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Abstract
Cyanobacteria possess unique intracellular organization. Many proteomic studies have examined different features of cyano-
bacteria to learn about the intracellular structures and their respective functions. While these studies have made great progress 
in understanding cyanobacterial physiology, the conventional fractionation methods used to purify cellular structures have 
limitations; specifically, certain regions of cells cannot be purified with existing fractionation methods. Proximity-based 
proteomics techniques were developed to overcome the limitations of biochemical fractionation for proteomics. Proximity-
based proteomics relies on spatiotemporal protein labeling followed by mass spectrometry of the labeled proteins to determine 
the proteome of the region of interest. We performed proximity-based proteomics in the cyanobacterium Synechococcus 
sp. PCC 7002 with the APEX2 enzyme, an engineered ascorbate peroxidase. We determined the proteome of the thylakoid 
lumen, a region of the cell that has remained challenging to study with existing methods, using a translational fusion between 
APEX2 and PsbU, a lumenal subunit of photosystem II. Our results demonstrate the power of APEX2 as a tool to study 
the cell biology of intracellular features and processes, including photosystem II assembly in cyanobacteria, with enhanced 
spatiotemporal resolution.
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Introduction

The intracellular spatial organization of cyanobacteria is 
unique among prokaryotes. As Gram-negative bacteria, 
cyanobacteria possess the typical inner and outer membrane 

systems enclosing a cell wall comprised of peptidoglycan. 
However, most cyanobacterial species also possess thylakoid 
membranes, an extra set of intracellular membranes where 
photosynthesis occurs, as well as carboxysomes, proteina-
ceous organelles used for carbon fixation. The distinctive 
intracellular spatial organization and protein complexes 
found within cyanobacteria have drawn particular interest 
to the cell biology of these organisms. Furthermore, cyano-
bacteria can also be used as a model for plant chloroplasts, 
as they share structural and biochemical similarities and 
have a common evolutionary ancestor. As a result, many 
proteomic studies of specific cyanobacterial structures, i.e. 
thylakoid membranes, have been performed (Agarwal et al. 
2010; Baers et al. 2019; Cheregi et al. 2015; Fulda et al. 
2000; Gao et al. 2014a; Herranen et al. 2004; Huang et al. 
2002, 2004, 2006; Kashino et al. 2002; Kurian et al. 2006a; 
Li et al. 2012; Liberton et al. 2016; Oliveira et al. 2016; 
Pisareva et al. 2007, 2011; Rajalahti et al. 2007; Rowland 
et al. 2010; Sergeyenko and Los 2000; Srivastava et al. 2005; 
Trautner and Vermaas 2013; Wang et al. 2000; Zhang et al. 
2009). These studies have made great progress towards 
understanding the physiology of cyanobacteria, but lack 
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the spatial resolution necessary to resolve the composition 
of many intracellular structures resistant to traditional bio-
chemical fractionation and purification methodologies.

Previously, proteomic studies of cyanobacterial com-
ponents were limited to fractionation and separation 
techniques which could introduce artifacts and result in 
ambiguous cellular localizations. For example, mechani-
cal disruption of cells often leads to cross-contamination 
between fractions and is, therefore, impractical for non-
membrane-bound regions or complex structures such as 
the thylakoid lumen. However, a technique termed prox-
imity-based proteomics was recently developed in mam-
malian cells to allow for proteomic analysis of cellular 
regions or protein interactomes that were unable to be 
purified using existing techniques (Kim and Roux 2016). 
Proximity-based proteomics relies on targeting a specific 
enzyme to a region of interest as a protein fusion to a 
full-length protein or signal sequence. The enzyme then 
performs chemistry in live cells to label proteins within 
a small radius (10–20 nm) of itself (Rhee et al. 2013). 
After cell lysis, the labeled proteins can then be separated 
from unlabeled proteins and analyzed using mass spec-
trometry. Several proximity-based proteomics techniques 
exist, but the most common use enzymes that biotinylate 
proteins (Kim and Roux 2016). We chose to use APEX2, 

an engineered ascorbate peroxidase that catalyzes a reac-
tion between biotin-phenol (BP) and hydrogen peroxide 
(H2O2) to create a BP radical that covalently attaches to 
proteins (Hung et al. 2016; Lam et al. 2015) (Fig. 1a). The 
reactivity and short half-life of biotin-phenol gives this 
technique a high-spatial specificity. Furthermore, APEX2 
has been shown to be catalytically active in multiple cel-
lular compartments and exhibits a short (1 min) labeling 
time, allowing for high temporal specificity (Hung et al. 
2016; Lam et al. 2015).

