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4 Pulsed Power Drivers

Large scale experimental facilities at SNL

« Radiation sources

« High energy density material science

« (reate astrophysical conditions in a laboratory

setting
Magnetically Insulated Transmission Lines

Legacy development of these platforms has been
experimental/empirical. Programmatic desire for
science based design (i.e. computation) for future

systems.
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Simplified abstract pulsed power system

Marx Generator

o
Magnetically Insulated
Transmission Line (MITL)

|

JT_ Anode Cathode

How the pulse gets from the generator to the target is called Powerflow
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Transmission Lines

We’ll discuss modes in more detail later— but enclosed geometries with disjoint
conductors support Transverse Electromagnetic Modes (TEM).

TEM waves obey free space dispersion relationship and therefore can transmit
arbitrary frequencies. Pulsed wave forms have large spectra (recall uncertainty

principle for Fourier Transforms).

Conical Parallel Plate

Coaxial




P Magnetically Insulated Transmission Line (MITL)
Anode

Electric field is preferential for
electron emission from the
cathode - higher power
systems more likely to cause
breakdown.

e
OV (OOl (oo [o2ol [ (o 020
Electron Sheath
Electrons crossing anode Cathode

cathode (AK) gap results in
power |oss. Electric Field Magnetic Field

F=qg(E+vxB)

In certain regimes the
presence of the magnetic field
limits this effect insulating the
cathode and forming a sheath.




/" Example targets

Bremsstrahlung diode

Electron
Beam

Truncate the transmission line with an open
cavity

Configuration preferential for electron
emission from cathode.

Relativistic electrons enter converter plate
and create high energy x-rays

Z-pinch targets

ﬂ"@ By

E

ylindrical target

IC

Short the transmission line with a cylinder.
Currents induce ohmic heating

Currents and magnetic fields induce inward
Lorentz force.

Work is done on the target
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3 Questions to answer with powerflow simulations:

/ How much energy is delivered to the target?

How regular are the fields in the “target region?

How much loss can be attributed to different features?

Powerflow: How the pulse gets to the target

F
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// Abstract modelling problem

Full Domain

Q7L I QeMm

1D Domain 2D or 3D Domain

Example EM-TL Coupling Interfaces

L4 ar ,

aT 4
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Maxwell's Equations
(%—?—FJ—curlH:O
%—]? +curl E=0
div D =p
L div B=0
Simple Dielectric

D=cE

B =uH
Homogeneous BCs
{E xn =0 on conductors

Hxn=0 onsymmetry

J is data, we'll assume
its zero in TL domain‘
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/A domain Q = 0, 1].
/" Represent a function f with eigenfunctions of —02 .
There are three cases.

Analogy Fourier Series

( 1
—y = 0
3 ko =0:uglx)=1
>'u,(0) =u(l)=1 ! 0\)
/" 2
—Upp — knu .
3 ’ kn, = nm : Up n(x) = sin(nmx
[t 0) = (1) 0T o) TS
—u  =k2u
g ! kn = nm : Ue p(x) = cos(nmz)
L, (0) = ul, (1) = 0
Rcepresent [ as a scrics:

These eigen-functions
are dense in L2.

All these modes
This can be shown
easily from
variational form.

If fis smooth and [0,1]-
periodic convergence is
“rapid”




" Maxwell's Equations in the TL domain
Oy, =1 x |0, ¢] equipped with coordinates (7,n)
5
_ {#-nx curl; AL .0
curl = ( ot 0 ) 3 V = (%> : div = (div,, 872,)

curl, = —nxV,, rot,=div,nx

/4
‘4

Maxwell’s equations in these coordinates can be written as follows:

e2E, — 2nxH, —curl, H, =0
8E rot H, =0
/’Lé‘tH +8 nxE, +curl. F, =0
/,LatH +rot, K, =0
div, eb + %eEn =0
\div,uH, + 2 pH, =0

.




