

Primary Frequency Response Reserve Products for Inverter-Based Resources¹

Hawaii International Conference on System Sciences

Presented by:

Manuel Garcia, Ross Baldick, Felipe Wilches-Bernal

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Sandia LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Inverter-Based Resources & Primary Frequency Response

- Inverter-Based Resources (IBRs) have been detrimental to primary freq. control.
 - Do not provide inertia.
 - Traditionally do not provide frequency control.
- Difficulties in performing primary frequency control.
 - Low inertia makes frequency control more difficult to perform.
 - Accommodating large contingencies is difficult (e.g. nuclear power plant).
- Some regions have proposed new ancillary services for primary frequency control.
 - ERCOT¹, NEM², and National Grid³ proposed new ancillary services for primary frequency control.
 - Western and Eastern interconnect have not proposed such ancillary services.

Table: Yearly minimum inertia levels and largest contingencies in various regions.

ISO/Region	US West ⁴	US East ⁴	(Texas) ERCOT ⁴	(Australia) NEM ⁵	(United Kingdom) National Grid ^{6 and 7}
Yearly Minimum Inertia (GWs)	472	1281	134	4.4	129
Largest Contingency (MW)	2626	4500	2750	100	1260
Inertia/Contingency Ratio (s)	179	284	48	44	102

¹ Pengwei Du et al. "New Ancillary Service Market for ERCOT". In: *IEEE Access* 8 (2020), pp. 178391–178401.

² Australian Energy Market Operator. *Fast frequency response in the NEM*. Tech. rep. 2017.

³ Lexuan Meng et al. "Fast frequency response from energy storage systems—A review of grid standards, projects and technical issues". In: *IEEE Transactions on Smart Grid* 11.2 (2019), pp. 1566–1581.

⁴ North American Electric Reliability Corporation. *Forward Looking Frequency Trends Technical Brief: ERS Framework Measures 1, 2, and 4: Forward Looking Frequency Analysis*. Technical Report, 2018.

⁵ Australian Energy Market Operator. *Notice of South Australia Inertia Requirements and Shortfall*. Tech. rep. 2020, p. 24.

⁶ National Grid. *Future Requirements for Balancing Services*. Tech. rep. National Grid, 2016, p. 29. URL: <https://www.nationalgrid.com>.

⁷ National Grid ESO Data Portal. *System Inertia Data*. Tech. rep. 2020-2021, p. 29. URL: <https://data.nationalgrideso.com/system/system-inertia>.

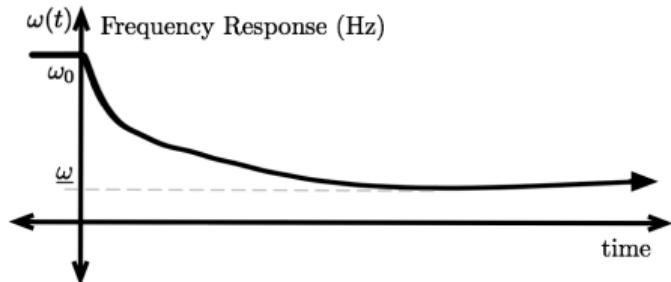
New Ancillary Service Market Products

Proposed Ancillary Service Products for Primary Frequency Control

- Proposed in the real-time market (No horizon considered).
 - Various reserve types with different deployment responses.
 - Reserve payments and inertia payments priced at the margin.
- Contribute to primary frequency control.
 - Contribute to arresting frequency decline in response to a large generator outage.
 - Defined only in the upward direction (Consistent with most contingency reserves).
- Synchronous Generators: Two proposed ancillary service products.
 1. Primary Frequency Response (PFR) reserve: Droop control (Similar to ERCOT¹).
 2. Synchronous Inertia: Automatically provided if committed.
- Inverter-based Resources (IBR): Two proposed ancillary service products.
 1. Fast Frequency Response (FFR) Reserve: Step response (Similar to ERCOT¹).
 2. Virtual Inertia (VI) Reserve: Mimics synchronous inertia.

¹ Pengwei Du et al. "New Ancillary Service Market for ERCOT". In: *IEEE Access* 8 (2020), pp. 178391–178401.

Proposed Models for Ancillary Service Products

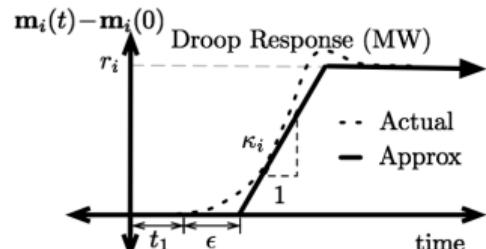


Inertia and Frequency Dynamics

Simple Swing Equation neglects damping.

