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The Multi-Fidelity Toolkit (MFTK) is a simulation tool being developed at Sandia National
Laboratories for aerodynamic predictions of compressible flows over a range of physics fidelities
and computational speeds. These models include the Reynolds-Averaged Navier-Stokes (RANS)
equations, the Euler equations, and modified Newtonian aerodynamics (MNA) equations,
and they can be invoked independently or coupled with hierarchical Kriging to interpolate
between high-fidelity simulations using lower-fidelity data. However, as with any new simulation
capability, verification and validation are necessary to gather credibility evidence. This work
describes formal model validation with uncertainty considerations that leverages experimental
data from the HIFiRE-1 wind tunnel tests. The geometry is a multi-conic shape that produces
complex flow phenomena under hypersonic conditions. A thorough treatment of the validation
comparison with prediction error and validation uncertainty is also presented.

I. Introduction

THE Multi-Fidelity Toolkit (MFTK) is a suite of tools being developed at Sandia National Laboratories to improve the

response time for aerothermodynamic queries for hypersonic flight vehicles. The toolkit comprises three levels of
aerothermodynamic physics fidelity and a series of file- and data-handling scripts: an input-file generator, a sample-point
dispatcher, a data-gathering code, and a multi-fidelity interpolation code. The aerothermodynamic evaluation fidelity
levels are being developed in the Sandia Parallel Aerodynamics and Reentry Code (SPARC) and consist of a modified
Newtonian aerodynamics (MNA) solver, an Euler solver, and a Reynolds-Averaged Navier-Stokes (RANS) solver. The
low- and medium-fidelity models do not have the ability to compute viscous effects such as heat flux; therefore, both
transfer data to different correlation-based models. The multi-fidelity interpolation code uses a hierarchical Kriging
method [1] to perform sample evaluations over a parameter space by using trends from lower-fidelity predictions and
anchoring to high-fidelity predictions, such as those from a RANS solver. This allows for more accurate predictions
to be computed over a large parameter space at a reduced cost, compared to running a RANS solver only. With the
multi-fidelity interpolation method, the focus of the lower-fidelity methods is on minimizing the error in the trend
of aerothermodynamic data rather than the absolute error of each model. However, achieving the expected order of
accuracy is necessary to ensure the lower-fidelity models have been correctly implemented.

To assess the credibility of predictions using MFTK, verification and validation activities are performed to ensure
the correct implementation and appropriate use of the models. Verification activities are not documented herein but
in an accompanying paper [2]. Validation assesses how well the implemented models represent the relevant physical
phenomena. This is typically done by comparing simulation predictions with experimental data to assess the modeling
error and ultimately the bounds of validity for a defined application space. By contrast, verification is, according to the
American Society of Mechanical Engineers (ASME) Standard for Verification and Validation in Computational Solid
Mechanics [3], “the process of determining that a computational model accurately represents the underlying model and
its solution.” Verification is further broken up into code verification and solution verification [4—6]. Code verification
focuses on the correct implementation of the mathematical model, whereas solution verification focuses on estimating
the numerical error for a particular solution.

Model validation is defined by both the American Institute of Aeronautics and Astronautics (AIAA) “Guide for
Verification and Validation of Computational Fluid Dynamics Simulations” and the ASME “Standard for Verification
and Validation in Computational Fluid Dynamics and Heat Transfer” as, “the process of determining the degree to which
a model is an accurate representation of the real world from the perspective of the intended uses of the model.” [7, 8].
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The scope of this work does not include the multi-fidelity interpolation aspect of MFTK because it is applied to a
single parameter set for the validation case instead of a parameter exploration. Instead, predictions are made at each
fidelity level independently to assess predictive accuracy, with the understanding that lower-fidelity models are expected
to have lower accuracy. The low-fidelity MNA model may occasionally be executed independently, but its main purpose
is to predict trend information with many runs across a parameter sweep. The mid-fidelity Euler solver may be run
independently for quick-turnaround simulations or potentially in a Monte Carlo-style uncertainty quantification (UQ)
analysis, so predictive accuracy is more desirable and expected here.

