Axis: [string , default "0.0, 0.0, 1.
Num Points: [int, only use with "Arc"]
Num Points Theta: [int, only use with "Angular Area"]
Num Points Phi: [int, only use with "Angular Area"]

2

Integration Sideset Name: Name of the sideset on which to compute the equivalent
sources

Nearfield Region: An exodus mesh block which is adjacent to the integration sideset
Frequencies: List of frequencies for which to compute the far fields
Far Field Grid Type: Accepts "Arc" or "Angular Area"
Num Points: Used only when Far Field Grid Type is "Arc"
Num Points Theta: Used only when Far Field Grid Type is "Angular Area"
Num Points Phi: Used only when Far Field Grid Type is "Angular Area"
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Point 1: Point (thetal, phil) for specifying the farfield grid
Point 2: Point (theta2, phi2) for specifying the farfield grid

X Axis: Specifies the x-axis, which determines the orientation of the spherical coordinate
system that the far fields refer to

Y Axis: Specifies the y-axis, which determines the orientation of the spherical coordinate
system that the far fields refer to

Z Axis: Specifies the z-axis, which determines the orientation of the spherical coordinate
system that the far fields refer to

12.1.2.11. Far Field Transient

The Far Field Transient diagnostic computes the near to far field transformation in the time
domain for a single far field point. Equivalent sources (Love’s Equivalance Principle) are
determined over the specified sideset, Integration Sideset Name. The value of the sources are
temporally interpolated, using a polynomial interpolation of order Interpolation Order, to the
retarded time and the contribution to the far field value at the far field time is added. At the end of
the calculation, the far fields are known and the values are output to file named according to the
diagnostic name. Note that a region, Nearfield Region, must be specified in order to disambiguate
the direction of the surface normal on the specified sideset. If the domain is split into two regions,
one containing all of the electric currents which radiate and one which contains only vacuum,
then the former region should be specified. The output is computed assuming that the fields on the
near field integration surface have been zero for all time before the first simulation step. Output is
printed only for far fields times which are fully causual within the simulation (given the
aforementioned assumption). Note that, in order to get the correct field amplitudes for a far field
point a distance r from the origin, the result must be scaled by a factor 1/r.

Far Field:

Integration Sideset Name: [string]
Nearfield Region: [string]

Far Field Point: [string]

X Axis: [string , default "1.0, 0.0, O.
Y Axis: [string , default "0.0, 1.0, O.
Z Axis: [string , default "0.0, 0.0, 1.
Interpolation Order: [int]

Ensure Full Causality: [bool, default True]

’

Integration Sideset Name: Name of the sideset on which to compute the equivalent
sources

Nearfield Region: An exodus mesh block which is adjacent to the integration sideset
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Far Field Point: Point (theta, phi) at which the time-domain far field will be computed

Interpolation Order: Order of the polynomial interpolation for temporally interpolating
the EMPIRE solution fields to the retarded time.

Ensure Full Causality: If true, restricts the output to the range where the assumption of
E and H reaching zero on the integration surface by the end of the simulation does not hold.

X Axis: Specifies the x-axis, which determines the orientation of the spherical coordinate
system that the far fields refer to

Y Axis: Specifies the y-axis, which determines the orientation of the spherical coordinate
system that the far fields refer to

Z Axis: Specifies the z-axis, which determines the orientation of the spherical coordinate
system that the far fields refer to

12.1.2.12. Transmission Line Solver Field

This mesh diagnostic will create a 1D exodus file for outputting spatially varying currents and
voltages. It only works if there is a circuit network block. All transmission lines outputs are
present throught the entire 1D mesh. The name of the transmission line is a prefix for the current
and voltages. A conductor number is listed as a suffix.
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13. RESTART

There are several basic options for the restart block which are used regardless of physics.

Restart:
Write Checkpoint:
Stride :
Stride: [...] (no default)
Number of Checkpoints: [int] (default 2)
Name: [string] (default empire)
Enable Restart: [bool] (default false)
Restart from Checkpoint: [int] (default -1)

Empire enables restart by writing checkpoint binary files to disk, and subsequently reading them
back in upon restart.

Write Checkpoint Block determining checkpoint restart file write options.

