




Sandia  
National  
Laboratories

# Sierra Thermal Fluids use of Trilinos and FY21 GPU porting milestone recap



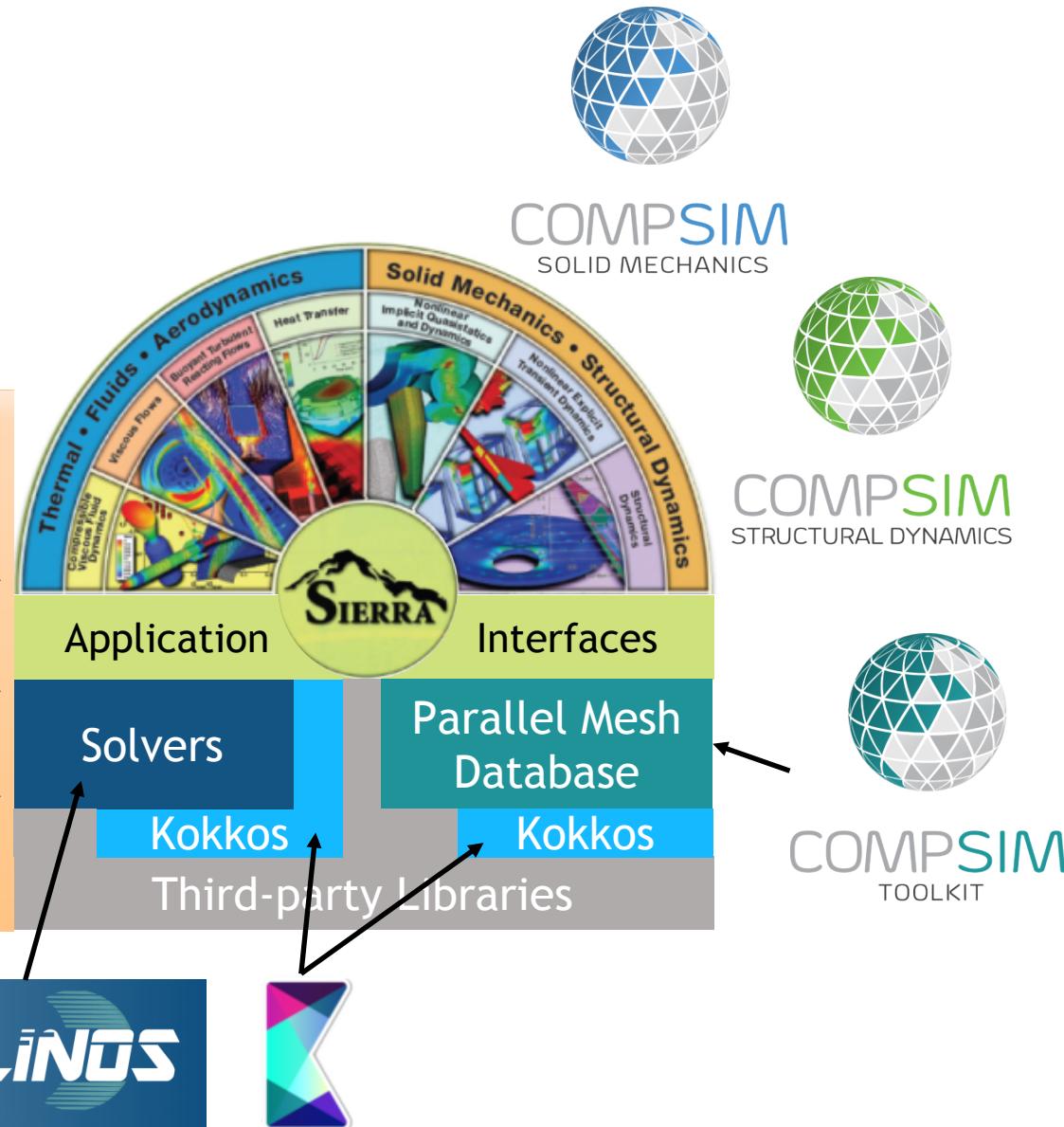
*Jonathan Clausen*

Trilinos User Group meeting, December 1, 2021



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

# Discussion outline




1. Overview of Sierra and TF codes
2. Sierra/TF TPLs
3. Collaboration areas
4. FY21 L2 milestone recap
5. FY22 milestone needs