System frequency is $\omega(t)$, nominal frequency is ω_0 , inertia from generator i is M_i , net-demand is $e(t)$.

$$\frac{d\omega(t)}{dt} = \frac{\omega_0}{2(1^\dagger M)} (1^\dagger m(t) + 1^\dagger p(t) + 1^\dagger d(t) - e(t)).$$

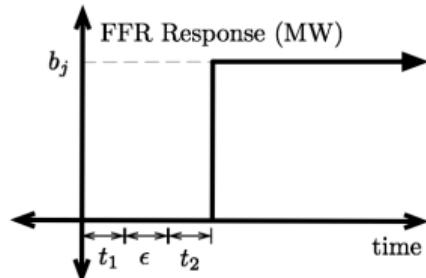

PFR Reserve r

(Droop Control)

$m_i(t)$: Ramp in mech. power

r_i : PFR reserve for generator i

Ramp begins after time delay $t_1 + \epsilon$.

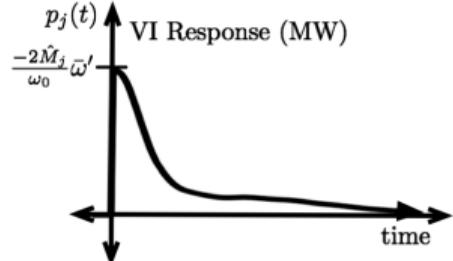

FFR Reserve b

(Step Response)

$d_j(t)$: Instantaneous jump in power

b_j : FFR reserve for IBR j

Response triggered at frequency ω_2 .


VI Reserve ν

(Virtual Inertia)

$p_i(t)$: derivative of freq.

$$\nu_j = \frac{2\hat{M}_j}{\omega_0} \bar{\omega}': \text{VI reserve for IBR } j$$

$$p_j(t) = \begin{cases} \frac{-2\hat{M}_j}{\omega_0} \frac{d\omega(t)}{dt} & \omega(t) \leq \omega_0 \\ 0 & \omega(t) > \omega_0 \end{cases}$$

Conventional Generator Model

Products Provided by Generator i

Receives payment for three products.

- G_i : Generation (MW)
- r_i : PFR reserve (MW)
- M_i : Inertia (MWs)

Generator Profit Maximization

Inertia considered fixed in real-time market.
Maximizes payments minus costs.
Subject to physical constraints.

$$\max_{r_i \in \mathbb{R}_+, G_i \in \mathbb{R}_+} \pi_i G_i + \chi r_i + \Psi M_i - C_i(G_i, r_i) \quad (1)$$

$$\underline{G}_i \leq G_i \leq \bar{G}_i - r_i \quad (1a)$$

$$r_i \leq \bar{r}_i \quad (1b)$$

Prices

PFR and inertia prices are uniform for all generators.
Generation price (LMP) is location specific.

- $LMP_i = \pi_i \quad \forall i \in [1, \dots, n]$ (\$/MW)
- PFR Price = χ (\$/MW)
- Inertia Price = Ψ (\$/MWs)

Constraint Description

(1a): Upper and lower generation limits.

(1b): PFR reserve limit \bar{r}_i .

- Fixed from generator's perspective.
- Chosen by the ISO.

Inverter-Based Resource (IBR) Model

Products Provided by IBR j

Receives payment for three products.

- f_j : Electric Generation (MW)
- b_j : FFR reserve (MW)
- ν_j : VI reserve (MW)

Prices

FFR and VI prices are uniform for all IBRs.
Generation price (LMP) is location specific.

- $LMP_j = \pi^\dagger H_j \quad \forall j \in [1, \dots, \beta]$ (\$/MW)
- FFR Price = ϕ (\$/MW)
- VI Price = ψ (\$/MW)

IBR Profit Maximization

Maximizes payments minus costs.
Subject to physical constraints.

$$\max_{f_j \in \mathbb{R}, \nu_j \in \mathbb{R}_+} \pi^\dagger H_j f_j + \phi b_j + \psi \nu_j - P_j(f_j, b_j, \nu_j) \quad (2)$$

$$b_j \in \mathbb{R}_+ \quad \underline{b}_j \leq f_j \leq \bar{b}_j - b_j - \nu_j \quad (2a)$$

$$\underline{B}_j \leq \tau f_j \leq \bar{B}_j - \Delta t b_j - \frac{(\omega_0 - \underline{\omega})}{\bar{\omega}'} \nu_j \quad (2b)$$

Constraint Description

(2a): Power generation limits.