E Transverse Modes

E = (Ve (n, B (1), Va(n, ) En (7))
Separate Variables:
H = (

I, (n, OH (), I (n, ) H,, (-r))

TEM ™ TE
E*rL:HrLZO Hﬂ:o Enzo
(¢E, ("i;f —n x H; %‘Z’; —0 [€E; af}? —nxH; %{: (¢E, da“’;‘r —n x H; %‘:’; — Ieurl  H, =0
pH, 5 +nx B 5% =0 | ey — Lrot, Hy =0 pH, 2 4n X B, 2 — 0
rot, By = 0 ) W G +nx B9 +Vcurl, B, =0 ) il G+ Verot, B = 0
div,eE, =0 div,€E, + 2 eE, =0 div, cE, = 0
rOtTH'T =0 rOtTET =0 diVT/_LHT + %/J.Hn =0
| div,pH, =0 | div-pH, =0 L rot, H, =0
—u; =0 —u;;', = k2u —fu,g', L= k2u
u(0) =u(l)=1 Uon(0) = upn(l) =0 g ,(0) = ug (1) =0
oV, oV

eld +V,AE, + —div.E, =0

"ot on
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TEM Mode

€ ,u constant J — O

TEM Telegrapher’s Equations

: ’ / _
Surface Potential Fiold Profiles CTEMVTEM,T 4 ]TEM,’T — ()
. r / _
—A;o1EM =0 LremIteEm,r + Vigy , =0
_ Erem,r = —V:¢TEM
eTEM|r, =1
< CUI‘ITQOTEM TEM Capacitance and Inductance per Length

YTEM|rx =0 Hrem - =

V. oreEMm -m|p, =0

2
||ETEI\fLTHL2(F) CTEM — / E|ETEM,‘T‘2 dA
r

LteMm = /
T

. ARE A SOLUTION TO MAXWELL'S WITH DISPERSION RELATIONSHIP
T = V(n, t)EO(Tla 72) EQAUTIONS ON

E
2 2
THEN H, =1(n,t)Ho(m, 1) QTL — | x [O)Z] CUW = k
17 ‘

2 dA
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TM Modes

7’

F

s |F &p constant J = ()

TM Telegrapher's Equations

Eigenvalue problem

_ _ 4 ) / _
Selle) Braiies Crm,;Vrm,rj + Iy ey = 0
r -
| 2 |
—ArprM,; = kFOTM, 5

.

v A st ot = Loyt = @
1/2 ETIVI?’T,j = —VT(’OTI\{J TM}J .TM,?’L,J J TM}T!J ,
1 Lom ;1 i+ k; V- Vi =0
(T / o) dA) =1 || ET™Mnj = koM e A A ™75
r

orM,jlr, =0

e

TM Capacitance and Inductance per Length
curl T Pacite P &
Hryv - =

k2T Crn,; = / e|Erm - |* dA = k3|1
OTM,j|Tx =0 J T
| Viorm,; mlrg, =0

THEN

_ ARE A SOLUTION TO MAXWELL'S
E=VrmriEtmorg Voo ErMon.g) COUATIONS ON
H = (Itm,r,;/HrMm,75,0) QTL — [ x [()7 []

18

Loy = / (| Hrym - ]° dA = u(k?\ﬂ)‘l
T

WITH DISPERSION RELATIONSHIP
2 __ 1.2 2
cpw” = k° + k;
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,/An approximation of an arbitrary TM mode can be written as
(E, = Vrem-ETteM > + 23M:1 Vs, r i ErMm, 7,
E, = Zjvil Vs, Eom

H, = Item -HreMm, » + Zj\il vy s Hrm, 7
H, =0

Initial voltages and currents computed with projections onto the
modes

TL Modal Decomposition

‘4

e

/ Eo(T,n), ETpMm.»r dA
} |ETEM, |12
/PEO(T, n)-Erm oy dA
IEra, 5 ]I7
/ Eo(T,n) -nkEryv,; dA
r

1 Ern . |I7

Vipm - (n,t = 0) =

ITE_hfLT(njt — U)

VM - i(n,t =0) =

Ity 7(n,t =0)

ViMon,j(n,t=10) =

These modes are
orthogonal

We can evolve each of the
modes independently from
initial data using their
respective telegrapher
equations

/ Ho(7,n) - Hrgm,» dA
Jr

IHreM, -7

/ Ho(r,n) - Hrn,r; dA
_Jr

| Hrn, - ]2




P’ Coupling Strategy
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For the coupling between EM and TL domains to be Exact Continuity
consistent we need tangent fields to “somehow Qrp : Qe
agree” at the coupling interface.