# SIERRA Mechanics Overview



Build, Test, Exec, Deliver

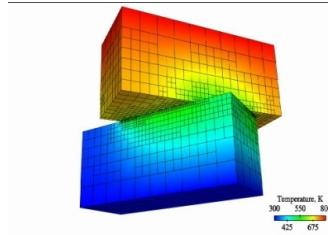


Focus evaluation on CTS-1  
and ATS-2 platforms

CTS-1

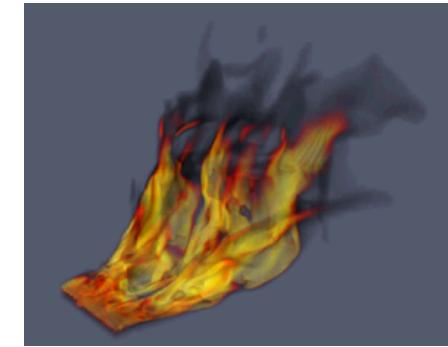


ATS-2



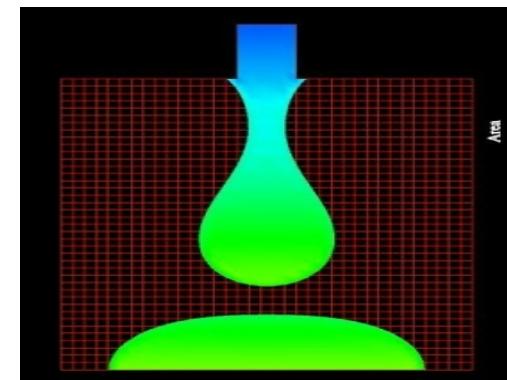

# Computational Thermal & Fluid Mechanics




- **Thermal** - Heat Transfer, Enclosure Radiation and Chemistry

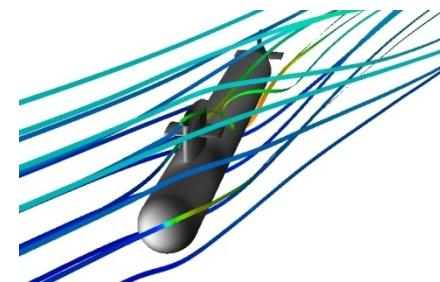
- Dynamic enclosures
- Element birth death
- Contact




- **Aero/Sparc** - Compressible Fluid Mech.

- Subsonic through hypersonic
- Laminar and turbulent
- Unstructured mesh




- **Multiphase** - Non-Newtonian, Multi-physics, and Free Surface Flows

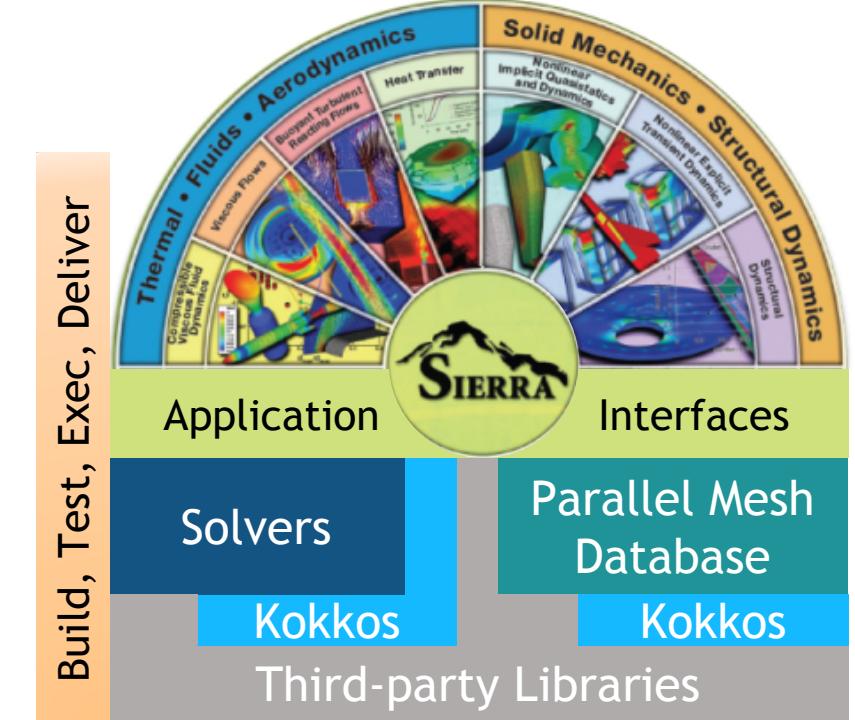
- Complex material response
- Level sets for surface tracking
- Flexible coupling schemes
- Pressurization models



