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Higher-order topological band theory [1, 2] has expanded the classification of topological phases of matter
across insulators, semimetals, and superconductors. This theory generalizes the bulk-boundary correspondence of
topological phases, so that an nth-order topological phase in d dimensions has protected features, such as gapless
states or fractional charges, only at its (d —n)-dimensional boundaries. Currently, two complementary mechanisms
explain the existence of higher-order topological phases (HOTPs); (1) corner-induced filling anomalies [3] which
arise due to certain Wannier center configurations, and (2) boundary mass domain arguments [2]. While the first
mechanism is responsible for the fractional quantization of corner charge, the second one predicts the existence of
single in-gap states at corners. However, neither of these mechanisms allows for HOTPs that protect multiple states
at each corner. Yet, in principle, such phases should exist. In first-order topology, for example, phases with multiple
degenerate mid-gap states exist in 1D chiral symmetric systems (class AIll in the tenfold classification [4]), whose
topological phases are identified by a winding number, an integer topological invariant that — unlike the Wannier
center and mass domain mechanisms — can protect several zero-energy states at each boundary.

In this presentation, we show the existence of a Z classification for HOTPs in chiral-symmetric systems (class
AIIl) and identify the topological invariants in 2D and 3D that protect them [5]. We refer to these invariants as
multipole winding numbers (MWNSs) because they are built from sublattice multipole moment operators and are
a generalization of the 1D winding number to higher dimensional systems. These invariants are calculated in
the bulk of the crystal, i.e., with periodic boundary conditions, and their integer values coincide with the num-
ber of degenerate zero-energy states at each corner of a crystal with open boundaries. Thus, MWNs provide a
novel higher-order bulk-boundary correspondence for topological phases of matter. We show that phases with
nonzero MWNss are in general boundary-obstructed, and probe their remarkable robustness in the presence of chi-
ral symmetry-preserving disorder. The existence of phases with MWNs reveals a richer classification of HOTPs
and provides a broader understanding of boundary-obstructed topological phases beyond the Wannier center and
mass domain perspectives.

We thus focus our attention on chiral symmetric Hamiltonians .7#, which satisty I17ZT1 = — 3¢, where I is the
chiral operator, which allows a partition of the lattice into two sublattices, A and B, with opposite chiral charge. The
eigenstates of . can be written as |y,) = (1/v/2)(yv2, w8)T, where w and y? are normalized vectors that exist
only in the A, B subspaces, respectively. In the basis in which the chiral operator is IT = t,, 5 = [0, h;h?, 0], and
the energies, &,, can be solved for using singular value decomposition (SVD), h = U4 XU ;. Here, where U &, for
. = A, B, is a unitary matrix representing the space spanned by {y;”}, and X is a diagonal matrix containing the
singular values. Using this decomposition, it follows that i = UAZ2UX and h'h = UBEng, so that the squared
energies {&2} correspond to the squared singular values in X2.

To derive the MWNSs for higher-order topological phases, consider a lattice in 2D (3D) with L; unit cells along
direction i = x,y (i = x,y,2). Each unit cell is labelled by R = (x,y) [R = (x,y,z)] and has Ny orbitals (or, more
generally, N7 internal degrees or freedom). To build the topological indices for chiral symmetric higher-order
topological phases in the basis {|R, o) }, we define the following sublattice multipole moment operators

27X . 2Txyz
0= ¥ |R,a>Exp(1 y) Ral, 0%= Y R7a>Exp<1 s ><R,a|7 M

R.o€s LiLy R,0c.s L,LyL,

for 2D and 3D lattices, respectively. We claim that the integer invariants for chiral symmetric second-order topo-
logical phases in 2D and third-order topological phases in 3D are, respectively,

