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Abstract: We introduce novel higher-order topological phases in chiral-symmetric sys-
tems protected by multipole winding numbers, bulk integer topological invariants that can
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Higher-order topological band theory [1, 2] has expanded the classification of topological phases of matter
across insulators, semimetals, and superconductors. This theory generalizes the bulk-boundary correspondence of
topological phases, so that an nth-order topological phase in d dimensions has protected features, such as gapless
states or fractional charges, only at its (d−n)-dimensional boundaries. Currently, two complementary mechanisms
explain the existence of higher-order topological phases (HOTPs); (1) corner-induced filling anomalies [3] which
arise due to certain Wannier center configurations, and (2) boundary mass domain arguments [2]. While the first
mechanism is responsible for the fractional quantization of corner charge, the second one predicts the existence of
single in-gap states at corners. However, neither of these mechanisms allows for HOTPs that protect multiple states
at each corner. Yet, in principle, such phases should exist. In first-order topology, for example, phases with multiple
degenerate mid-gap states exist in 1D chiral symmetric systems (class AIII in the tenfold classification [4]), whose
topological phases are identified by a winding number, an integer topological invariant that – unlike the Wannier
center and mass domain mechanisms – can protect several zero-energy states at each boundary.

In this presentation, we show the existence of a Z classification for HOTPs in chiral-symmetric systems (class
AIII) and identify the topological invariants in 2D and 3D that protect them [5]. We refer to these invariants as
multipole winding numbers (MWNs) because they are built from sublattice multipole moment operators and are
a generalization of the 1D winding number to higher dimensional systems. These invariants are calculated in
the bulk of the crystal, i.e., with periodic boundary conditions, and their integer values coincide with the num-
ber of degenerate zero-energy states at each corner of a crystal with open boundaries. Thus, MWNs provide a
novel higher-order bulk-boundary correspondence for topological phases of matter. We show that phases with
nonzero MWNs are in general boundary-obstructed, and probe their remarkable robustness in the presence of chi-
ral symmetry-preserving disorder. The existence of phases with MWNs reveals a richer classification of HOTPs
and provides a broader understanding of boundary-obstructed topological phases beyond the Wannier center and
mass domain perspectives.

We thus focus our attention on chiral symmetric Hamiltonians H , which satisfy ΠH Π =−H , where Π is the
chiral operator, which allows a partition of the lattice into two sublattices, A and B, with opposite chiral charge. The
eigenstates of H can be written as |ψn⟩= (1/

√
2)(ψA

n ,ψ
B
n )

T , where ψA
n and ψB

n are normalized vectors that exist
only in the A, B subspaces, respectively. In the basis in which the chiral operator is Π = τz, H = [0,h;h†,0], and
the energies, εn, can be solved for using singular value decomposition (SVD), h = UAΣU†

B . Here, where US , for
S = A,B, is a unitary matrix representing the space spanned by {ψS

n }, and Σ is a diagonal matrix containing the
singular values. Using this decomposition, it follows that hh† =UAΣ2U†

A and h†h =UBΣ2U†
B , so that the squared

energies {ε2
n} correspond to the squared singular values in Σ2.

To derive the MWNs for higher-order topological phases, consider a lattice in 2D (3D) with Li unit cells along
direction i = x,y (i = x,y,z). Each unit cell is labelled by R = (x,y) [R = (x,y,z)] and has NT orbitals (or, more
generally, NT internal degrees or freedom). To build the topological indices for chiral symmetric higher-order
topological phases in the basis {|R,α⟩}, we define the following sublattice multipole moment operators

QS
xy = ∑

R,α∈S

|R,α⟩Exp
�
−i

2πxy
LxLy

�
⟨R,α| , OS

xyz = ∑
R,α∈S

|R,α⟩Exp
�
−i

2πxyz
LxLyLz

�
⟨R,α| , (1)

for 2D and 3D lattices, respectively. We claim that the integer invariants for chiral symmetric second-order topo-
logical phases in 2D and third-order topological phases in 3D are, respectively,