Stride: A stride block which describes the intervals at which a restart checkpoint file is
written to disk. The user must supply this block and define the stride through either
the Stride or Stride Time parameters. The user is strongly encouraged to be
judicious in choosing the dump frequency.

Number of Checkpoints: The maximum number of checkpoint restart files to store
on disk. Older dump files are deleted to make room for new ones as the simulation
progresses.

Name: The base name of the restart checkpoint files. Files will have the names
basename.dumpNumber.mpiRank.

Enable Restart: Startclean or start from a restart dump. If there are no checkpoint files
present, the simulation starts clean from time O.

Restart from Checkpoint: The dump index of the restart checkpoint files to start from.
The default of —1 means to start from the last (most recent) dump. The dump index starts
from zero(0).

Standard Caveats:

1. Restart is not guaranteed to be backwards compatible. Older restart files may not work with
newer executables.

2. Restart is not guaranteed to be cross-platform compatible. Restart files from filesystem A
may not work on filesystem B.
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3. Restart is not guaranteed to be compiler independent. Restart files generated by a gnu/gcc
executable may not work with an intel or clang executable.

4. Restart is not independent of the number of mpi cores. A simulation run on 64 cores cannot
be restarted on a different number of cores.

5. Restart is not independent of the parallel domain decomposition. The parallel domain
decomposition must not change upon restart.

The user is strongly encouraged to run a restart using exactly the same environment as the
original run. This implies the same binary executable running on the same hardware, the same
mpi, the same number of cores, and the same filesystem. Mixing and matching these is not
supported.

Here is a concrete example:

Restart:
Write Checkpoint:
Stride :
Stride: 10

Number of Checkpoints: 3
Name: AlfvenWave
Enable Restart: true
Restart from Checkpoint: 3

This means:
* Write a restart dump every 10 cycles.

* Save a maximum of 3 restart dumps on disk.

Restart files have the naming convention AlfvenWave.dumpNumber.mpiRank.

Restart if checkpoint files are present.

Restart from checkpoint dump files with dumpNumber = 3.
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14. GENERAL UTILITIES

EMPIRE has some general utilities which are used throughout the input deck. This chapter gives
the format for these utility features. They all have the format of:

Utility Name:
Key: Value
Key: Value
Sublist:

Key: Value

Obviously the keys and values are specific to the utility. These are often subsections to other input
parameters like output specification.

14.1. Geometry

Some features of the code use geometric primitives to define regions of influence. There are
several geometric primitives available to the user. The following sections will describe these
primitives. Other attributes can be combined with a geometric primitive which define what
happens inside that geometry.

Geometric primitives can be sampled randomly, meaning, points can be drawn randomly within
the primitive. Because of this, not all shapes uniformly project from three-dimensions into
two-dimensions. An example would be a spherical shape. Random distributions in
three-dimensions will have a higher probability of being near the origin of the projected circle.

14.1.1. All

This defines the full domain of the problem, it is the simplest of all the geometric primitives

[All: j

14.1.2. Point

A “Point” represents a delta function in space. It only requires a single value to be defined, the
position as follows.

Point:
Position: x, y, x, position of the point (no default)

71



14.1.3. Sphere

A “Sphere” can be defined by the center point and a radius. It is a three dimensional shape, and
does not always reduce to circle in two-dimensions. The definition of the “Sphere” is as
follows.

Sphere:
Center: x, y, x, position of the center (no default)
Radius: r, radius of the sphere (no default)

14.1.4. Block

A “Block” represents a rectangular region of space which is coordinate aligned. It is defined by
the lower left and upper right corners.

Block:
Lower: x, y, X, position of the lower left corner (no default)
Upper: x, y, X, position of the upper right corner (no default)

14.2. Stride

The input block “Stride” provides the analyst the ability to control the frequency that something
happens. This something can be quite general, but outputting results is one natural use for such a
feature. This stride can be given in units of simulation time or in units of time steps. If some of
the specification is given in units of simulation time, all the inputs must be in simulation, and
similarly for time steps.

The input block for “Stride” is as follows.