- **Fire/Combustion** - Low Speed, Variable Density, Chemically Reacting Flows

- Eddy dissipation and mixture fraction reaction models
- RANS and LES based turbulence models
- Unstructured Mesh






### Sierra/TF primary codes

- Aria
- Fuego
- Sparc
- Nalu

#### Thermal/fluids/aerodynamics

- Compressible fluid mechanics with subsonic through hypersonic flows
- Non-newtonian reacting flow with free surfaces and complex material response
- Low mach number turbulent reacting flow participating media radiation
- Heat transfer with limited convection, chemistry, and enclosure radiation



# Third party libraries & Trilinos usage



## Trilinos packages:

- STK
- Kokkos
- Krino
- Tpetra
- Sacado
- Zoltan2
- Teko
- ROL
- FEI (Fuego only; deprecated)
- Solvers/preconditioners
  - Belos
  - Amesos2, ifpack2
  - Muelu

## Other packages:

- Sierra
- Sierra Utilities
- Framework
- Apublic
- Contact
- Seacas (NetCDF/HDF5)
- Boost
- Gtest



## Current collaboration areas between Sierra/TF and Trilinos

1. Sierra/TF successfully using many Trilinos TPLs
2. Frequent integration of Trilinos into Sierra (needs improvement)
3. Kokkos used extensively as abstraction layer
4. Kokkos ODE solver library
5. FY21 and FY22 joint L2 milestones
6. Trilinos – Sierra/TF meetings, every 3 weeks
7. Teko block preconditioning research



Enable production normal environment Qualification Evidence Report (QER) simulations on ATS-2



Improve GPU-solver performance and scaling to support SIERRA applications on ATS-2