I1. Model Validation Theory

Though formally defined in the introduction, informally, model validation seeks to determine the degree to which the
model is solving the physically appropriate equations. For high-speed aerodynamics, these would include compressible
forms of the continuity, momentum, and energy equations. For the turbulent flows, including the full forms of the
governing equations (as in Direct Numerical Simulation) is often not tractable; therefore, closure models are frequently
used (as in RANS). The inviscid treatment of certain flows is another example of a modeling assumption. Model
validation processes can be used to determine the suitability of such modeling assumptions.

Comparing simulation predictions to experimental results is fundamental to model validation. There are several
levels of scrutiny in comparisons that are seen in literature. A helpful comparison is found in Fig. 12 of [9] that presents
six levels of validation comparisons. The first and least descriptive is the viewgraph norm where contours are placed
next to each other, but differences in values are often obscured from the wealth of field information and colorful scales.
The next plots show several levels of comparisons that switch to a common set of axes that are much better at revealing
direct information. Increasing the levels of UQ on measurements and predictions increases the rigor.

The ASME V&V 20 standard goes beyond comparisons in plots to the calculation of validation comparison error
and the validation uncertainty [8]. In this standard, the validation comparison error E is defined as

E=S-D, (1)

where S represents the simulation solution and D represents the experimental data. Equation (1) provides the simplest
validation metric, which nonetheless transitions from the qualitative comparisons in plots to a quantitative measure used
to evaluate predictive accuracy. It can be used to reveal trends in model form error over space, time, or parameter sets.

The validation comparison error reveals differences, but how meaningful are those differences, and could experimental
and/or modeling uncertainties explain them? To help answer these questions, ASME V&V 20 also includes the
calculation of a validation uncertainty

— 2 2
Uval = u?lum + Uinput +up, 2)

where Uupum is the numerical uncertainty commonly assessed by grid convergence studies, %input 1S the input parameter
uncertainty propagated through the model, and up is the experimental data uncertainty [8]. Equation (2) is in the
form of a standard uncertainty at the 1o or 68% confidence level. To calculate the expanded uncertainty at a more
typical 20 or 95% confidence level, the confidence coefficient C' = 2 can be included as in U = C'u on the uncertainty
components or on uy,1. Throughout this work, uncertainties are presented at the 95% confidence level.

The validation uncertainty provides perspective on the validation error. For example, if |E|>> wy,), then model
form error is discernible from the relatively small validation uncertainty and model improvements may be prudent if
the errors are larger than desired. On the other hand, if | E|< a1, model form error is not distinguishable among the
validation uncertainty and efforts to reduce uncertainty may be pertinent.

Note that E is the validation comparison error and includes possible errors in measured data and simulation
predictions. It is, therefore, not the model form error. The exact model form error is challenging to isolate but can be
bounded. In ASME V&V 20 [8], the model form error is bounded by

Omodel € [E — Uyal, B+ uval]- 3)

This bounding motivates efforts to minimize uncertainty in both experiments and simulations so that the model form
error can be known with greater accuracy.



I11. HIFiRE-1 Wind Tunnel Tests

Experimental data are critical to validation studies, but there are few presented in the public literature for hypersonic
aerodynamic vehicles, possibly due to the challenges of measurements under these extreme conditions or the sensitivities
of the applications. There are a handful of tests that include a mix of flight and ground tests. These two types have
benefits and drawbacks. Flights tests are closer to the intended uses of MFTK, but measurement quantity and quality for
aero-only quantities are challenging. Most flight tests of hypersonic vehicles require a thermal protection system that
complicates the direct measurement of aerodynamic quantities such as surface pressure, temperature, and heat flux.
Also, flight test conditions are only loosely controlled and measured. Conversely, ground tests are farther from the
intended uses of MFTK but enable greater instrumentation and control of conditions. Many ground test facilities are
shock tunnels that induce hypersonic conditions for a fraction of a second, eliminating the need for thermal protection
systems.