(2b): Energy generation limits.

- FFR reserve must be capable of deployment for time Δt .
- Real-time market interval length is τ .
- VI energy requirement $\frac{(\omega_0 - \underline{\omega})}{\bar{\omega}'} \nu_j$ derived from VI signal.

Primary Frequency Response Reserve Requirements

Defining Adequate Primary Frequency Response

- Accommodates largest contingency (Often the sum of the 2 largest generators¹).
- Maintain frequency above threshold at which firm load is shed.

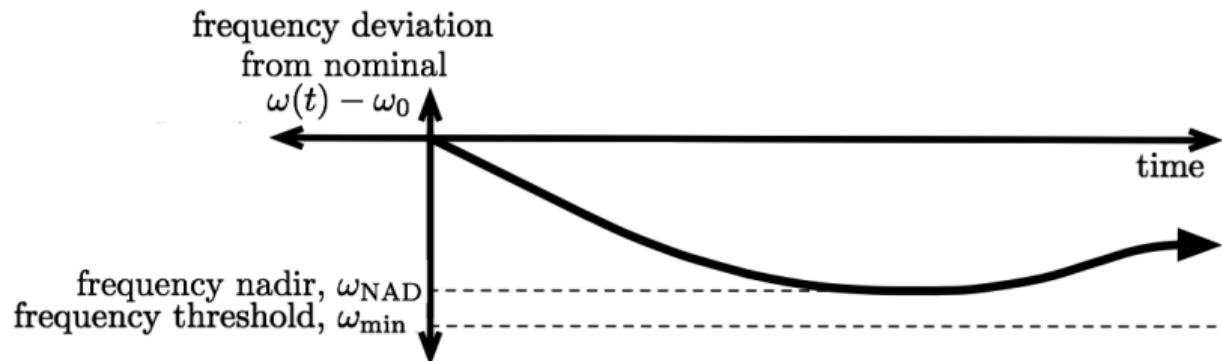


Figure: Frequency response to outage of the 2 largest generators.

¹ ERCOT. NPPR 863: Creation of Primary Frequency Response Service Product and Revisions to Responsive Reserve. Tech. rep. ERCOT, 2018.

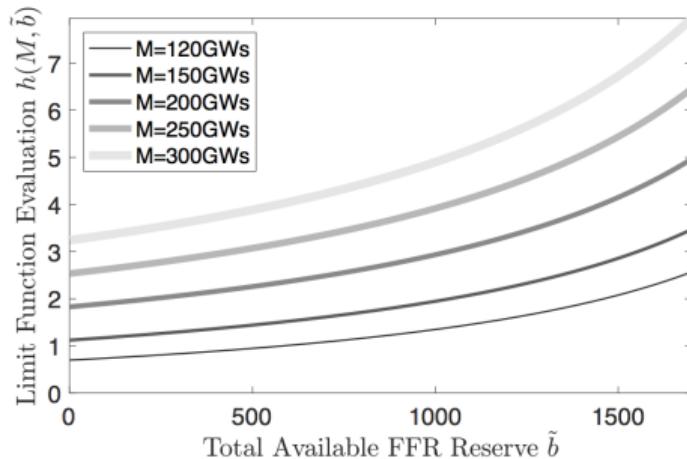
Extending Reserve Requirements from Previous Work¹ and²

Overall Requirement (Linear constraint)

$$\mathbf{1}^\dagger r + \mathbf{1}^\dagger b \geq L$$

Intuition

$h(\mathbf{1}^\dagger M, \mathbf{1}^\dagger b)$ represents the time by which all PFR must be deployed.


Limit decreases with decreasing:

- inertia $\mathbf{1}^\dagger M$
- FFR reserve $\mathbf{1}^\dagger b$
- ramp rate κ_i

From simulation ramp rates κ_i vary from 1MW/s to 20MW/s.

Rate-Based PFR Limit (Non-convex constraint)

$$r_i \leq \kappa_i h(\mathbf{1}^\dagger M, \mathbf{1}^\dagger b) \quad \forall i \in [1, \dots, n]$$

Figure: Function $h(M, \tilde{b})$ with ERCOT parameters, where \tilde{b} represents the total FFR reserve $\mathbf{1}^\dagger b$.

¹ Manuel Garcia and Ross Baldick. "Real-time co-optimization: Interdependent reserve types for primary frequency response". In: *Proceedings of the Tenth ACM International Conference on Future Energy Systems*. 2019, pp. 550–555.