# 9 Milestone Problems



## Thermal Fluids Development Team

Victor Brunini

Sam Subia

Alex Kucala

Dan Moser

Justin Lamb

Lincoln Collins

Mike Hansen

Neil Matula

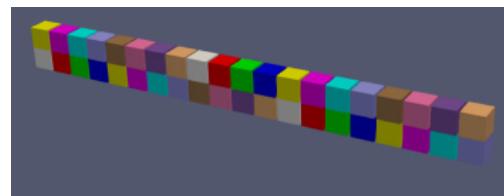
Phil Sakievich

Robert Knaus

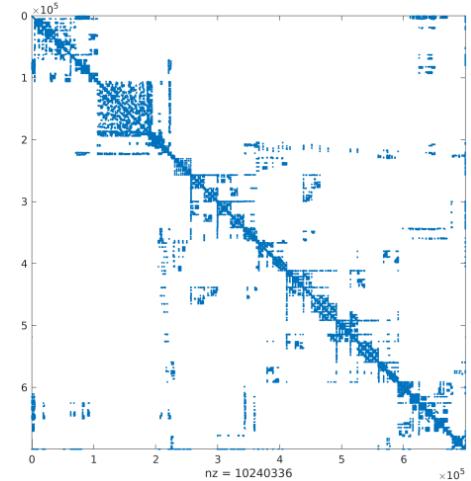
Stephen Lin

Tom Ransegnola

Tyler Voskuilen


Yaro Vasyliv




**COMPSSIM**  
THERMAL FLUIDS



Normal Thermal



Surrogate



Representative  
systems of eqs.  
from apps



**FY21 Milestone Goal: Enable production normal environment QER simulations on ATS-2**

**COMP SIM**  
THERMAL FLUIDS

**Meets:**

Correct simulation of  
analyst provided system  
model on ATS-2 hardware

**Exceeds:**

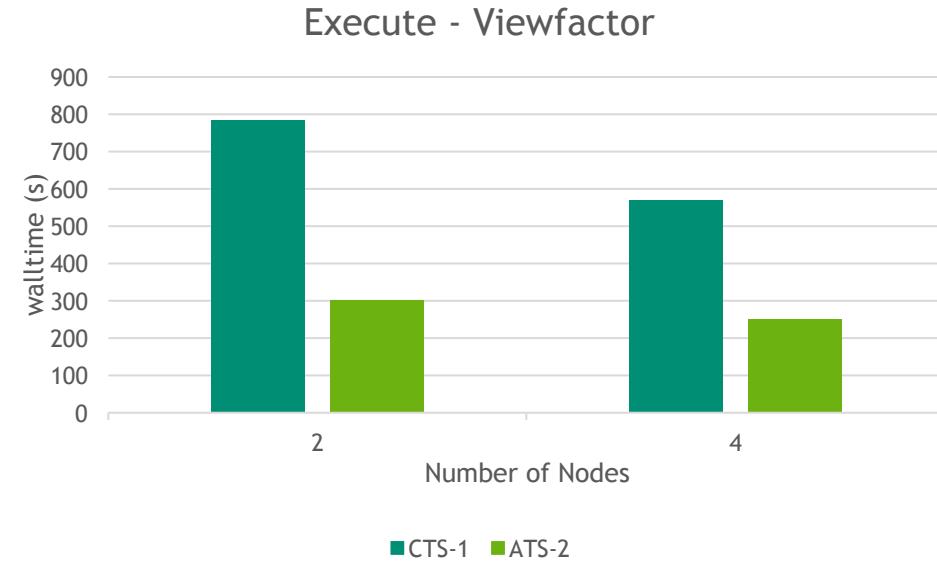
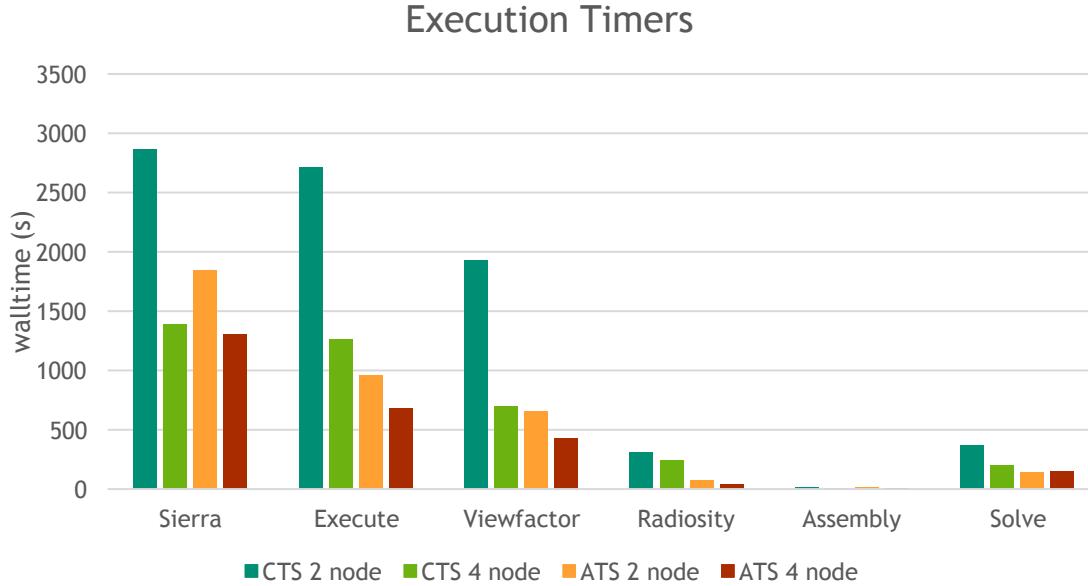
4x end-to-end simulation  
performance improvement  
when comparing ATS-2 to  
CTS-1 hardware



# FY21 SIERRA/TF Milestone Problem



COMP SIM  
THERMAL FLUIDS



- Classified Normal thermal model as of Q1FY21 (frozen)
- 6.7 M Elements (FY20 milestone was 3.9 M)
- Radiation enclosures were biggest surprise
  - 80 enclosures
  - largest: 109,090 facets @ 73% dense (~70 GB of data!)
  - FY20 milestone had 63 K, 40K and smaller at ~25% dense
- Uses contact (late realization)
- Correctness demonstrated on ATS-2 hardware (**Meets**)
- Surrogate generated for performance monitoring and development