Many potential validation data sources were surveyed for this work. One source of hypersonic aerodynamic
validation data is the Hypersonic International Flight Research and Experimentation (HIFiRE) program that sought to
develop hypersonic technologies. The program included atmospheric flight tests and ground tests in the shock tunnel
facilities at the Calspan—University at Buffalo Research Center (CUBRC). Their Large Energy National Shock (LENS)
facilities include LENS I, LENS II, and LENS XX [10]. Of particular interest are the HIFIRE-1 wind tunnel tests that
have been used for validation data in a number of subsequent publications that were conducted in the LENS I shock
tunnel [11].

The HIFiRE-1 wind tunnel tests were selected for a validation application due to hypersonic flow conditions,
challenging flow characteristics, turbulence, testing with air, and a wealth of high-quality data that spans a range of
angles of attack and Reynolds numbers [11]. One down-side is the low enthalpy conditions in the flow that will not
exercise the reacting gas models in the MFTK RANS implementation. The HIFiRE-1 flight test was not selected due to
the coning motion during reentry that makes it less ideal for validation [12].

The HIFiRE-1 wind tunnel geometry is shown in Fig. 1. It has a complex shape with a slender 7° half-angle
fore-cone, a cylindrical section in the center, then a blunt flare at the rear. Depending on the run configuration, turbulent
transition occurs naturally or is tripped on the fore-cone. The flare causes a separation bubble in the cylindrical section
that is a challenge for many RANS models [10]. The test series had a total of over 50 runs in two phases and the model
contains a total of almost 100 heat flux sensors and 56 pressure sensors that are located at four different meridional
angles.
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Fig. 1 The HIFiRE-1 wind tunnel test geometry that shows the fore-cone on the left, the cylindrical section in the
center, and the flare on the right, from [11]. The text states that the final nosetip was changed from sharp to a radius of
2.5 mm and the flare angle was changed from 37° to 33°.

To provide a sense of the flow field, the Mach number predictions in a two-dimensional, axisymmetric, wall-normal
plane for two RANS models are shown in Fig. 2. The flow is left to right. The solid wind tunnel model is the white
region in the lower right and includes the cone, the cylinder, and the flare. The white region in the upper left is not
simulated. The RANS Spalart—Allmaras (SA) and RANS Shear Stress Transport (SST) models predict similar flow fields
with the exception of the separated region near the cylinder-flare intersection that is more pronounced for RANS-SST.
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Fig.2 HIFiRE-1 wind tunnel simulation Mach number predictions for RANS-SA and RANS-SST models.



IV. Validation Results

The validation studies herein include surface pressure and heat flux comparisons for Run 30, a 0° angle-of-attack
case at a relatively high Reynolds number. In addition to traditional comparison plots, the validation comparison error
E from (1) and validation uncertainty u.,) from (2) are calculated and plotted to enable quantitative comparisons of
predictive accuracy at all three fidelity levels of MFTK. The experimental data have known uncertainties [11]. Similarly,
the solution-verification studies in the companion paper [2] provide numerical uncertainty values u,,. Note that for
all of the simulation results herein, the medium mesh was used and iterative convergence was achieved by driving
normalized residuals below 10712, The parameter uncertainty uinpyt, s not calculated in this work but recommended
for future work.

A. Surface Pressure Comparisons

The first validation comparison is the surface pressure along the axial length of the vehicle as shown in Fig. 3. The
test vehicle geometry is shown with the second y axis as a gray region to provide background to the drastically different
behavior along the length. The results include measured data and predictions from the RANS-SA model, the RANS-SST
model, the Euler model combined with the Momentum/Energy Integral Technique (MEIT), and the modified Newtonian
aerodynamics (MNA) model combined with flat-plate boundary layer (FPBL) correlations. The experimental pressure
uncertainty is 3% [11], interpreted as 3% of reading in the associated error bars/uncertainty bands. The simulations
have numerical uncertainty from the GCI results from solution verification shown as shaded regions that are colored
according to their respective model color. The data are taken from the 0° meridian that has the most sensors. The
fore-cone has very few pressure sensors, but the pressure is nearly constant in this region. The instrumentation density
increases towards the rear of the vehicle where the flow is more complex. The pressures increase drastically on the
33° flare region. The predictions used meshes that were derived from the same source. From a 3D source mesh, a 2D
axisymmetric mesh with 131,072 cells was derived for the RANS and Euler+MEIT simulations. For the MNA model,
which only requires a surface mesh, the 3D surface was extracted from the source mesh.
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Fig. 3 HIFiRE-1 wind tunnel test pressure data and predictions.