Here, we demonstrate the feasibility and potential of 
a proximity-based proteomics technique using APEX2 in 
Synechococcus sp. PCC 7002 (PCC 7002), a model cyano-
bacterium and promising chassis for biotechnological 
applications (Markley et al. 2015; Ruffing et al. 2016; Xu 
et al. 2011). To showcase the ability of APEX2 to interro-
gate regions of the cell where proteomics studies have not 
yet been possible due to limitations of existing biochemi-
cal methods, we targeted APEX2 to the thylakoid lumen 
by fusing it to PsbU, an extrinsic photosystem II (PSII) 
protein (Nishiyama et al. 1998), and identified the PsbU-
associated proteome by mass spectrometry. Determining 
the thylakoid lumen proteome is vital for understanding 
the physiological roles of the thylakoid membrane system 
and the reactions of oxygenic photosynthesis.

Fig. 1   APEX2-dependent labeling specifically biotinylates proteins 
in PCC 7002. a APEX2 reacts with BP in the presence of H2O2 to 
produce a BP radical. Biotinylated proteins are generated when the 
BP radical reacts with peptides, forming a covalent bond. b Cells 
expressing GFP and GFP-APEX2 (green) imaged using fluorescence 
microscopy. Scale bars are 2 µm. Chlorophyll channel (red) indicates 
thylakoid membrane. c 5  µg of protein from cells expressing either 

GFP or GFP-APEX2 was separated by SDS-PAGE and transferred 
to a membrane for immunoblot analysis using streptavidin to detect 
APEX2 activity. anti-RbcL antibody was used as a loading control 
and the same membrane was stripped and re-probed with anti-GFP 
antibody to check for expression of GFP (28  kDa) or GFP-APEX2 
(54 kDa)
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Results and discussion

Characterization of APEX2 labeling in PCC 7002

To determine if APEX2-dependent labeling of proteins 
was possible in cyanobacteria, GFP or GFP-APEX2 was 
incorporated into the genome of PCC 7002. Cytoplasmic 
localization of GFP and GFP-APEX2 was confirmed using 
fluorescence microscopy (Fig. 1b). To perform APEX2-
dependent biotinylation, cells were incubated with BP 
for 30 min and then exposed to H2O2 for 1 min. After 
quenching the reaction, cells were lysed by bead beating 
and a streptavidin blot confirmed the ability of APEX2 to 
biotinylate proteins in PCC 7002 (Fig. 1c). Biotin labe-
ling was only detected in the presence of APEX2, BP, and 
H2O2, demonstrating reaction specificity in vivo. Further-
more, the rapid reaction enables precise temporal control 
of labeling.

Purification of cytoplasmic APEX2‑biotinylated 
proteins from PCC 7002

Proteins biotinylated in vivo were enriched for further analy-
sis by affinity purification. APEX2-dependent biotinylation 
was performed in cells expressing GFP or GFP-APEX2 in 
the cytoplasm. Affinity purification of biotinylated pro-
teins was performed by incubating cellular lysates with 

streptavidin-coated magnetic beads. The background level 
of biotinylation was very low as biotinylated protein was 
only detected in cells expressing GFP-APEX2, but not cells 
expressing GFP alone (Fig. 2a, b). To confirm cytoplasmic 
APEX2 labels cytoplasmic proteins, immunoblots using anti-
bodies against expected cytoplasmic proteins were performed 
(Fig. 2c, d). Since the BP radical reacts with proteins within 
a 10–20 nm radius of its origin, APEX2 itself is expected to 
be biotinylated. Biotinylated GFP-APEX2 fusion protein was 
detected using an anti-GFP antibody, confirming the expected 
self-reactivity (Fig. 2c). Additionally, the large subunit of 
rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), 
RbcL, an abundant cytoplasmic protein, was only enriched 
on beads incubated with cells expressing GFP-APEX2 as 
detected using a specific anti-RbcL antibody (Fig. 2d). The 
high molecular weight RbcL band in lysates is likely the result 
of higher-order complexes formed in vivo; RbcL assembles 
into large protein assemblies to form the carboxysome, a bac-
terial microcompartment (Cameron et al. 2013). Following 
the more stringent enrichment and elution process, these com-
plexes have been disrupted and RbcL migrates as expected.

PsbU‑APEX2 and cytoplasmic APEX2 label different 
sets of proteins

APEX2 was fused to a protein localized to the thyla-
koid lumen to demonstrate the ability of proximity-based 

