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Coherent anti-Stokes Raman scattering (CARS)

PROBE VOLUME Lasers
Focusing " Molecular Dipole

Lens (J

Beams = ‘/

P. Danehy and S. Tedder
NASA Langley Research Center

Pump

Coherent Anti-Stokes Raman

\ virtual levels
“Stokes” Beam — — —_—

®g ®cars
vib./rot. 0P ®
transition
Energy (cm-1)




Coherent anti-Stokes Raman scattering (CARS)
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7 o Pulse-Burst CARS: Sandia/SE/Purdue Collaboration @ |

Broadband Source is BROADBAND o,
Key Technical '
Barrier for High-
Speed
Measurements

Burner
Burst Mode i Picosecond OPG
Nd:YAG Laser - 1 enables burst-mode
] CARS detection

Picosecond OPG/OPA for 100-kHz
broadband generation (Roy et al., 2015)

Picosecond burst-mode laser from SE enables efficient

B
broadband OPG and subsequent amplification |
Technology originally demonstrated in H,/air and )
N,/air flames by SE/Purdue team

Bandwidths and 1-2 mJ pulse energies sufficient for N,
CARS!

OPA secti
Delivered to Sandia for shock tube facility measurements >ECEIon OPG crystal




8 - 100-kHz Pulse-Burst CARS in the Sandia Free-Piston Shock Tube ®

100-kHz N, Vibrational
CARS using picosecond
pulse-burst laser
technology
High-temperature/high-
pressure conditions
present challenging
measurement
environment
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9 I 100-kHz Pulse-Burst CARS in the Sandia Free-Piston Shock Tube

100-kHz N, Vibrational
CARS using picosecond
pulse-burst laser
technology
High-temperature/high-
pressure conditions
present challenging
measurement
environment
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Next Steps

100-kHz Pulse-Burst CARS in the Sandia Free-Piston Shock Tube

Sinele-Laser-Shot

State Averaged State 5: Four-Shot Average
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Develop appropriate models to fit picosecond CARS
spectra for temperature

Implement reference signal leg to monitor and correct
the effects of Stokes pulse noise spectrum

Insert spatial filter to minimize shock-tube emission
background

Higher temperature shots (T2 = 3000 K, T5 = 5000 K)
Development of nanosecond pulse-burst CARS

State 1, P = 0.38 atm ¢

State 2, P = 1.1 atm
State 5, P-10atm’ s —v_
State 5, 4-shot avg. fit

Test Section Pressure

o 3 (8)}
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11 I Picosecond CARS modeling and inherent single-shot noise

Dominant source of CARS noise is the quality of the
broadband pulse

Picosecond CARS lies between cw
and impulsive limits

Time-Bandwidth Product
o] Sufom| 2 1467 )
<<1
' ' ! fs (impulsive) -
X ps CARS ns (cw) CARS

CARS

* A rigorous time-dependent approach is needed to
calculate the expected value of the ps CARS signal

(S,(wsm,0m)) = f ZI] (t)0,(6,=7,)G(w; 7y — 1,)
N/
o N
Weighted by time-dependent  Impulsive CARS
pump/Stokes Intensities spectrum, G

*To achieve sufficient bandwidth for CARS, pulse
must exhibit ~150-fs features - inherently noisy!

« At ~ 50-100 ps ~ 1/T > very little averaging in * Solution is an incoherent sum
the Raman process * Uncorrelated, impulsive CARS processes




12 1 Summary and Conclusion ® |

Picosecond pulse-burst lasers have enable CARS diaghostics |
at 100-kHz rates
Roy et al. 2015; Lauriola et al. 2021

iPhone photo

T > 5000

We have applied this picosecond innovation
for N, CARS thermometry in the Sandia free
-piston shock tube -

Extremely high temperatures, up to T = 5000 K State 2 P= 1.1 m
Pressures to ~ 10 bar B ctato 5 4.ahof avg 1t ST Y

Significant background luminosity Test Section Pressure

o (@) a
Pressure (é:t)m)

N, CARS temperatures in good agreement
with values from equilibrium calculations

Picosecond CARS is an enabling technology for high-speed thermometry

Single-shot Stokes source corrections (Lauriola et al., 2021)
Nanosecond burst-mode NOPO source (Jans, SciTech, 2022)