The notion we impose is weaker than exact
continuity and we call it “Modal Continuity”

Modal Continuity
/ E(1) Bryr; dA = [Bryr I Venr (6,1) O . Py
F %

TL Solution
— EM Solution
== TEM Projection
=== T

/H(f) ‘Hrm 7 dA = [[Hoa -5 15 e, 5 (4, )
r

n ==~
The L2 projection of the EM fields onto the TEM+TM space at the coupling interface recovers
the TL solution

Philosophical difference: The solution is TEM+TM in the TL domain vs. we don't track other components
parts in the TL domain




Y

Exact Continuity

(H x n|r = I(¢t, )Hy X n

Exnlr=V({t{Ey xn
\ T

LI({) = / uH - H, dA
I

.

0.5

— Absorber
== No Absorber

Both methods have the problem of reflecting non-TEM components
off coupling interface in the EM domain. Problematic for plasmas!

0.3 1

Red lineout is Neumann Maxwell/ Dirichlet Telegrapher solution

n

0.2 1

EdL AK Gap (V)

0.1+

_O.l E

0.00 0_'25 CI_ISCI 0.5'5 1.1I]-0 1.I25 l.ISO 1.1.—‘5 2.00
Simulation Time (ns)

E_Field Magnitude
0.0e+00 1 2 3 4 5 & 7 8 9 1.0e+01

e n
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Modal coupling enables non-TL absorber

/4 We can use this projection to define a first order outgoing wave
y proj goIng

/4 condition

IITeM : LQ(F) — L2(F) ; for non-TL Waves! Add this to variational Ampere’s law

L fFeE'EO dA /Z_l(E—HTEME)XII-\IJXHdA
Hren(B) := Ho [ By -Eq dA r

How do we impose 2 boundary conditions at the same time?

Impose voltage coupling as a constraint and relax with a Lagrange
multiplier

/ .U +J ¥ - 'B-curl ¥dV

gBE I
4 +f (Z_l(I — M) (E) + )\EEO) xn-¥xn VYW eH(curl Q)

\

QfeExn-onndAzﬁCV Ve € R
I




/ Maxwell's
Equations

Voltage
Continuity

Telegrapher's
Equations

Non-TL
Absorber

Current
Continuity

Variational Formulation

(E,B,\, V., V,,I) € H(curl, Qgy) x H(div, Qgy) x RMHL x [H(0, £)|M 1 x

$

4

.

.

'/ 2E-U4+J- ¥y 'B-curl ¥ dV
Q

f 2B-®+curl E-®dV =0
¢ EM
ﬁf Ergm,r X n-E x n dA = 0|Ergm, - |EVrem,-(£) VO ER
9[ Erm,r,j X n-ExndA=0|Ery ;7 Vrm,-;(€) VOER
fa
f CreM 5 Vrem, ¢ — ITEM,r 2 ¢ dS+Ipm-TEM@(£)=0 Ve € H(0,4)
0
¢
»._/ Lrem 2 Item,»% + 2= Virgm, % dS = 0 vy € L*(0,£)
r
/ Crm,j 5 ViM% — ITM, 7,5 2 @ dS+IevTm, j@(£)=0 Vo € HL(0,£)

/ CTM}atVTMng kITMTJ—O ‘V‘TPEL2(U,£}

O
f Ltwm,j EITNI,T,jw + kiVrm,n,j + ﬁVTM,T,jw dS=0 Wy € L?0,¥)
/o

¢ (Bree E)r
- \TEM,T &/T
IIreMm, ;i (E) = : 5 ETEM,r
| ETEM,* || 1
- (ETm™m, 7,5, E)r
[Trm,; (E) = 5 BTM,7,j
|"‘J'L‘\1 TJ'| i
- 1 w
Iem-TEM = Z2E-Etgm,r +J - Erpm,r — p~ 'B-curl Ergy . dV
EM
—1
IemoT™m,; = ¢ E-Ergm,r +J - Erem,- — 4 'B-curl Erpm,, dV

\ QEM

[L2(0,£)]™ x [L?(0,£)|M+1

E
+/M(z ! (1 — Irem — 301, n-md) (E) + MoETEM, + Z;'T’LIA?;ETM?TJ) xn-¥xndA=0 V¥ e H(curl, Qgy)
- :

V® € H(div, QEM)
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?” Discretization DIRK Time

4 ntegration
0

/
0 0

0 1

QM 1/2 1/2

I’

Lowest Order Compatible Finite Elements
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/" What is Verification and Validation?