Stride :
Stride: Number of steps between events (default=1)
Start Stride: First time-step evaluated to true (default=0)
Stop Stride: Last time—step evaluated to true (default=Inf)

Stride :
Stride Time: Number of simulation seconds between events (default=0.0)
Start Time: First simulation time evaluated to true (default=0.0)
Stop Time: Last simulation time evaluated to true (default=Inf)

With an empty stride definition one can see that you would trigger the event that stride controls
every time-step. First and last steps can be treated specially, one can enable these specifically as
seen in this example.
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Stride :
Force First: true
Force Last: true
Start Stride: 10
Stop Stride: 20

One would get the first and the last events set to true, then each time-step between [10, 20] will
also evaluate to true.

Now the behavior when one uses a “Time Stride” that does not align with a time step size is that
the time between the events will be at least the “Time Stride” provided. That means, if one has a
time step of 1.0 and a “Time Stride” of 1.1, you will effectively be true every other time step. If
one wants fine control of the frequency then it is suggested that one uses “Stride” rather than
“Time Stride”.

14.3. Tabular Data

Many of the inputs can be controlled via a tabular data file. This allows one to specify the data
either inline, or in a file written to disk. In the case of the data coming from a file, the data file has
the format of an index which is a floating point number, followed by a number of values for that
particular index.

# comments
#blanks are o.k.

index valuel value2 value3

# commas are o.k. as well

index , valuel , value2, value3

# even mixtures

index valuel , value2, value3

#it will error out if there is not the same number of columns

The number of values must be the same for all rows in the table and match what the code expects
for a particular section.

The input deck can reference a “Tabular Data” section by just referencing the file or the user has
the ability to inline the table directly into the code. Currently, the inline only allows for tables of
one width. The format for specifying “Tabular Data” is as follows.

My Tabular Data:

File Name: Name of file containing data (no default)
Interpolation Type: Type of interpolation between indices
(default=Linear)

Pre Extrapolation: How to handle data prior to first index
(default=Truncate)

Post Extrapolation: How to handle data after the last index
(default=Truncate)

73



“Interpolation Type”, controls how one interpolates between two valid indices, there are only two
options currently, “Linear” or “Nearest”. Once one has stepped outside the bounds of the indices,
extrapolation needs to be done. Here we have two forms of extrapolation, “Truncate” and
“Extend”. If one selects “Truncate” the value assumed outside the range of valid indices are
assumed to be 0.0. “Extend” assumes that the first, or last value are extended for all points outside
the indices.

As mentioned previously the table values can be supplied either inline or from a file. The inline
option has the restriction of only allowing one column of data besides the index column. This
usage replaces the “File Name” flag as follows

My Inlined Tabular Data:
Data:
Index: Value
Index: Value

All the other options are also available as defined previously.

14.4. RTC Functions

Many features in EMPIRE allow the specification of some quantity with a runtime-compiled
(RTC) function. RTC functions have a syntax similar to the C language and several features are
supported including conditional statements. This functinality is taken from the Pamgen finite
element library. At time of writing, documentation on the features supported by RTC functions
can be found at
https://github.com/trilinos/Trilinos/blob/master/packages/pamgen/rtcompiler/rtclang.tex
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APPENDIX A. Documentation of Python Utilities

The EMPIRE team has developed a workflow for running and analyzing tests that heavily relies
on tools written in Python. This appendix contains the documentation for public functions
(“docstrings™) if the module or function has one. These docstrings are written to help people
understand the call signature of the function, what it does, as well as what is returned.

A.1. “empire” module

No docstring found.

A.1.1. empire.ArchiveResults()

No docstring found.

A.1.2. empire.Timer()

This class can be used in a ’with’ statement to automatically time
whatever is in the ’with’ statement and save that to the dictionary
that is passed in.

For example, this code:

db = {}

with Timer(’spam’, db):
print ("Going to sleep")
time.sleep (1.234)

print (db)

Produces this output:

x#%% Start Timer ’spam’

Going to sleep

x#%+% BEnd Timer ’*spam’

{’Timer: spam’: 1.2343378067016602}
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A.1.3. empire.allocate_resources()

allocate_resources () 1is
on different platforms

nodes, threads, and MPI ranks.
Parameters
resource_type str, optional
The resource type for the run.
Default is "cpu"

n_allocated_resources int, optional

The total number of resources that
Default is ‘1 °.
resource_ids List[int], optional

The IDs of resources. Only used when
and when the host we’re running on is
length of the list must be equal to
Default is None.

are available

3

a function designed to make running EMPIRE
easier by seamlessly

taking care of sockets,

Must be either "cpu" or "gpu".

to run on.