This figure features an inset plot that highlights the aft end of the cylindrical and the flare regions where the pressure
measurements and predictions are quite complex. The RANS predictions compare very well on the fore-cone and
cylinder sections, as expected due to the inviscid nature of the surface pressure. However, the agreement breaks down at
the separation point leading to the flare, which highlights the known inability of RANS models to capture the complex



physics of turbulent flow through a shock/boundary layer interaction [13]. The SA model generally predicts pressure
more accurately in this region, though it appears to miss the physics of separation. The SST model over-predicts the
separation region, consistent with the findings of modelers associated with the HIFiRE study [10]. The RANS-SA model
has low numerical uncertainty while the RANS-SST model has a very large uncertainty as the pressure predictions
change drastically in the separation and flare regions.

While others at Sandia National Laboratories have recently completed validation studies with RANS in a similar
manner [13], the mid-fidelity Euler+MEIT and low-fidelity MNA+FPBL models have undergone no known validation
work. Similar to the two RANS models, the Euler+MEIT predictions are also qualitatively very good in the fore-cone
and cylinder sections. The pressure predictions more closely align with those from the SA model in the separation
region, though with some noise along the axis. Interestingly, it appears that this mid-fidelity model combination is more
accurate than the SST model near this separation. However, the mid-fidelity model is not mesh-converged as evidenced
by the large numerical uncertainty. Quantitative comparisons follow herein that present greater detail.

The surface pressure predictions of the MNA+FPBL are also of high interest. Because MNA is one of the class of
so-called ‘panel’ methods, the only means by which it computes the surface pressure is by using analytic formulas to
process the flow through a shock wave and then deflect the flow at the angle of the panel on the surface. These two
steps dictate the surface pressure on any forward-facing panel in the solver. The theoretical concept of panel methods,
flow deflection without losses or viscous modification, is reasonably true in the limit of infinite Mach and Reynolds
numbers and thus is only an approximation at finite values. With this in mind, the MNA solver does a reasonable job
predicting the surface pressure on the fore-cone and cylindrical portions of the vehicle. The MNA solver does not model
any shock waves or boundary layers and is incapable of predicting the separation point observed in the experiments.
The flare portion of the vehicle presents a higher degree of deflection compared to the rest of the vehicle and therefore
shows the highest surface pressure, aside from the stagnation point on the nose. The MNA+FPBL models predict the
increase in surface pressure at the flare with reasonable accuracy, but do not capture the non-uniform behavior observed
in the experiment. The numerical uncertainty is negligible because this model is a panel method for which the pressure
predictions are only a function of inflow and the angle between the panel and the flow.

To determine quantitative accuracy, the errors in surface pressure predictions were calculated using (1) and
normalized by the experimental data for the four models along the vehicle axis and shown in Fig. 4. The error is
very low in the fore-cone and cylindrical sections as expected with the MNA+FPBL models showing the largest error.
The error increases greatly in the separation and flare region with strong positive and negative errors. The validation
uncertainty calculated from (2), with %;nput = 0, is also shown as a shaded band to help determine if the validation error
is discernible among the uncertainty, which it clearly is for the RANS-SA and MNA+FPBL models but not consistently
for others.