Nxy =
1

2πi
TrLog

(
Q̄A

xyQ̄B†
xy
�
∈ Z, Nxyz =

1
2πi

TrLog
(
ŌA

xyzŌ
B†
xyz
�
∈ Z, (2)
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Fig. 1. (a) Schematic depicting the tight-binding model used. Not all non-nearest neighbor hoppings are
shown for clarity. All purple hoppings are multiplied by −1 such that each plaquette has a uniform flux of π .
(b) Phase diagram of Nxy for a C4v symmetric, separability-broken system with wD/v = 0.5 and wm>2 = 0.
Bulk-obstructed phase transitions are shown in gray, while boundary-obstructed phase transitions are shown in
lime. (c) Density of states for this system for fixed w1/v = 0.8, indicated as the red line in (b). (d) Density of
states the Nxy = 4 phase with wD/v = 0.

where Q̄S
xy = U†

S QS
xy US and ŌS

xyz = U†
S OS

xyzUS , for S = A,B, are the sublattice multipole moment operators
projected into the spaces US .

To prove that the invariants (2) are strictly quantized, notice that they take the form N =
(1/2πi)TrLog(U†

AMAUAU†
BM†

BUB), where MS (for S = A,B) is QS
xy in 2D, or OS

xyz in 3D. Since the matrices
MS and US are unitary, we have det(U†

AMAUAU†
BM†

BUB) = det(MAM†
B) = 1, where the last step follows if the two

sublattices have (i) equal number of degrees of freedom in each unit cell and (ii) the same number of unit cells.
Under these conditions, tracing the logarithm of U†

AMAUAU†
BM†

BUB will necessarily give a phase that is a multiple
of 2πi, i.e., it will be of the form 2πiN, with N ∈ Z. This integer N is the topological invariant.

We now illustrate some of the topological phases with nonzero values of Nxy and demonstrate that this invariant
corresponds to the number of corner-localized states in each corner. Consider the quadrupole topological insulator
(QTI) [1] with additional long-range hopping terms that preserve chiral symmetry, see Fig. 1a.

First, consider a chiral and C4 symmetric, long-range QTI model with wD/v = 0.5. For w2/v < 1 and w1 < w2,
this system possesses a bulk bandgap around zero energy and both the quadrupole moment, qxy [1], and the
quadrupole winding number, Nxy (Eq. 2), identify it as trivial (qxy = 0, Nxy = 0), Fig. 1b. Starting from this phase
and increasing w2/v, a bulk bandgap-closing phase transition occurs, after which the system possesses a non-
trivial MWN, Nxy = 4, but a trivial quadrupole moment, qxy = 0. Simulations of the open system reveal that each
corner of the lattice in this new phase possesses four degenerate modes with ε = 0 and that all such states within a
corner exist only on a single sublattice of the system. Not only is the Nxy = 4 phase not captured by the quadrupole
index, but more generally, it lies beyond the framework of induced band representations. Consequently, topological
indices based on calculating the representations of the bulk bands at high-symmetry points of the Brillouin zone
will fail to find this phase, as the representations of the lowest two bands at all of the high-symmetry points are
identical in the Nxy = 4 phase, leading to trivial symmetry indicator invariants.

Phase transitions between phases with different MWNs need not close the bulk bandgap but, at a minimum,
must close some lower-dimensional edge or surface bandgap. As can be seen in Fig. 1b, the Nxy =−1 and Nxy = 3
phases each have a phase boundary in which the bulk bandgap closes, and boundaries with other phases where
only the edge bandgap closes. Both of these types of boundaries can be explicitly seen in the density of states
across these phase transitions, Fig. 1c. For all of the different phases identified in Fig. 1b, the number of states
localized in each corner of the system is equal to |Nxy| and the sublattice over which the corner states are supported
is given by sgn(Nxy). Thus, for example, the Nxy = −1 phase in Fig. 1b indicates that the system possesses one
state localized in each corner with support only on the opposite sublattice when compared with those in phases
with Nxy > 0.

Finally, one can show that the topological phases protected by MWNs are robust in the presence of disorder
that breaks all spatial symmetries and time-reversal symmetry. As such, these phases do not require crystalline
symmetries to exist, but will generally be boundary obstructed.

In conclusion, we have demonstrated a novel higher-order topological phases protected by MWNs in chiral-
symmetric systems, many of which would be misidentified as trivial by current theories.
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