3

‘resource_type ° is "gpu"
not a batch system. The
n_allocated_resources °

n_threads int, optional
The desired number of threads per parallel process
(OMP_NUM_THREADS) , default is ‘I °.
n_ranks_per_socket None or int, optional
The number of parallel ranks per socket. If ‘None‘, will set to
(resources per socket // n_threads). Default is ‘None ‘.
n_sockets_per_node None or int, optional
If the machine you are running on is not recognized, you can

define this value manually. If ‘None
up the hardware environment. Default
n_cpus_per_socket None or int, optional

If the machine you are running on is

define this value manually. If ‘None°
up the hardware environment. Default
n_gpus_per_socket None or int, optional

If the machine you are running on is

define this value manually. If ‘None°
up the hardware environment. Default
allow_undersubscribe bool, optional
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If False, cause an error if the number of cores used is less
than ‘n_allocated_cores ‘. When ‘n_ranks_per_socket * is None
and the function determines allocation , this is set to ‘True
Default is ‘False °.

3

allow_oversubscribe : bool, optional
If False, cause an error if the number of cores used is more
than ‘n_allocated_resources ‘. Default is ‘False ¢
Returns
hwenv : dict
The hardware environment returned as a dict with the following:
‘allocated _resources ° : int

equal to ‘n_allocated_resources °
‘nodes ° int or None

Number of nodes used (if applicable) else ‘None°
‘sockets ° int or None

Number of sockets used (if applicable) else ‘None°
‘ranks ° int

Number of parallel ranks
‘ranks_per_socket * : int or None

Number of parallel ranks per socket (if applicable) else
‘threads_per_rank ° : int

Equal to n_threads
‘used_resources ‘ : int

Equal to the total number of cores used

Raises
TypeError
If ‘n_allocated_resources is not an int
If ‘resource_type ° is not a str
If ‘resource_type ° is not either ’cpu’ or ’gpu’
If ‘resource_ids ° is not a list of ints or None
If ‘len(resource_ids)‘ is not equal to ‘n_allocated_resources °
If ‘n_threads ° is not an int
If ‘n_cpus_per_socket * is not an int or None
If ‘n_gpus_per_socket * is not an int or None
If ‘n_sockets_per_node * is not an int or None
If ‘allow_undersubscribe ° is not a boolean
If ‘allow_oversubscribe ° is not a boolean
Exception
If resources are undersubscribed and allow_undersubscribe=False
If resources are oversubscribed and allow_oversubscribe=False
For HPC usage, if n_cpus_per_socket or n_sockets per node are
None and the system in not recognized.

3

3
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For HPC usage, if n_gpus_per_socket or n_sockets per node are
None and the system in not recognized.

A.1.4. empire.empire_history_file_statistics()

Merges columns from one or more EMPIRE history files into a statistical
representation with means and standard deviations.

Parameters
ifiles : list of str or pathlib.Path
The files to be read in and processed.

ofile: str or pathlib.Path or None, optional
Filename of the file to be written. Will overwrite existing files.
If ‘None‘, then the output file will not be written.
Default is ‘None ‘.

columns : Dict[str, str] or None, optional
If None assume all columns except ‘index_column ‘ are to be merged
(assuming each file in ‘ifiles ° has the same columns). If a dict,
must be of the format ("key", "regex") where it will create columns
called "{key}_mean" and "{key}_stddev" and process all columns that
match the accompanying regex. Default is ‘None ‘.

3

index_column : str, optional
The column to be copied over and to be used to verify that the
columns can be merged. All files must have this column and it
must be the same in all files. Default is "Simulation_time".

ddof : int, optional
Means Delta Degrees of Freedom. The divisor used in stddev
calculations is ‘‘N — ddof‘‘, where ‘‘N‘‘ represents the number of
elements. Default is 1 (sample stddev).