# FY21 Sierra/TF Milestone Problem



COMP SIM  
THERMAL FLUIDS



## Comments & Challenges:

- steady state
- large enclosures
  - memory constraints
  - poor solver scalability



- Integrated latest Trilinos changes and delivered for 5.2 Sierra release
- Improved testing on ATS-2
  - Nightly testing of normal thermal regression & verification tests
  - GPU continuous integration (CI) testing
- Significant porting of Aria capabilities
  - Encore postprocessing
  - Additional physics
  - Contact
  - Initialization (particularly mesh read & solver setup)
  - Viewfactor optimization
  - Radiosity solve performance



## FY22 Milestone Goal: Enable production abnormal environment QER simulations on ATS-2

**COMP SIM**  
THERMAL FLUIDS

### Meets:

Correct simulation of  
analyst approved system  
model surrogate on ATS-2  
hardware

### Exceeds:

4x end-to-end simulation  
performance improvement  
when comparing ATS-2 to CTS-  
1 hardware

Correct execution on classified  
model with performance data

## FY22 Milestone Goal: Enable production abnormal environment QER simulations on ATS-2



**COMPsim**  
THERMAL FLUIDS

- all normal physics from last-year's milestone
- level set burn front model
- chemistry solver infrastructure



- ODE solver library as backend for chemistry solves
- much “harder” linear solves (dd-ilu/GMRES)



Questions?

# Backup Slides





## Milestone Goal: Improve GPU-solver performance and scaling to support SIERRA applications on ATS-2

### Meets:

- ✓ Support SIERRA application needs for bug fixes and performance improvements
- ✓ Demonstrate  $\geq 4x$  linear solver performance on ATS-2 relative to CTS-1 for CG, BiCGSTAB and GMRES solvers with Jacobi preconditioner
- ✓ Any performance improvements to TRILINOS will be available for SIERRA build/installation

### Exceeds:

Demonstrate  $\geq 4x$  linear solver performance on ATS-2 relative to CTS-1 for CG, BiCGSTAB and GMRES solvers with SGS and DD-ILU preconditioners

Demonstrate  $\geq 4x$  in-situ performance of solver/preconditioner on ATS-2 relative to CTS-1 for system model

# Relevant Components for Milestone

Linear Solver Interfaces (Stratimikos, Solver Factory)

Iterative Linear Solvers (Belos)

Direct Linear  
Solvers  
Interfaces  
(Amesos2)

Multigrid Methods  
(MueLu)

Multilevel Domain Decomposition  
Methods (ShyLU)

ShyLU/BDDC  
(iterative  
substructuring)

ShyLU/FROSch  
(overlapping  
Schwarz)

Jacobi, SGS (Ifpack2)

MT-SGS, SGS2  
(KokkosKernels)

LU factorization  
(KLU, ShyLU/Basker)

Cholesky and LDL  
factorizations (ShyLU/Tacho)

Tpetra / Kokkos

## Solver methods

### Krylov methods

- Conjugate gradients, GMRES, BiCGStab

- Fundamental reliance on Tpetra and Kokkos

### Algebraic preconditioners

- Jacobi, symmetric Gauss-Seidel (SGS)
- Domain decomposition / ILU(k)

- Not all solver/preconditioner combinations are valid
  - CG theoretically requires symmetric preconditioner

Relevant Components shown in  
blue.



## Performance comparisons on CTS-1 (Eclipse) and ATS-2 (Vortex)

- Representative linear systems from SIERRA/TF thermal solve
  - 699,466 rows and 10,302,620 non-zeros
  - Systems have a few non-sparse “bulk” rows
    - Two rows with 40K and 30K entries, respectively
    - One row with 5K entries
- Using matrix reading for initial experiments
  - Initial testing prior to milestone problem being defined