² Manuel Garcia and Ross Baldick. "Requirements for Interdependent Reserve Types Providing Primary Frequency Control". In: *IEEE Transactions on Power Systems* (2021).

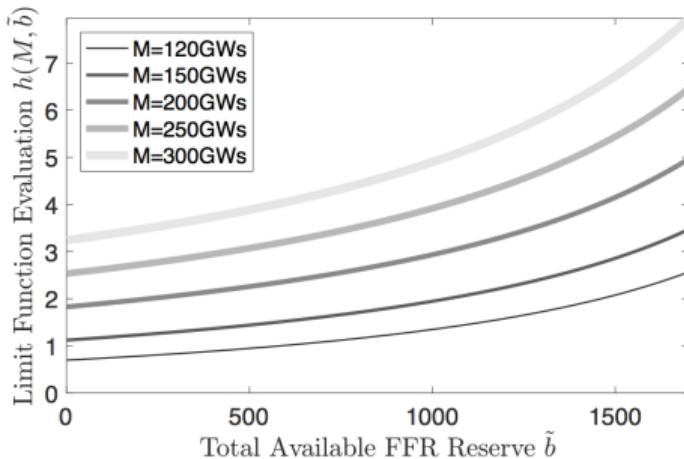
Extending Reserve Requirements from Previous Work¹ and²

Overall Requirement (Linear constraint)

$$\mathbf{1}^\dagger r + \mathbf{1}^\dagger b \geq L$$

Intuition

$h(\mathbf{1}^\dagger M, \mathbf{1}^\dagger b)$ represents the time by which all PFR must be deployed.


Limit decreases with decreasing:

- inertia $\mathbf{1}^\dagger M$
- FFR reserve $\mathbf{1}^\dagger b$
- ramp rate κ_i

From simulation ramp rates κ_i vary from 1MW/s to 20MW/s.

Rate-Based PFR Limit (Non-convex constraint)

$$r_i \leq \kappa_i h(\mathbf{1}^\dagger M + \frac{\omega_0}{2\omega'} \mathbf{1}^\dagger \nu, \mathbf{1}^\dagger b) + \delta \quad \forall i \in [1, \dots, n]$$

Figure: Function $h(M, \tilde{b})$ with ERCOT parameters, where \tilde{b} represents the total FFR reserve $\mathbf{1}^\dagger b$.

¹ Manuel Garcia and Ross Baldick. "Real-time co-optimization: Interdependent reserve types for primary frequency response". In: *Proceedings of the Tenth ACM International Conference on Future Energy Systems*. 2019, pp. 550–555.

² Manuel Garcia and Ross Baldick. "Requirements for Interdependent Reserve Types Providing Primary Frequency Control". In: *IEEE Transactions on Power Systems* (2021).

Real-Time Co-Optimization

Constraint Description

- (3a)-(3b) are DC transmission constraints
- (3c)-(3d) are reserve requirements
- (3e)-(3f) are generator private constraints
- (3g)-(3h) are IBR private constraints

Prices

Defined by Lagrange multipliers of (3).
Marginal benefit of procuring additional unit of product.

$$\text{LMP}_i = \pi_i = -\lambda^* - S_i^\dagger \zeta^* \quad \forall i \in [1, \dots, n]$$

$$\text{PFR Price} = \chi = \mu^*$$

$$\text{FFR Price} = \phi = \mu^* + \gamma^{*\dagger} \kappa \nabla_2 h$$

$$\text{VI Price} = \psi = \gamma^{*\dagger} \kappa \nabla_1 h \frac{\omega_0}{2\omega'}$$

$$\text{Inertia Price} = \Psi = \frac{2\omega'}{\omega_0} \psi$$

Real-Time Co-Optimization

Minimizes total costs subject to constraints.
Lagrange multipliers shown in brackets on left side.