OrderedDict[str , numpy. array ]
Returns the computed output data

Exception
if no input files are given (empty list)
if columns are of uneven lengths in the same file
if columns are of uneven lengths between files
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if any file is missing the ‘index_column ¢

if not all index columns are the same

if ‘columns ‘ is not a dict or None

if any keys or values of ‘columns‘ are not strings

if any value of ‘columns‘ is not a valid regex

if duplicate output column names are requested

if there aren’t at least two columns to perform analysis on

A.1.5. empire.load_test results()

Load the dictionary saved by the function save_test_results ().

A.1.6. empire.read_exodus()

read_exodus () is yet another python implementation of an exodus
reader. It is intended for use in plasma physics codes where the
mesh does not change with time.

Parameters

exo_f : str
The name of the exodus file to read. If reading parallel exodus
dumps, the base exodus file name.

var_list : list of str
A list of all the field names that you want output.

cycle : int
An index to a list of the cycles in the file. May use python
index conventions (‘-1° for last, ‘-2° for penultimate, etc)

var_type : str ("NODE" or "CELL"), optional
Which type of field is being queries. Default is ‘NODE°®.

processor_count : int or, optional
The number of parallel exodus files there are in the batch.
Default is ‘0° (serial exodus dump).

Returns

data : dict of numpy.array
A dictionary that looks similar to the following and will
always have ’coordx’, ’coordy’, ’coordz’, and one of

"node_num_map’ or ’elem_num_map’ (depending on ‘var_type ‘)::
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"coordx ": np.array ([...]),
"coordy": np.array ([...]),
"coordz": np.array ([...]),
"node_num_map": np.array ([...]),
"varl": np.array ([...]),
}
Raises
Exception
If expected exodus files do not exist
If var_type is not either "NODE" or "CELL"
If decoding strings from the exodus file fails
If name in ‘var_list ° does not exist in exodus file
A.1.7. empire.read_h5part()
This function reads an hS5Spart file and returns the specified step
as a dictionary .
Parameters
ifile string
Name of the input file to process.
step int
The index of the step you want to access. Python indexing is
allowed (e.g. 0 is the first, -1 is the last step).
var_list list of strings , optional
The list of variables that you want to output. Default is
to output only coordinates. Note: the (Xx,y,z) coordinates are

always returned and they are called (coordx,coordy,coordz).

Returns
data dict of numpy.array
A dictionary that looks similar to the following and will
always have ’coordx’, ’coordy’, and ’coordz’
{
"coordx": np.array ([...]),
"coordy": np.array ([...]),
"coordz": np.array ([...]),
"varl": np.array ([...]) .,
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A.1.8. empire.render_jinja2()

This function is a wrapper around the jinja2 module and streamlines
the processing of templates. It also implements a way for variables
to be exported from the template.

This function also automatically loads the EMPIRE constants into
the namespace of every file rendered.

Parameters
ifile : str
The file name or path to the jinja2 template to process.

ofile : str or None, optional
The file name or path where the output should be written.
Default is ‘None‘ (print to stdout).

preload : dict, optional
Dictionary of values to make available to the template rendering
engine. Default is ‘None‘ (no extra variables).

Returns

Dict
A dictionary of all the exported variables and their values.

A.1.9. empire.run_aprepro()

Runs an executable built by Trilinos.

Parameters

cmd : str
The string that you would expect to pass to the executable
EXCLUDING the executable name.

cwd : str or None, optional

The desired working directory that you wish to execute this in.
Default is ‘None‘ (your current working directory).
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file_out : file -like object (e.g. supports ‘. write())
File —-like object to save stdout to. Default is None.

allow_errors : bool
Allow aprepro to not fail when errors are encountered.
Default is ‘False * (Includes ——errors_fatal).

Returns

None

Raises

Exception

If install_info.json is not found (which it uses to find where
the executable is installed ). Likely means that you are
using the EMPIRE source and not a build.

If the executable doesn’t exist where it is expected.

If the executable is not executable.

If the executable returns with a non-zero return code.

A.1.10. empire.run_cable()

This function runs EMPIRE-Cable. It accepts an input file and will
assemble the run command and execute it.