Verification:
Answers question, “Does the code produce solutions to the mathematical model?”

« Code Verification: Usually problems with exact solutions and calculation of errors and rates of
convergence

 Solution Verification: Usually problems without exact solution and inference of errors and rates
(rates of Cauchy convergence)

Validation: ,
Answers question, “Is the mathematical model reasonable?”

- Comparison to experimental data
« Often focus on synthetic diagnostics - “How do | simulate what the experiment is measuring?”

 Strives to answer questions of the form "How accurate are our Qredictions?’_’, “Can we bound
the uncertainties of the system with uncertainties of the model?”, “Is their bias in our
predictions and can we quantify it?"

Uncertainty Quantification:

StatisticaI/ﬁrobabilis,tic interpretation of even deterministic models. . o
Key to both verification (of probabilistic algorithms) and validation (propagation of uncertainties).




/" Verification: O-Wave

- Unmagnetized Plasma wave
* | is data in the EM domain

 Adjust C to capture effect of
Jin TL domains

* Designed to be extended
to fluid and PIC

Credit; DM

4 TL DOMAIN TL DOMAIN
‘4

~ k
E, = Ecos(kx —wt), B, = - cos(kx — wt),
2
€ow
J, = ——2 sin(kx — wt)
w
E,=E,=B,=B,=J,=J,=0
. .E
V={,Ecos(kr —wt), I= kY cos(kx — wt)
W ko

2

w
C(w) = €o ( - f) |Eremllze(r)

27
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Verification: O-Wave

iy

Credit; DM

.

3cm 9cm

-9 cm -3 cm
(a) CFL varies from (4.35, 7.53)

p.p-w. | p-p-p. g rate &x rate
21.8 2.5 1.43 - 1.64 —
43.6 9 8.24e-1 | 0.79 | 1.10 | 0.69
87.2 10 | 1.99e-1 | 2.04 | 2.56e-1 | 1.98
174.5 20 |1 4.99e-2 | 1.99 | 6.11e-2 | 2.06

(b) CFL varies from (0.54,0.94)

p.p-w. | pp-p. &g rate &n rate
21.8 10 | 7.84e-2 7.06e-2
43.6 20 | 3.37e-2 | 1.21 | 2.41e-2 | 1.55
87.2 40 | 1.61e-2 | 1.07 | 1.03e-2 | 1.22
174.5 80 | 7.97e-3 | 1.01 | 5.16e-3 | 0.99

* Using implicit midpoint time-stepping (second
order) and first order conforming finite
elements for the EM

* Large CFL — error is dominated by time
discretization — obtain expected second order
convergence

* Small CFL — error is dominated by spatial
discretization — obtain expected first order
convergence




Credit: DM, D. Sirajuddin

/" Verification: TM Wave TL DOMAIN
,/ 3D TM Wave on a TL-EM domain

‘4

0
L
k> E[[)ﬂf,] COS (k[ "’]y) sin(wt — kgm‘]z)

E. = - 5111 ] ) cos(wt — kEm] )
H, = ( [ ] ) CoS (k‘[m] ) sin(wt — kL™ 2)
kﬂl A
H,=0
H. =0




Credit: DM, D. Sirajuddin

Verification: TM Wave Theoretical Order of Accuracy (Simplex Mesh)
2 2
O(AR? + h + k2h + At?)
Error denotes a relative L? error for functions. TL EM eigen Time
cell size[m] PPPz PPPc E.error E.rate Eyerror E,rate Berror B,rate
1.00E-03 16.2 8.5 3.15E-02 — 5.96E-02 - 4.73E-02 -

6.67E-04 243 1277 141E-02 198 288E-02 1.79 2.58E-02 1.5
5.00E-04 325 169 986E-03 1.24 1.93E-02 1.4 1.85E-02 1.16
4.00E-04 40.6 21.1 750E-03 123 146E-02 124 143E-02 1.14

: N 2T
Rates are computed using a pairwise fit. PPP = —

Time: 0.000000e+00 kh

p=Y
o

=)
1

I Axis
0 0.002 0.004 0.006 0.008 0.0 0.0z 0.014 0016

=]
(]

(==}
1

Transverse Voltage (V)