I . 1 s
Ny = ﬁTrLog (0,08 ez, Ny, = ETrLog (04.0%) ez, (2)
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Fig. 1. (a) Schematic depicting the tight-binding model used. Not all non-nearest neighbor hoppings are
shown for clarity. All purple hoppings are multiplied by —1 such that each plaquette has a uniform flux of 7.
(b) Phase diagram of Ny, for a C4, symmetric, separability-broken system with wp/v = 0.5 and wy,~p = 0.
Bulk-obstructed phase transitions are shown in gray, while boundary-obstructed phase transitions are shown in
lime. (c) Density of states for this system for fixed w; /v = 0.8, indicated as the red line in (b). (d) Density of
states the Ny, = 4 phase with wp /v =0.

where Q_f; = U;Qg Uy and Og,z = U;Of;z
projected into the spaces U .

To prove that the invariants (2) are strictly quantized, notice that they take the form N =
(1/27Ti)TrL0g(U/IMAUAUZ;M;UB), where M (for .¥ = A,B) is Qf; in 2D, or O;f;Z in 3D. Since the matrices
M and U, are unitary, we have det(U, MaUsUsMjUp) = det(MaMy;) = 1, where the last step follows if the two
sublattices have (i) equal number of degrees of freedom in each unit cell and (ii) the same number of unit cells.
Under these conditions, tracing the logarithm of UXMA Uy, ;M;UB will necessarily give a phase that is a multiple
of 2ri, i.e., it will be of the form 27iN, with N € Z. This integer N is the topological invariant.

We now illustrate some of the topological phases with nonzero values of Ny, and demonstrate that this invariant
corresponds to the number of corner-localized states in each corner. Consider the quadrupole topological insulator
(QTI) [1] with additional long-range hopping terms that preserve chiral symmetry, see Fig. la.

First, consider a chiral and C4 symmetric, long-range QTI model with wp /v = 0.5. For wy /v < 1 and w; < w»,
this system possesses a bulk bandgap around zero energy and both the quadrupole moment, g, [1], and the
quadrupole winding number, N,, (Eq. 2), identify it as trivial (g, = 0, Ny, = 0), Fig. 1b. Starting from this phase
and increasing w; /v, a bulk bandgap-closing phase transition occurs, after which the system possesses a non-
trivial MWN, Ny, = 4, but a trivial quadrupole moment, g,, = 0. Simulations of the open system reveal that each
corner of the lattice in this new phase possesses four degenerate modes with € = 0 and that all such states within a
corner exist only on a single sublattice of the system. Not only is the Ny, = 4 phase not captured by the quadrupole
index, but more generally, it lies beyond the framework of induced band representations. Consequently, topological
indices based on calculating the representations of the bulk bands at high-symmetry points of the Brillouin zone
will fail to find this phase, as the representations of the lowest two bands at all of the high-symmetry points are
identical in the Ny, = 4 phase, leading to trivial symmetry indicator invariants.

Phase transitions between phases with different MWNs need not close the bulk bandgap but, at a minimum,
must close some lower-dimensional edge or surface bandgap. As can be seen in Fig. 1b, the Ny, = —1 and Ny, =3
phases each have a phase boundary in which the bulk bandgap closes, and boundaries with other phases where
only the edge bandgap closes. Both of these types of boundaries can be explicitly seen in the density of states
across these phase transitions, Fig. lc. For all of the different phases identified in Fig. 1b, the number of states
localized in each corner of the system is equal to |N,| and the sublattice over which the corner states are supported

Uy, for ¥ = A, B, are the sublattice multipole moment operators

is given by sgn(Nyy). Thus, for example, the Ny, = —1 phase in Fig. 1b indicates that the system possesses one
state localized in each corner with support only on the opposite sublattice when compared with those in phases
with Ny, > 0.

Finally, one can show that the topological phases protected by MWNSs are robust in the presence of disorder
that breaks all spatial symmetries and time-reversal symmetry. As such, these phases do not require crystalline
symmetries to exist, but will generally be boundary obstructed.

In conclusion, we have demonstrated a novel higher-order topological phases protected by MWNS in chiral-
symmetric systems, many of which would be misidentified as trivial by current theories.
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