$$\min_{\substack{f \in \mathbb{R}^\beta, \nu \in \mathbb{R}_+^\beta, b \in \mathbb{R}_+^\beta \\ G \in \mathbb{R}_+^n, r \in \mathbb{R}_+^n, \bar{r} \in \mathbb{R}_+^n}} \sum_{i=1}^n C_i(G_i, r_i) + \sum_{j=1}^\beta P_j(f_j, b_j, \nu_j) \quad (3)$$

$$[\lambda] \quad 1^\dagger (f + G - D) = 0 \quad (3a)$$

$$[\zeta] \quad S(Hf + G - D) \leq \bar{F} \quad (3b)$$

$$[\mu] \quad L \leq 1^\dagger r + 1^\dagger b \quad (3c)$$

$$[\gamma] \quad \bar{r} \leq \kappa h(1^\dagger M + \frac{\omega_0}{2\omega'} 1^\dagger \nu, 1^\dagger b) + \delta \quad (3d)$$

$$[\underline{\rho}, \bar{\rho}] \quad \underline{G} \leq G \leq \bar{G} - r \quad (3e)$$

$$[\underline{\sigma}, \bar{\sigma}] \quad r \leq \bar{r} \leq \bar{R} \quad (3f)$$

$$[\underline{\varrho}, \bar{\varrho}] \quad \underline{b} \leq f \leq \bar{b} - b - \nu \quad (3g)$$

$$[\underline{\varsigma}, \bar{\varsigma}] \quad \underline{B} \leq \tau f \leq \bar{B} - \Delta t b - \frac{(\omega_0 - \omega)}{\omega'} \nu \quad (3h)$$

Incentive Alignment Result

Market Participant Incentives

- Optimal Dispatch also maximizes profits of IBRs and generators.
 - Assumes IBRs and generators are price takers.
 - Assumes \bar{r} is from perspective of generator (fixed by ISO).
 - Assumes the dispatch solves the KKT conditions for the co-optimization problem.
 - We do not assume the dispatch represents a global or even a local minima.

Theorem 1: Incentive Alignment

Assume Real-Time Co-Optimization problem (3) is solved to a KKT point and that the prices are set as in previously stated.

- The generation dispatch and reserve quantities (G_i^*, r_i^*) solve the generator profit maximization problems (1) for each generator i .
- The generation dispatch and reserve quantities (f_j^*, b_j^*, ν_j^*) solve the IBR profit maximization problems (2) for each IBR j .

Sketch of Proof: The KKT conditions for (3) imply the KKT conditions for (1) and (2). This implies global optimality for (1) and (2) because they are convex. This assumes that \bar{r}_i is constant from the perspective of each generator i .

Texas Test Case

ACTIVSg2000 Test Case¹ and 2

Test Case Details

- Texas A&M Repository.
- 2000 bus representation of Texas.
 - Steady-state MatPower Data.
 - Dynamic Power World Data.
- 544 generators.
 - 2 Largest: $L = 2750$ MW.
 - PFR generators: 50 largest natural gas.
 - $\kappa_j = 20$ MW/s and $\epsilon = 0.5$ s.

Increasing the Number of IBR Storage Devices

- Each has 1MW of power capacity \bar{b}_j .
- Each has random energy capacity \bar{B}_j .
 - Uniform distributed between [100, 1000]MWs.
- IBRs to not provide generation, e.g. $f_j = 0$.
- Increase number of IBRs from 0 to 1000.



Figure: Test Case Diagram

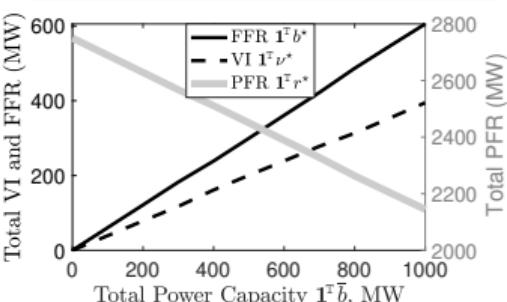
¹ Adam B Birchfield et al. "Grid structural characteristics as validation criteria for synthetic networks". In: *IEEE Transactions on power systems* 32.4 (2017), pp. 3258–3265.

² Ti Xu, Adam B Birchfield, and Thomas J Overbye. "Modeling, tuning, and validating system dynamics in synthetic electric grids". In: *IEEE Transactions on Power Systems* 33.6 (2018), pp. 6501–6509.

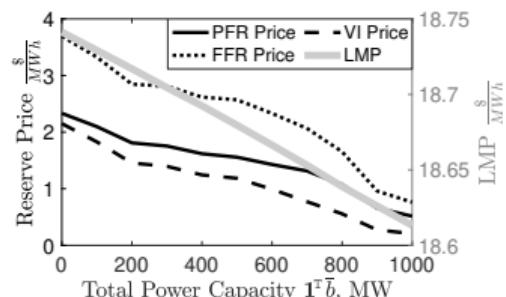
Results: Overall Impact on the System and Market

■ Total Reserve Allocation.

