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Abstract2

Seismic waveform data are generally contaminated by noise from various sources, which interfere 
with the signals of interest. Thus, the efficiency of the noise suppression approach used early in the 
processing pipeline affects the quality of the downstream products. In this study, we implemented 
and applied different seismic denoising methods and their respective variants to data recorded by 
the regional network of the University of Utah Seismograph Stations. The denoising methods 
consist of frequency filtering, approaches based on nonlinear thresholding of continuous wavelet 
transforms (CWTs, e.g., Langston and Mousavi, 2019), and a convolutional neural network (CNN) 
denoiser (Tibi et al., 2021). Frequency filtering works by retaining signals within a predefined 
frequency band, while suppressing anything that lies outside that band. The CWT nonlinear soft 
thresholding involves first calculating a scale-dependent threshold using the characteristics of the 
pre-event noise, and assumes that the noise is stationary across the waveform. The denoising step 
subtracts off the threshold value from the CWT coefficients of the seismic waveform that are above 
the threshold, while setting to zero coefficients that are below the threshold. The CNN denoiser 
exploits a machine learning model trained using constructed noisy waveforms with known 
component (signal and noise) characteristics to process the input seismogram. Results involving 
4780 constructed waveforms suggest that on average bandpass filter, the CWT, and CNN 
denoisers improve the signal-to-noise ratio (SNR) by about 5, 10, and 7 dB, respectively. In terms of 
waveform similarity and amplitude distortion for the recovered waveforms with respect to the ground 
truth (GT) seismograms, CNN denoising outperforms both frequency filtering and CWT denoising. 
The performance of all the approaches are depend on the SNR of the input waveforms; however, 
for frequency filtering the SNR of the processed waveform decreases significantly faster with 
decreasing SNR for the input seismogram. Also, we find that the average correlation coefficient 
value is about 0 for the seismograms processed with frequency filtering, which suggests that these 
waveforms are significantly different from their respective GTs, i.e., significant changes in waveform 
shape have occurred.



Denoising Methods – Thresholding of Continuous Wavelet Transforms 
(CWTs)3





Denoising Methods – Thresholding of CWTs4



Denoising Methods – Thresholding of CWTs5

Langston & Mousavi (2019)

where 



Denoising Methods – Thresholding of CWTs6

Threshold based on 9-sec 
window preceding the first P 
arrival



Denoising Methods – Deep Learning Denoising7

Tibi, R., P. Hammond, R. Brogan, C. J. Young, and K. Koper (2021). Deep Learning Denoising Applied to Regional Distance Seismic Data in Utah, Bull. Seismol. Soc. Am. 111, 775–790, doi: 
10.1785/0120200292.

The approach uses a trained deep convolutional neural network (CNN) model to decompose an input waveform into 
signal of interest and noise.

The network consists of 20 hidden layers.
Half of the layers make up the encoder, and the other 
half the decoder.



Denoising Methods – Deep Learning Denoising8

Tibi, R., P. Hammond, R. Brogan, C. J. Young, and K. Koper (2021). Deep Learning Denoising Applied to Regional Distance Seismic Data in Utah, Bull. Seismol. Soc. Am. 111, 775–790, doi: 
10.1785/0120200292.

The values of the elements of the mask operator 
vary with both time & frequency in the range of 
01.

The operator for a bandpass filter would appear 
as a streak of 1’s within the passband.

 In contrast to the filter operator, the mask 
operator adapts to the changing characteristics 
of the input waveform.

Wfm ID: 4101 Wfm ID: 3836



Comparison of the Denoising Methods 9

 In this case, the CWT and CNN denoisers, and frequency filtering improve the SNR by about 10, 11 and 0 dB, respectively.

 The CC values of 0.970.98 indicate that the shape of the signal waveform remained nearly unchanged after CNN or CWT denoising (in contrast to 
frequency filtering, CC = -0.15).

 Also, frequency filtering results in significant amplitude distortion (SDR = -2.66 dB, compared with 3.85 and 11.57 for the CWT and CNN denoiser, 
respectively).

CWT Thresholding - ECDF CNN Denoising Regular BP Filtering (215 Hz)

SNR=15.1 dB
CC= 0.98
SDR=11.57 dB

SNR=14.3 dB
CC= 0.97
SDR=3.85 dB

SNR=4.5 dB
CC= -0.15
SDR=-2.66 dB



Comparison of the Denoising Methods – Dependence on Input 
SNR10

 For frequency filtering, the SNR of the 
processed waveform decreases 
significantly faster with decreasing 
SNR of the input seismogram. 

 CNN denoiser is capable of denoising 
a waveform with a SNR floor of approx. 
0 dB.

 In terms of waveform similarity and 
amplitude distortion, CNN denoising 
outperforms both frequency filtering 
and CWT denoising.

 Regular frequency filtering (causal)  is 
associated with significant phase shift.



Comparison of the Denoising Methods – Output SNR11

 We processed 4780 constructed waveforms with components (signal & noise) recorded 
at local to near regional distances.

CWT Thresholding - ECDF CWT Thresholding - DONO CNN Denoising

Zero-Phase BP Filtering Regular BP Filtering

Aver. Impr.: 10 dB Aver. Impr.: 9 dB Aver. Impr.: 7 dB

Aver. Impr.: 5 dB Aver. Impr.: 5 dB

 Average improvements in SNR are 
510 dB, with the lower value 
associated with frequency filtering



 In terms of waveform similarity and amplitude 
distortion with respect to GTs, CNN denoising 
outperforms both CWT denoising and frequency 
filtering.

 The average CC of 0 for regular BP filtering 
indicates that waveform shapes underwent 
significant changes.

CWT Thresholding - ECDF CWT Thresholding - DONO

Zero-Phase BP FilteringCNN Denoising

Regular BP Filtering

Comparison of the Denoising Methods – Output CC and SDR12



Conclusions and Implications13

 Results involving 4780 constructed waveforms suggest that on average the CWT and CNN 
denoisers, and bandpass filter improve the signal-to-noise ratio (SNR) by about 10, 7 dB and 
5 dB, respectively. 

 In terms of waveform similarity and amplitude distortion for the recovered waveforms with 
respect to the GT seismograms, CNN denoising outperforms both CWT denoising and 
frequency filtering.

 The performance of all the approaches are depend on the SNR of the input waveforms; 
however, for frequency filtering the SNR of the processed waveform decreases significantly 
faster with decreasing SNR for the input seismogram.

 Also, we find that the average correlation coefficient value is about 0 for the seismograms 
processed with regular frequency filtering, which suggests that these waveforms are 
significantly different from their respective GTs, i.e., significant changes in waveform shape 
have occurred.

 Implications:

Purpose CNN 
Denoising

CWT 
Thresholding

Zero-Phase 
Frequency 
Filtering

Regular Frequency 
Filtering

Improve SNR
(e.g., for signal 
detection)

✓ ✓ ✓
 (if input is of 
sufficient SNR)

✓ 
(if input is of sufficient SNR)

Exploit amplitude 
information
(e.g., for magnitude 
or moment tensor 
estimation)

✓
(most 

suitable 
approach)

✗
(significant 
amplitude 
distortion)

✗
(significant 
amplitude 
distortion)

✗
(significant amplitude 
distortion & changes in 

waveform shape)
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