Because the validation error along the axis is very noisy with large differences in magnitude in different sections,
overall conclusions may be challenging to formulate. To compensate for this, the validation error relative to the
experimental data was averaged across all experimental data points for each model independently and plotted in a bar
plot in Fig. 5. Figure 5a only includes the experimental uncertainty of 3%, whereas Fig. 5b includes both experimental
and numerical uncertainty sources. The accuracy is better shown in Fig. 5a. Here, the improved accuracy of the SA
model is shown with the subsequent models being Euler+MEIT, MNA+FPBL, and finally SST. The surprisingly high
error of SST is due to the over-prediction of the separation region size where the data are relatively low. Again, the
validation uncertainty is shown but in the form of uncertainty bands/error bars. If the experimental uncertainty were the
only source, the errors would be distinguishable among the uncertainty calculated. However, as Fig. 5b shows, the
validation uncertainty dominates for the RANS-SST and Euler+MEIT models, such that the error is not discernible.
However, it is still distinguishable for the other two models.

The HIFiRE-1 geometry has several different sections that cause the flow to have different behavior, allowing us to
evaluate the prediction error in multiple scenarios from the same data set. The pressure error is therefore averaged over
sections of a cone with laminar and turbulent portions, a turbulent cylinder, and a turbulent flare with flow separation.
The prediction error relative to experimental data is shown for these sections for all four model combinations in Fig. 6,
except that there are no pressure measurements in the laminar section. Figure 6a provides a better look at prediction
error by only considering the experimental uncertainty in the validation uncertainty. A more complete understanding is
obtained from Fig. 6b where the validation uncertainty includes both experimental and numerical sources.

The pressure predictions are much more accurate in the turbulent cone section than the cylindrical or flare sections,
suggesting that the flow separation is, in general, more challenging to model. In the turbulent cone section, the
higher-fidelity models tend to provide the lowest errors. In the cylindrical section, interestingly, the RANS-SA and
MNA+FPBL model combinations have the most accurate pressure predictions. Note here that the MNA+FPBL model
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Fig. 4 HIFIiRE-1 pressure prediction error with uncertainty.
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Fig. 5 HIFIiRE-1 pressure prediction error magnitude averaged over data with uncertainty.
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Fig. 6 HIFIiRE-1 pressure prediction error magnitude separated by section with uncertainty.



combination does well here as the cylinder closely resembles a flat plate for which the viscous correlations were
derived [14]. The RANS-SST model over-predicts the pressure in the separation region where the experimental data are
relatively low. In the flare section, the three higher-fidelity models are the most accurate.

B. Surface Heat Flux Comparisons

The heat flux comparisons are shown in Fig. 7. Compared with pressure, there are many more sensors and there is
an obvious transition from laminar to turbulent flow around x = 0.45 m. The experimental heat flux uncertainty is
5% [11]. The numerical uncertainty from solution verification is shown for each model as a shaded band. The RANS
solutions do well in capturing both the laminar and turbulent heating on the fore-cone and cylinder. The transition
between the boundary layer flow types is enacted by turning on the turbulence production terms at the approximate
transition point on the fore-cone. The result of this method is to affect the change of laminar-to-turbulent transition
heat flux over a much shorter duration than observed in the experiment. Additionally, the overshoot observed in the
data is also missed by the simple transition method. As discussed previously, the separation point location is early in
the RANS solution; however, the peak heat flux is consistent with the experimental data. The approach of manually
setting the transition location was taken so that the focus is on the predictive accuracy of the physics models, not on the
accuracy of a model to predict the transition location, an area that merits further research outside the scope of this work.
The numerical uncertainty for the RANS-SA model is generally small throughout, except near the laminar-to-turbulent
transition location. Conversely, this uncertainty for the RANS-SST model can be quite large, especially in the turbulent
cone section, the aft end of the cylinder, and the flare (of which the latter two are in the predicted separation region).
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Fig. 7 HIFRE-1 wind tunnel test heat flux data and predictions.

The Euler+MEIT model combination predictions are very reasonable considering their medium-physics fidelity.
The predictive accuracy is nearly as good as the RANS models in the conical section and nearly identical in the cylinder
section (except where the RANS-SST model predicts a larger separation bubble on the aft end). The predictions also
match data very well on the fore end of the ramp but decrease too early with an error of about 2x. However, even
with this premature decrease, the trend is correct and even better than either RANS model prediction. The numerical
uncertainty can be moderately large, especially for x > 0.9 m. Note that, as with the RANS models, a laminar version
of the model was used upstream of = = (.45 m, and a turbulent version was used downstream.