Parameters

ifile : string
Name of the input file to run

extra_args: string , optional
Extra arguments to pass to the EMPIRE executable. Default is "".

x#%x NOTE: Accepts all options avaiable to ‘allocate_resources () ‘

* %k and will use the values returned to run or you may
ok manually define the following:
ranks : int, optional

Number of MPI ranks to use. Default defined by
‘allocate_resources () °.

threads_per_rank : int, optional

Number of threads per process, overrides OMP_NUM _THREADS.
Default defined by ‘allocate_resources () °.
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ranks_per_socket: int or None, optional
If running on a HPC system, number of MPI ranks per socket.
Default defined by ‘allocate_resources () ‘.

resource_ids: (list of int) or None, optional
A list of Kokkos device IDs to be used for GPU/accelerator
runs. Length must be equal to ‘ranks ‘. Default is ‘None‘, for
no GPU/accelerator in the run.

resource_type : str, optional

" n n " "

Must be set to either "cpu" or "gpu". Default is "cpu

load_balancing : bool, optional
Turns on load balancing by setting EMPIRE VT="1". Default is ‘False ‘|

write_script : bool, optional
Writes out a file called "run_empire.sh" with the command used to
run EMPIRE. Default is ‘True °.

Returns
retcode : int
The return code of the spawned process.

Raises
Exception
If module ‘script_util ° is not loaded.
If ‘ranks * is negative
IOError
If desired EMPIRE executable is not found.

A.1.11. empire.run_cubit()

This function calls cubit on an input journal file. It doesn’t
return anything as I don’t think cubit ever returns with a non-zero
return code.

Parameters

jou : str
Name of the file for Cubit to run.

cubit_version : str or None, optional
The cubit version you want to run with. If None, run with the
first Cubit found. Default is "15.5".
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Returns

Exception
If the file in ‘jou‘ is not found
If the desired version of cubit isn’t found
If the cubit executable isn’t executable
If the call to Cubit yielded a nonzero return code

A.1.12. empire.run_decomp()

Runs an executable built by Trilinos.

Parameters

cmd : str
The string that you would expect to pass to the executable
EXCLUDING the executable name.

cwd : str or None, optional
The desired working directory that you wish to execute this in.
Default is ‘None‘ (your current working directory).

file_out : file —-like object (e.g. supports ‘. write())
File —-like object to save stdout to. Default is None.

allow_errors : bool
Allow aprepro to not fail when errors are encountered.
Default is ‘False ° (Includes ——errors_fatal).

Returns

None

Raises

Exception

If install_info.json is not found (which it uses to find where
the executable is installed ). Likely means that you are
using the EMPIRE source and not a build.

If the executable doesn’t exist where it is expected.

If the executable is not executable.
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L If the executable returns with a non—-zero return code. J

A.1.13. empire.run_em()

This function runs EMPIRE-EM. It accepts an input file and will
assemble the run command and execute 1it.

Parameters

ifile : string
Name of the input file to run

extra_args: string , optional
Extra arguments to pass to the EMPIRE executable. Default is "".

x+%% NOTE: Accepts all options avaiable to ‘allocate_resources () ‘

* % % and will use the values returned to run or you may
e ok ok manually define the following:
ranks : int, optional

Number of MPI ranks to use. Default defined by
‘allocate_resources () °.

threads_per_rank : int, optional
Number of threads per process, overrides OMP_NUM _THREADS.
Default defined by ‘allocate_resources () ‘.

ranks_per_socket: int or None, optional
If running on a HPC system, number of MPI ranks per socket.
Default defined by ‘allocate_resources () ‘.

resource_ids: (list of int) or None, optional
A list of Kokkos device IDs to be used for GPU/accelerator
runs. Length must be equal to ‘ranks ‘. Default is ‘None‘, for
no GPU/accelerator in the run.

resource_type : str, optional

Must be set to either "cpu" or "gpu". Default is "cpu"
load_balancing : bool, optional

Turns on load balancing by setting EMPIRE VT="1". Default is ‘False ‘|

write_script : bool, optional

Writes out a file called "run_empire.sh" with the command used to
run EMPIRE. Default is ‘True °.
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Returns
retcode : int
The return code of the spawned process.

