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2 I Abstract

Seismic waveform data are generally contaminated by noise from various sources, which interfere
with the signals of interest. Thus, the efficiency of the noise suppression approach used early in the
processing pipeline affects the quality of the downstream products. In this study, we implemented
and applied different seismic denoising methods and their respective variants to data recorded by
the regional network of the University of Utah Seismograph Stations. The denoising methods
consist of frequency filtering, approaches based on nonlinear thresholding of continuous wavelet
transforms (CWTs, e.g., Langston and Mousavi, 2019), and a convolutional neural network (CNN)
denoiser (Tibi et al., 2021). Frequency filtering works by retaining signals within a predefined
frequency band, while suppressing anything that lies outside that band. The CWT nonlinear soft
thresholding involves first calculating a scale-dependent threshold using the characteristics of the
pre-event noise, and assumes that the noise is stationary across the waveform. The denoising step
subtracts off the threshold value from the CWT coefficients of the seismic waveform that are above
the threshold, while setting to zero coefficients that are below the threshold. The CNN denoiser
exploits a machine learning model trained using constructed noisy waveforms with known
component (signal and noise) characteristics to process the input seismogram. Results involving
4780 constructed waveforms suggest that on average bandpass filter, the CWT, and CNN
denoisers improve the signal-to-noise ratio (SNR) by about 5, 10, and 7 dB, respectively. In terms of
waveform similarity and amplitude distortion for the recovered waveforms with respect to the ground
truth (GT) seismograms, CNN denoising outperforms both frequency filtering and CWT denoising.
The performance of all the approaches are depend on the SNR of the input waveforms; however,
for frequency filtering the SNR of the processed waveform decreases significantly faster with
decreasing SNR for the input seismogram. Also, we find that the average correlation coefficient
value is about 0 for the seismograms processed with frequency filtering, which suggests that these



Denoising Methods — Thresholding of Continuous Wavelet Transforms
3 1 (CWTs)

The wavelet transform of a continuous signal, x(7), with respect to a wavelet function, y(7), is defined as:
1 (4o « (=T
W(a1) = ﬁf-m x(t)wy (T) dt (D

a - Scale
t - Time lag or location

" - Complex conjugate of the wavelet function

As our mother wavelet, we used the Ricker wavelet, also known as the Mexican Hat wavelet
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Denoising Methods — Thresholding of CWTs

Key Aspects of the Denoising Approach Based on the Thresholding of CWTs:
* Pre-event window is used to estimate the scale dependent (non-linear) threshold
* Noise is assumed to be stationary throughout the waveform

Soft-thresholding (# hard thresholding):
The thresholded wavelet coefficients, W (a,7) are defined as:

W (a0 = {sign[wca, (W (@) - B@) if W(a, )] =Bla),  (3)

0 otherwise

in which
gnlW (a9l =D (4
sign[W(a,1)] =
g W (a, )
the threshold, B(a) = mean(|W ,(a,1)|) + ¢ stdv(|W,(a, 7)), (5)
where W, (a, T) is wavelet transform for the the noise window.

* Noise coefficients are assumed to follow a Gaussian distribution (Donoho & Johnstone,
1994, DONO):

¢ =4/2logyo N, (6)

with N being the number of noise samples at each scale.



Denoising Methods — Thresholding of CWTs

* Seismic noise is rarely Gaussian. For that reason, Langston & Mousavi (2019) proposed ordering
the N noise values and then assigning a probability jump of 1/N when a value is attained.
B(a) = ECDF;1(P = 0.99), (7)

in which ECDF; 1 is the inverse empirical cumulative distribution function.
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Denoised (thresholded) waveform, X(t), is estimated using the inverse transform as:

O =< =Waow(=) 5 (8

az '’

where

oo ' (@) P(@)
¢ = [ 2 40, (9)

in which () is the Fourier transform of w(t).



6 I Denoising Methods — Thresholding of CWTs
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The approach uses a trained deep convolutional neural network (CNN) model to decompose an input waveform into
signal of interest and noise.