The MNA+FPBL solver uses a flat-plate boundary layer correlation, a standard laminar correlation, and the Van
Driest model for turbulent flow [15] to predict heat flux. As the conical geometry is somewhat removed from a flat plate,



it should be expected to have an error of at least v/3 from the theoretical differences in heat flux. Future implementations
of the boundary layer correlations may be targeted toward curvature-aware correlations to reduce this error. However,
for the current implementation, the laminar heat flux has an error on the order of 2x from the experiment over the
laminar section of the fore-cone. As done with previous models, the laminar and turbulent models were applied fore and
aft of = 0.45 m, respectively. Interestingly, the heat flux nearly matches the experiment over the cylinder section of
the vehicle, where the flat-plate correlation is very reasonable. On the flare, the error in heat flux is on the order of
3, which is decent considering the complex fluid dynamics over the flare that are not modeled with the MNNA model.
Note the nearly flat shape of the heat flux prediction on the ramp where this model does not resolve the complex flow
separation. As before, the MNA+FPBL numerical uncertainty is negligible.

As with surface pressure, the heat flux tends to have a lot of variation that can obscure quantitative accuracy
conclusions. Therefore, the prediction error with validation uncertainty clouds for all four model combinations is shown
in Fig. 8. Experimental data are available farther upstream than for pressure, into the laminar cone section of the
domain. Accurate predictions in this laminar region are made by all but the MNA+FPBL model which under-predicts
the heat flux. In the laminar-to-turbulent transition region, the prediction errors trend from positive to negative and
tend to remain slightly negative in the turbulent cone section. In the cylinder section, all models show a high degree of
accuracy. Similar to pressure, the errors tend to be largest in the flare region. The uncertainty cloud includes both the
experimental and numerical uncertainty from (2), of which the latter dominates. Similar to pressure, the validation
uncertainty is largest for the RANS-SST and Euler+MEIT models. Here, the turbulent transition region has higher
uncertainty, possibly due to the changing cell location where transition is manually set.
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Fig. 8 HIFIiRE-1 heat flux prediction error with uncertainty.

Similar to before, the heat flux prediction errors are averaged to provide a better comparison between accuracy of
the different models with the results shown in Fig. 9. Figure 9a shows the validation error with the uncertainty only
considering the experimental source to better highlight the errors. However, Fig. 9b includes both experimental and
numerical uncertainty sources to provide a more complete representation of the relative sizes of the error and uncertainty.
Similar to pressure, the RANS-SA model has the smallest error while the RANS-SST and MNA+FPBL models have the
largest with a difference of about 2 x. The lower accuracy of the MNA+FPBL model is expected, but the RANS-SST
model was expected to have high accuracy overall. With the more comprehensive validation uncertainty in Fig. 9b, this
uncertainty overwhelms the prediction error for the RANS-SST and Euler+MEIT models, suggesting that these models
are not mesh-converged.

The prediction errors are again separated into different sections in Fig. 10 with only the experimental uncertainty

10



40 4

20 A

Average Heat Flux
Error Magnitude, %

D - W S A
W & W x<
s Q\P*$ Q,O\e( V'&P

(a) Validation uncertainty only considering experimental source.

200 -

S

> a\ 3 \»
©° @56 W ®
s o> Q/\)\e‘ ‘@P

Average Heat Flux
Error Magnitude, %

(b) Validation uncertainty considering experimental and numerical sources.