Exception
If module ‘script_util * is not loaded.
If ‘ranks ‘ is negative
IOError
If desired EMPIRE executable is not found.

A.1.14. empire.run_epu()

Runs an executable built by Trilinos.

Parameters

cmd : str
The string that you would expect to pass to the executable
EXCLUDING the executable name.

cwd : str or None, optional
The desired working directory that you wish to execute this in.
Default is ‘None‘ (your current working directory).

file_out : file —-like object (e.g. supports ‘. write())
File —-like object to save stdout to. Default is None.

allow_errors : bool
Allow aprepro to not fail when errors are encountered.
Default is ‘False ° (Includes ——errors_fatal).

Returns

None

Raises

Exception

If install_info.json is not found (which it uses to find where
the executable is installed ). Likely means that you are
using the EMPIRE source and not a build.

If the executable doesn’t exist where it is expected.

If the executable is not executable.
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L If the executable returns with a non—-zero return code.

A.1.15. empire.run_epup()

Runs an executable built by Trilinos.

Parameters

cmd : str
The string that you would expect to pass to the executable
EXCLUDING the executable name.

cwd : str or None, optional
The desired working directory that you wish to execute this in.
Default is ‘None‘ (your current working directory).

file_out : file—-like object (e.g. supports ‘‘.write())
File —like object to save stdout to. Default is None.

allow_errors : bool
Allow aprepro to not fail when errors are encountered.
Default is ‘False * (Includes ——errors_fatal).

Returns

None

Raises

Exception

If install_info.json is not found (which it uses to find where
the executable is installed ). Likely means that you are
using the EMPIRE source and not a build.

If the executable doesn’t exist where it is expected.

If the executable is not executable.

If the executable returns with a non—-zero return code.

A.1.16. empire.run_exodiff()

Runs an executable built by Trilinos.

Parameters
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The string that you would expect to pass to the executable
EXCLUDING the executable name.

cwd : str or None, optional
The desired working directory that you wish to execute this in.
Default is ‘None‘ (your current working directory).

file_out : file —like object (e.g. supports ‘‘.write())
File—like object to save stdout to. Default is None.

allow_errors : bool
Allow aprepro to not fail when errors are encountered.
Default is ‘False ° (Includes ——errors_fatal).

Returns

None

Raises

Exception

If install_info.json is not found (which it uses to find where
the executable is installed ). Likely means that you are
using the EMPIRE source and not a build.

If the executable doesn’t exist where it is expected.

If the executable is not executable.

If the executable returns with a non-zero return code.

A.1.17. empire.run_fluid()

This function runs EMPIRE-Fluid. It accepts an input file and will
assemble the run command and execute 1it.

Parameters

ifile : string
Name of the input file to run

extra_args: string , optional
Extra arguments to pass to the EMPIRE executable. Default is "".

x%% NOTE: Accepts all options avaiable to ‘allocate_resources () ‘

* % % and will use the values returned to run or you may
e ot o manually define the following:
ranks : int, optional
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Number of MPI ranks to use. Default defined by
‘allocate_resources () °.

threads_per_rank : int, optional
Number of threads per process, overrides OMP_NUM THREADS.
Default defined by ‘allocate_resources () ‘.

ranks_per_socket: int or None, optional
If running on a HPC system, number of MPI ranks per socket.
Default defined by ‘allocate_resources () ‘.

resource_ids: (list of int) or None, optional
A list of Kokkos device IDs to be used for GPU/accelerator
runs. Length must be equal to ‘ranks ‘. Default is ‘None‘, for
no GPU/accelerator in the run.

resource_type : str, optional
Must be set to either "cpu" or "gpu". Default is "cpu".

load_balancing : bool, optional
Turns on load balancing by setting EMPIRE VT="1". Default is ‘False ‘|

write_script : bool, optional
Writes out a file called "run_empire.sh" with the command used to
run EMPIRE. Default is ‘True ‘.

retcode : int
The return code of the spawned process.

Exception
If module ‘script_util * is not loaded.
If ‘ranks ‘ is negative
IOError
If desired EMPIRE executable is not found.