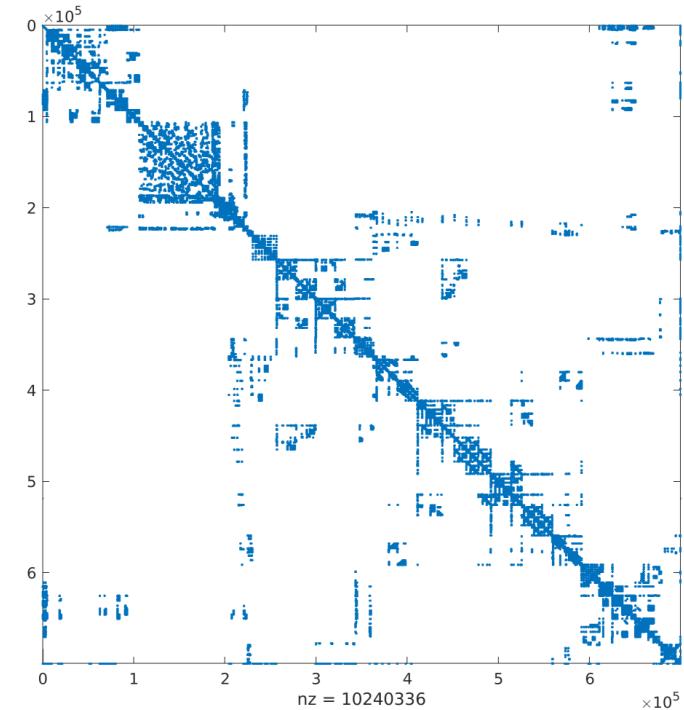
### Bulk Nodes:

- Couples a node/DOF with all the faces on a surface.
- Example - bulk-node temperature ( $T_\infty$ ) for enclosed space to calculate convective heat transfer,  $h(T - T_\infty)$ .
- Generates non-sparse rows.



# Final Accomplishments/Status




Eclipse and Vortex results, Trilinos develop branch (SHA e726b6aff)

| Krylov method | Preconditioner | CTS-1* (seconds) | ATS-2 (seconds) | Speedup |
|---------------|----------------|------------------|-----------------|---------|
| GMRES         | Jacobi         | 4.60             | 0.76            | 6x ✓    |
|               | SGS            | 2.55             | 1.02            | 2.5x    |
|               | DD-ILU(0)      | 0.41             | 1.1             | <1      |
| BiCGStab      | Jacobi         | 2.3              | 0.53            | 4.3x ✓  |
|               | SGS            | 1.72             | 1.13            | 1.5x    |
|               | DD-ILU(0)      | 0.38             | 2.0             | <1      |
| CG            | Jacobi         | 1.22             | 0.29            | 4.2x ✓  |
|               | SGS            | 1.32             | 0.91            | 1.45x   |
|               | DD-ILU(0)      | 0.20             | breakdown       | --      |

\*using uniform rowmap

**Meets**: Achieved >4x for all Krylov methods using Jacobi.

**Exceeds**: Made progress in SGS & ILU(k), but didn't achieve 4x.



Meets  
Exceeds



# FY21 Improvement of Trilinos Performance on ATS-2



| Krylov method | Preconditioner | Trilinos release 13 Nov. 2020 (seconds) | Trilinos develop e726b6aff (seconds) | Speedup |
|---------------|----------------|-----------------------------------------|--------------------------------------|---------|
| GMRES         | Jacobi         | 3.86                                    | 0.76                                 | 5x      |
|               | SGS            | 5.52                                    | 1.02                                 | 5.4x    |
|               | DD-ILU(0)      | 1.18                                    | 1.08                                 | 1.1x    |
| BiCGStab      | Jacobi         | 5.62                                    | 0.53                                 | 10.6x   |
|               | SGS            | 7.75                                    | 1.13                                 | 6.86x   |
|               | DD-ILU(0)      | 2.08                                    | 1.96                                 | 1.1x    |
| CG            | Jacobi         | 3.34                                    | 0.29                                 | 11.5x   |
|               | SGS            | 5.95                                    | 0.91                                 | 6.5x    |
|               | DD-ILU(0)      | Did not converge                        | Did not converge                     | -       |

- Specialized SGS kernels for matrices with bulk rows (B. Kelley)
- Tpetra, Ifpack2 UVM removal (Tpetra and SAKE teams)
- Fused residual, SpMV communication optimizations (C. Glusa)
- *Myriad of other changes throughout Tpetra stack*