Fig. 9 HIFIRE-1 heat flux prediction error magnitude averaged over data with uncertainty.
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considered in Fig. 10a to help resolve errors and the more comprehensive uncertainty treatment in Fig. 10b. On both
the laminar and turbulent sections of the cone, the RANS models are most accurate, followed by Euler+MEIT, with
MNA+FPBL least accurate as expected. These three higher-fidelity models have higher error in the turbulent cone
section than laminar, an expected result from the higher heat flux and modeling challenges inherent with turbulence
modeling. In the cylindrical section, the RANS-SST model has the highest prediction error, likely due to the premature
separation prediction. As with the cone, the three higher-fidelity models are most accurate in the flare region. When
considering both uncertainty terms available in this work, the uncertainty is consistently larger than the error for the
RANS-SST and Euler+MEIT models. Further mesh refinement or potentially mesh quality improvements could reduce
the numerical uncertainty and help resolve the predictive accuracy.
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Fig. 10 HIFIiRE-1 heat flux prediction error magnitude by section with uncertainty.



V. Conclusion

Herein is the first known validation activities for the Multi-Fidelity Toolkit to provide credibility evidence for
its use in high-consequence decision making in hypersonic vehicle analysis at a variety of physics-fidelity and
computational-expense levels. It has leveraged best practices in validation applied to all three fidelity levels of MFTK
independently.

This work includes a practical description of model validation theory, an overview of the HIFiRE-1 wind tunnel
tests, and validation studies of all three fidelity levels of the MFTK at 0° angle of attack. The relative accuracy of the
RANS-SA and RANS-SST models is superior for both pressure and heat flux on the laminar and turbulent fore-cone
sections of the HIFIRE-1 geometry. The RANS-SA accuracy remains high for the cylindrical and flare sections as well,
while the RANS-SST accuracy suffers due to an over-prediction of the separation region. The RANS-SA model had
consistently high accuracy and low numerical uncertainty. The Euler+MEIT pressure predictions are second best in
general with very reasonable accuracy throughout the domain. For heat flux, the accuracy was second best overall but
followed the RANS models for conical performance. The MNA+FPBL model was generally least accurate for both
pressure and heat flux; however, it was as accurate as any model on the cylinder as this geometry resembles a flat plate.

With these considerations and recognizing that these accuracies do not directly extrapolate to other parameter spaces
of interest, including high-enthalpy or higher-Mach flows, the RANS-SA model is recommended for situations where
the highest accuracy is desired with the capability to run more expensive models. The RANS-SST model has accurate
predictions for conical flows but is not recommended for separated flows, and has the highest numerical uncertainty
in this study. This finding is surprising as the SST model was formulated to perform well in separated flows [16].
The high numerical uncertainty of this model in the separation region deserves further attention. The Euler+MEIT
model combination has reasonable accuracy and computational expense but higher than expected numerical uncertainty,
an area that deserves further investigation. This mid-fidelity model may be a good fit where the RANS models are
too expensive. The iterative stability of the Euler simulations was a challenge with these moderately refined meshes,
requiring special attention to the run schedule for complete convergence. The MNA+FPBL models have reasonable
accuracy, excellent speed, and negligible numeric uncertainty and may be used where a very high number of simulations
is required.

The focus of this work has been on evaluating predictive accuracy through validation with little consideration to
performance, a motivator for using MFTK. Nevertheless, the differences in solution speed were notable. While the
MNA+FPBL model is solved on a 3D surface mesh for solver convenience, it could theoretically be solved in 2D for
this case. Even with this, the speedup is approximately 2,000x compared to the RANS-SST model. A more thorough
evaluation of the trade-offs between accuracy and speed are recommended for a future work, especially as the faster
models enable Monte Carlo uncertainty quantification and design/parameter exploration studies much more readily than
the high-fidelity models.

VI. Future Work

This validation study has included a detailed analysis of a single run of the HIFIRE-1 wind tunnel test data set at 0°
angle of attack. It will be extended to include cases with nonzero angles of attack and potentially to those at different
Reynolds numbers so the predictive accuracy can be quantified under other conditions of interest. Furthermore, other
data sets with higher enthalpy flow will be explored to exercise reacting gas models not currently tested with this case.
The large magnitude of the numerical uncertainty for the RANS-SST and Euler+MEIT models in the area of separated
flow dominates the validation error and should be reduced for more conclusive results. This could be done relatively
easily by further mesh refinement. Furthermore, a parameter UQ study could provide added fidelity to the validation
uncertainty to help discern validation error from uncertainty.
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