0.005 0.01 0.015
2 Axis E_y
0 0.002 0.004 0.006 0.008 0.01 0.012 0014 0016 ~54e+05 0 54e+05

z (m) o
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/" Verification: Steady State

- Coaxial TL driven by an equivalent circuit

- Smooth ramp to steady state

- Obtained first order convergence to analytic
steady-state solution

Gap

h (m) - Ep rate Ep rate
1.00e — 03 | 5.70 | 7.89¢ — 02 5.0le — 02
5.99% — 04 | 9.70 | 7.30e — 02 | 0.15 | 4.70e — 02 | 0.12
4.64de — 04 | 12.3 | 6.77¢ — 02 | 0.29 | 4.49e¢ — 02 | 0.17
3.09¢ — 04 | 15.9 | 5.57¢ — 02 | 0.76 | 3.64e — 02 | 0.82
2.78¢ — 04 | 20.5 | 4.21e — 02 | 1.09 | 2.67¢ — 02 | 1.20
2.15¢ — 04 | 26.5 | 3.25¢ — 02 | 1.00 | 2.03e — 02 | 1.07
1.67¢ — 04 | 34.2 | 2.52¢ — 02 | 1.00 | 1.55e¢ — 02 | 1.05
1.29e — 04 1 44.3 | 1.91¢e — 02 | 1.08 | 1.17e — 02 | 1.07
1.00e — 04 | 57.0 | 1.45¢ — 02 | 1.06 | 8.96e — 03 | 1.06

Credit: D. Sirajuddin

'_.

2R,

EM' = coax

—

fir_

(b) 3D domain Qga7, 0.1 mm
mesh

)1



. . Credit: D.
/ Verification: Non-constant Impedance Sirajuddin

Time = 2.000 ns Time: 0.000 ns
fE-dl diagnostics _##

| 1D-3DWedge

V [MV]

1D TL — 3D EM coupled
000 simulation ;p 1, voltage (v)

000 025 050 D.:FE 1.1;313 1.:25 150 175 2.00 1.0e+00 1 e+? 1.e+d 1.Qe+06

tins] - '

1.9e+08 :E:

% — l.e+b E

'En Full 3D EM wedge i "§,

BNV  simulation o2 =

Full 3D EM simulation W\ 2 (uses symmetry [ P

boundaries)



/ Credit: T. Powell
Initial Validation: HERMES 3 MITL

Electromagnetic PIC simulations of the HERMES3
Conical MITL and Diode. Electron emission
described by Space charge limited (SCL) emission.

Transmission line coupling provides the drive

Shot 11150

600 -
_Isim
A
: _ Averaged Sheath Density 500 | _IsKlm
—— XAB3 11150
7 T zdm | XKB3 11150
L de+17 % al @
3.5e+17 Ch £ 300
3e+17 g O
2.56+17 g2 200
2e+17 g
1.5e+17 E | , ,-
— le+17 = 100
~ Be+léh
= = 0 ‘ : : ' ‘ —
0.0e+00 19 20 21 22 23 24 25 /‘t
Radius [cm] 0 :
. . . 0 50 100 150
Plasma sheath formation and insulation captured by Time [ns]

EMPIC



| [MA]

V [MV]

| CHICAGO-PIC I

g
8
2L ImittA —
| mitl B ——

6 ImitiC i
5 - | mitlD .
4 - ]
3
2 - -
1 Currents’
D | 1 1 |

0 20 40 60 80 100 120

3 | |

V mitl A —

25 VmitlB — N

, | VmitiC |

V mitl D

15

1
0.5 I Voltages

0 | | | | |

0 20 40 60 80 100 120

N. Bennett, D. R. Welch, C. A. Jennings, E. Yu, M. H. Hess, B. T. Hutsel, G. Laity,
J. K. Moore, D. V. Rose, K. Peterson, and M. E. Cuneo Phys. Rev. Accel. Beams 22, 120401

7 MA

E_Fleld Magnitude
1.0e+02 1000 10000 100000 Te+s le+7

mlllllll LIIE T1HIR ‘“

1 .Oe+0R

Cross Code Comparisons: EMPIRE and CHICAGO

Credit: D.
Sirajuddin

| EMPIRE-PIC I

m— mitl A port
| w— mitl B port

= mitl C port
1 mitl D port

Currents

100

80 120

| == mitl B port

= mitl A port

= mitl C port
mitl D port

60 80 100 120

t [ns]

20 40




Credit: D.