7 I Denoising Methods — Deep Learning Denoising E

R(t.f) = S(t,f) + N{E, f) * Signal Mask

Denoiser

Moisy Signal -
100x121x2
100111;3 4 YO e
Ms(t, f) e T /. - ]
E D 2531216 P —— 8} 506
R(t.f) My(t, ) c. ) 26031032
AR 2632064

6 33 Conv2D + Rell + BN (batch norm.)

S(t,f) = Ms(t,f) O R(t, f)
Nt f) = My(t,f) OR(t, f)

ﬁ Ix3 Conw2 D + 2x2 stride + Rell + BN

d, 3x3 Deconv2D + 2%2 stride + RelU + BN + 30% Dropout

4 1x1 Conv2 D + softmax

*For an input R(t,f), the network provides a signal mask (Mg(t,f)) I

and a noise mask (M, (¢,f)).

= The estimated ‘clean’ signal (S(t, f)) is obtained by multiplying " The network consists of 20 hidden layers.

i
Ms(t, ) with R(t, f); and the estimated noise (N (¢, f)) is =Half of the layers make up the encoder, and the other |
obtained by multiplying My (t, f) with R(t, f). half the decoder. ‘

Tibi, R., P. Hammond, R. Brogan, C. J. Young, and K. Koper (2021). Deep Learning Denoising Applied to Regional Distance Seismic Data in Utah, Bull. Seismol. Soc. Am. 111, 775-790, doi:
10.1785/0120200292.
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Denoising Methods — Deep Learning Denoising

= The values of the elements of the mask operator

vary with both time & frequency in the range of
0-1.

= The operator for a bandpass filter would appear

as a streak of 1's within the passband.

= In contrast to the filter operator, the mask

operator adapts to the changing characteristics
of the input waveform.

and K. Koper (2021). Deep Learning Denoising Applied to Regional Distance Seismic Data in Utah, Bull. Seismol. Soc. Am. 111, 775-790, doi:
10.1785/0120200292.



Comparison of the Denoising Methods
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= In this case, the CWT and CNN denoisers, and frequency filtering improve the SNR by about 10, 11 and 0 dB, respectively.

= The CC values of 0.97-0.98 indicate that the shape of the signal waveform remained nearly unchanged after CNN or CWT denoising (in contrast to

frequency filtering, CC = -0.15).

= Also, frequency filtering results in significant amplitude distortion (SDR = -2.66 dB, compared with 3.85 and 11.57 for the CWT and CNN denoiser,

respectively).
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11 I Comparison of the Denoising Methods — Output SNR

We processed 4780 constructed waveforms with components (signal & noise) recorded

at local to near regional distances.
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CWT Thresholding - ECDF
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Conclusions and Implications

Results involving 4780 constructed waveforms suggest that on average the CWT and CNN
denoisers, and bandpass filter improve the signal-to-noise ratio (SNR) by about 10, 7 dB and
5 dB, respectively.

In terms of waveform similarity and amplitude distortion for the recovered waveforms with
respect to the GT seismograms, CNN denoising outperforms both CWT denoising and
frequency filtering.

The performance of all the approaches are depend on the SNR of the input waveforms;
however, for frequency filtering the SNR of the processed waveform decreases significantly
faster with decreasing SNR for the input seismogram.

Also, we find that the average correlation coefficient value is about 0 for the seismograms

pro cessed wit Purpose CNN CWT Zero-Phase Regular Frequency orms are
Signiﬁcantly d\ Denoising Thresholding F;iel(gzzrr:;:y Filtering /aveform Shape

have OCCUITeC improve sNR

(e.g., for signal

Im pl ications: detection) (if input is of (if input is of sufficient SNR)
sufficient SNR)
Exploit amplitude
information \/ X X X
(e.g., for magnitude (most (significant (significant (significant amplitude
or moment tensor suitable amplitude amplitude distortion & changes in

estimation) approach) distortion) distortion) waveform shape)
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