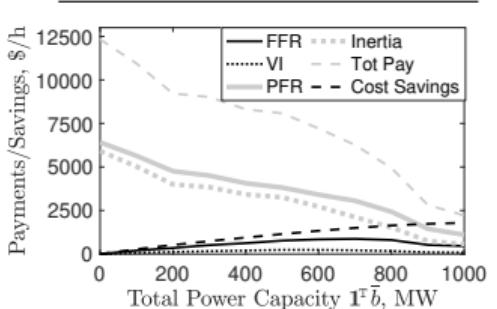
- FFR and VI reserve increase linearly with the number of IBRs.
- FFR reserve directly replaces PFR reserve.
- All available power reserve $1^T \bar{b}$ is used.


■ Reserve Prices.

- Decrease as number of IBRs increase.
- FFR reserve price is higher than PFR reserve price (similar energy requirements).
- VI reserve price is lower than FFR reserve price (different energy requirements).


■ Total Reserve Payments and Total Savings.

- Total ancillary service payments reduce from 12329\$/h to only 2215\$/h.
- Total generator costs reduce by 1795\$/h due to increased PFR reserve limit.


Total Reserve Allocation

Reserve Prices

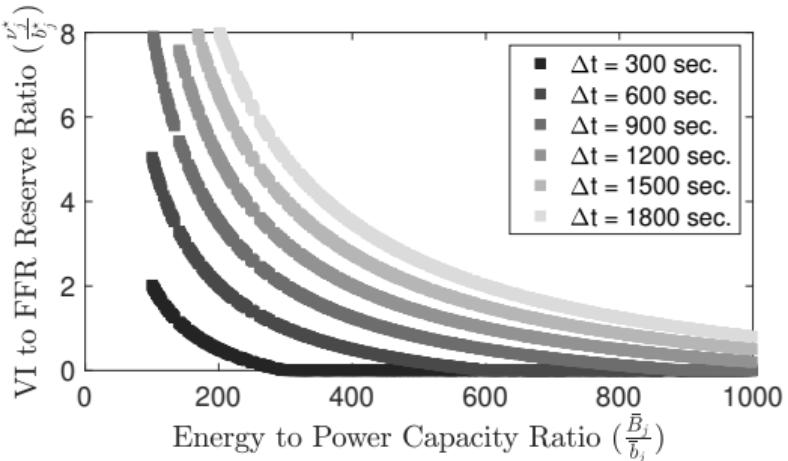
Total Payments/Costs

Results: Individual IBR Incentives

Energy and Power Capacity Constraints

Constraints for IBR j reduce to:

$$b_j + \nu_j \leq \bar{b}_j \quad (2a)$$


$$\Delta t b_j + \frac{(\omega_0 - \omega)}{\omega'} \nu_j \leq \bar{B}_j \quad (2b)$$

Observations

- Both energy and capacity constraints are typically binding.
 - Fully utilize energy and power capacity.
 - Not true if only VI or only FFR reserve.
- Higher power capacity (or lower energy capacity) results in higher VI reserve.
- Higher energy capacity (or lower power capacity) results in higher FFR reserve.

Plot Description

- Time requirement for FFR deployment is Δt .
- Optimal VI to FFR ratio versus energy to power capacity ratio.
- Each curve plots dispatch for 1000 IBRs.
- Curves do not change with number of IBRs.

Conclusions and Future Work

Conclusions

- Proposed PFR reserve, FFR reserve, VI reserve and inertia as products.
- Incentives for generator and IBR market participants.
 - Proposed prices and dispatch align the incentives of ISO and market participants.
 - IBRs have incentive to fully utilize both energy and power capacities.
 - This is because VI and FFR reserve have significantly different energy and power requirements.
 - Energy constrained IBRs prefer to provide more VI reserve.
 - Power constrained IBRs prefer to provide more FFR reserve.
- Numerical results illustrate that an increasing number of IBRs:
 - decreases total reserve payments and total production costs,
 - increases the PFR reserve limit allowing for a lower cost dispatch, and
 - decreases reserve prices and Locational Marginal Prices.

Future Work

- Implement empirically derived PFR reserve limits in Unit Commitment.
 - Conservative piecewise linear approximation introducing few integer variables.
 - Observe commitment impacts based on inertia.
- Modeling inverter-based storage devices in Unit Commitment problem.
 - Design incentives for storage devices to contribute to ancillary services.
 - Trade-offs between energy requirements and power requirements.
- Constructing rate-based PFR reserve limit from dynamic simulations.

Questions?

Manuel Garcia
(email: mgarc19@sandia.gov)