Initial Validation: Z Machine Powerflow 18A Sirajuddin

load :
Load (R = 0.36 cm) A
B
C
D
CHICAGO-PIC: full physics EMPIRE-PIC: EM+SCL electrons
25 I I I I I I R 25 { === load (R = 0.36 cm)
measured ——=
20 rsimulated ——=
g 15 7
210 - -
51 Accol Bearns 23,130401 ]
0 | | | | 4
0O 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
t [ns]

time [ns]
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In addition to pulsed power need to simulate
more general transmission lines. Spin off

Closure

We have developed a method a multiscale method for
solving electromagnetics for powerflow simulations.

capability EMPIRE-Cable.

Completed Extensions of this work

TM Mode coupling

Mode diagnostics
Multi-Conductor TLs

Simple branching
Cross-section parameterization

EMPIRE-Cable (FY22 goals)
Standalone and coupled TL capability

General networks
Circuit Coupling

Research directions and outyears

« Other EM coupling modalities

« TE Modes

 Non-linear TL models (i.e. MITL models)
« Qutflow conditions for EM

« Adjoints for coupled problems

Tons of V&V
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Example

Analysis




P/ Saturn Pulse Regularization
z

/  Saturn’s water convolute may

introduce jitter to the EM Drive

Assuming a cylindrical cross-section

2 2 _ 212
W* — WM pm = C k

ovinn =y (F) + (2

* Decrease in AK gap snou

z directed jitter

 Radial convergence shou
O directed jitter

C

C

regu

regu

arize

arize

» Hypothesis: energy in TM modes

should decrease as r->0

Credit: D. Sirajuddin




/' Credit: D. Sirajuddin
Saturn Pulse Regularization

Time: 0.000e+00 s

3.0e+03

|
o
E Field X (V/m)

-1500

-2000

-2500

-3.0e+03




/ Credit: D. Sirajuddin
/" Saturn Pulse Regularization

How do we measure
that the size of the TM
perturbation decreases?

Approach TM surface
diagnostics!

Water
e, = 80

Rexolite
€, = 2.53

Vacuum region
er=1

2




/ Saturn Pulse Regularization
74
4

Electric Energy per unit length normalized by drive energy for the mode

Y

102

10—5 4

10—3 4

10—11

MITL A: start | '
MITL A: downstream (ds) 1 10-14
MITL A: downstream (ds) 2 |
MITL A: downstream (ds) 3 10-17
10-61 MITL A: downstream (ds) 4 | | |
MITL A: downstream (ds) 5
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We observe energy content of the TM wave perturbation decreases along the length of the vacuum mitls




Credit: DM, D. Sirajuddin

/" Verification: TM Wave TL DOMAIN
,/ 3D TM Wave on a TL-EM domain

‘4

0
L
k> E[[)ﬂf,] COS (k[ "’]y) sin(wt — kgm‘]z)

E. = - 5111 ] ) cos(wt — kEm] )
H, = ( [ ] ) CoS (k‘[m] ) sin(wt — kL™ 2)
kﬂl A
H,=0
H. =0




Credit: DM, D. Sirajuddin

Verification: TM Wave Theoretical Order of Accuracy (Simplex Mesh)
2 2
O(AR? + h + k2h + At?)
Error denotes a relative L? error for functions. TL EM eigen Time
cell size[m] PPPz PPPc E.error E.rate Eyerror E,rate Berror B,rate
1.00E-03 16.2 8.5 3.15E-02 — 5.96E-02 - 4.73E-02 -

6.67E-04 243 1277 141E-02 198 288E-02 1.79 2.58E-02 1.5
5.00E-04 325 169 986E-03 1.24 1.93E-02 1.4 1.85E-02 1.16
4.00E-04 40.6 21.1 750E-03 123 146E-02 124 143E-02 1.14

: N 2T
Rates are computed using a pairwise fit. PPP = —

Time: 0.000000e+00 kh

p=Y
o

=)
1

I Axis
0 0.002 0.004 0.006 0.008 0.0 0.0z 0.014 0016

=]
(]

(==}
1

Transverse Voltage (V)

0.005 0.01 0.015
2 Axis E_y
0 0.002 0.004 0.006 0.008 0.01 0.012 0014 0016 ~54e+05 0 54e+05

z (m) o