A.1.18. empire.run_hybrid()

This function runs EMPIRE-Hybrid. It accepts an input file and will
assemble the run command and execute 1it.

Parameters
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ifile string
Name of the input file to run
extra_args: string , optional

Extra arguments to pass to

x+%x NOTE: Accepts all options

avaiable to

nn

the EMPIRE executable. Default is

‘allocate_resources () ¢

returned to run or you may

ok and will use the values
* k% manually define the following:
ranks int, optional

Number of MPI ranks to use.
‘allocate_resources () °.

threads_per_rank int ,
Number of threads
Default defined by

ranks_per_socket: int or None,
If running on a HPC system,
Default defined by
resource_ids: (list of
A list
runs. Length must be equal

no GPU/accelerator

resource_type str, optional
Must be set to either "cpu"
load_balancing bool, optional

Turns on load balancing by

write_script bool, optional
Writes out a file called

run EMPIRE. Default is ‘True
Returns
retcode int

The return code of the

Raises

Exception
If module ‘script_util © is
If ‘ranks ‘ is negative

int) or None,
of Kokkos device IDs to be used for GPU/accelerator

"run_empire.sh"

Default defined by

optional
per process,
‘allocate_resources () ‘.

overrides OMP NUM THREADS.

optional
number of MPI ranks per socket.

‘allocate_resources () ‘.

optional

in the run.

to ‘ranks ¢ Default is ‘None‘, for
or "gpu". Default is "cpu".
setting EMPIRE_VT="1". Default is ‘False .

with the command used to

3

spawned process.

not loaded.
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IOError
If desired EMPIRE executable is not found.

A.1.19. empire.run_itspff2hdf5()

This function will run the EMPIRE TPL ’itspff2hdf5 °. If you really want
need to specify, you can set the ’'cwd’ for running the executable.

Parameters

cmd @ str

The string that you would expect to pass to itspff2hdf5 EXCLUDING
the initial ’itspff2hdf5 ’.

cwd : str or None, optional
The desired working directory that you wish to execute this in.
Default is ‘None‘ (your current working directory).

Returns

Exception
If install_info.json is not found (which it uses to find where

itspff2hdf5 is installed ). Likely means that you are using the
EMPIRE source and not a build.

If itspff2hdf5 doesn’t exist where it is expected.

If itspff2hdf5 is not executable.

If itspff2hdf5 returns with a non-zero return code.

A.1.20. empire.run_pic()

This function runs EMPIRE-PIC. It accepts an input file and will
assemble the run command and execute it.

Parameters

ifile : string
Name of the input file to run

extra_args: string , optional
Extra arguments to pass to the EMPIRE executable. Default is "".
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x+%%x NOTE: Accepts all options avaiable to ‘allocate_resources () ‘

* % % and will use the values returned to run or you may
e ot ok manually define the following:
ranks int, optional

Number of MPI ranks to use.
‘allocate_resources () °.

Default defined by

threads_per_rank int, optional
Number of threads per process, overrides OMP_NUM_THREADS.
Default defined by ‘allocate_resources () ‘.

ranks_per_socket: int or None, optional

If running on a HPC system,

number of MPI ranks per socket.

Default defined by

‘allocate_resources () °.

resource_ids: (list of int) or None, optional

A list of Kokkos device IDs to be used for GPU/accelerator

runs. Length must be equal to ‘ranks ° Default is ‘None‘, for

no GPU/accelerator in the run.
resource_type str, optional

Must be set to either "cpu" or "gpu". Default is "cpu".
load_balancing bool, optional

Turns on load balancing by setting EMPIRE VT="1". Default is ‘False ‘|

write_script bool, optional

Writes out a file called "run_empire.sh" with the command used to

run EMPIRE. Default is ‘True ¢
Returns
retcode int

The return code of the spawned process.

Raises

Exception
If module ‘script_util ° is not loaded.
If ‘ranks ‘ is negative

IOError

If desired EMPIRE executable is not found.
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Hardcopy—External

Hardcopy—Internal

1 Richard M. J. Kramer 1351 1152

Email—Internal I

Technical Library 01177 libref@sandia.gov
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