Fig. 2   Enrichment of proteins biotinylated by cytoplasmic APEX2 
in  vivo. Cells expressing GFP or GFP-APEX2 were incubated with 
BP and exposed to H2O2. Biotinylated proteins were captured from 
cell lysates on streptavidin coated magnetic beads. Fractions from 
each enrichment step were separated by SDS-PAGE and then silver 
stained for contrast or transferred to a nitrocellulose membrane and 
probed with specific antibodies. a Silver stain of noted fractions 

from unlabeled (GFP) or labeled (GFP-APEX2) lysates. b Bioti-
nylated proteins are only detected in fractions containing APEX2 and 
are enriched on streptavidin beads. c Expected self-labeling (bioti-
nylation) of GFP-APEX2 (54  kDa, marked with *) is confirmed by 
immunoblotting against GFP. d RbcL (55 kDa), a cytoplasmic protein 
expected to be labeled by GFP-APEX2 was specifically captured on 
beads incubated with GFP-APEX2
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proteomics to interrogate subcellular regions that have not 
been successfully purified using traditional methods. To 
accomplish this, the localizations of several candidate pro-
teins fused to GFP were examined by fluorescence micros-
copy. Of these candidates, PsbU, an extrinsic subunit of 
PSII, exhibited the most promising localization and therefore 
was selected to target APEX2 to the thylakoid lumen. The 
PsbU-APEX2 gene fusion is expressed from neutral site 1 
in the chromosome under a constitutive promoter. APEX2-
dependent labeling and biotinylated protein purification was 
performed on cells expressing thylakoid lumenal PsbU-
APEX2 and cells expressing cytoplasmic GFP-APEX2. 
A silver stain of purified biotinylated proteins from GFP-
APEX2 and PsbU-APEX2 shows different banding patterns, 
suggesting that a different set of proteins is labeled by the 
different APEX2 fusions (Fig. 3a). The thylakoid localiza-
tion of PsbU-GFP was confirmed using fluorescence micros-
copy (Fig. 3b). The localization of PsbU-GFP was used as a 
proxy for the localization of PsbU-APEX2, since GFP and 
APEX2 are both C-terminal tags of a similar size. To iden-
tify the proteins labeled by the different APEX2 fusion pro-
teins, biotinylated proteins were purified from two independ-
ent samples of both PsbU-APEX2 labeled and GFP-APEX2 

labeled cells, and the resulting peptides following tryptic 
digestion were separated and detected using LC–MS/MS. 
Protein identification required a minimum of 2 spectral 
counts and 2 peptides in each sample. 99 proteins were 
identified exclusively in both PsbU-APEX2 replicates and 
297 proteins were identified exclusively in both GFP-APEX2 
replicates. 438 proteins were identified in both PsbU-APEX2 
and both GFP-APEX2 replicates (Fig. 3c). 

Biotinylated proteins enriched in PsbU‑APEX2 
samples

Mass spectrometry data were further analyzed to determine 
which proteins were labeled by PsbU-APEX2. PsbU is a 
lumenal extrinsic subunit of PSII and therefore the majority 
of PsbU-APEX2 is expected to be localized to the thyla-
koid membrane or lumen. However, because PsbU-APEX2 
is translated in the cytoplasm and then translocated to its 
final destination in the lumen, we also expected that a small 
population of PsbU-APEX2 could be present in the cyto-
plasm, resulting in labeling of cytoplasmic proteins. There-
fore, GFP-APEX2 was used as a control instead of a sample 
lacking APEX2/BP/H2O2, since it would control for the 

Fig. 3   PsbU-APEX2 and 
Cytoplasmic APEX2 label 
different sets of proteins. a 
Silver stain of the biotinylated 
protein purification from PCC 
7002 expressing GFP, GFP-
APEX2, PsbU, PsbU-GFP, or 
PsbU-APEX2 after APEX2-
dependent biotinylation. b 
Localization of PsbU-GFP and 
GFP-APEX2 were visualized 
with fluorescence microscopy 
(Green). Chlorophyll chan-
nel (red) indicates thylakoid 
membrane. Scale bars are 2 µm. 
c Biotinylated proteins from 
strains expressing GFP-APEX2 
and PsbU-APEX2 identi-
fied by mass spectrometry. d 
Functional categories of the 
proteins enriched in PsbU-
APEX2 samples obtained from 
quantitative analysis of mass 
spectrometry data (number of 
proteins; percentage of 123 total 
proteins). The proteins used 
for this analysis are listed in 
Table 1. (Also see Supplemen-
tary Tables 1 and 2)
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small cytoplasmic population of PsbU-APEX2 in addition 
to proteins nonspecifically bound to the streptavidin beads 
and endogenously biotinylated proteins.

An analysis of the mass spectrometry data using Max-
Quant Label Free Quantitation (LFQ) intensities and nor-
malized spectral counts was used to determine the identity of 
proteins specifically enriched with PsbU-APEX2 compared 
to the GFP-APEX2 control (Old et al. 2005). As part of this 
analysis, proteins were organized by descending enrichment 
value (log2(PsbU-APEX2 LFQ intensity/GFP-APEX2 LFQ 
intensity) or log2(PsbU-APEX2 normalized spectral counts/
GFP-APEX2 normalized spectral counts). A true-positive 
list was constructed from PCC 7002 proteins homologous 
to Synechocystis sp. PCC 6803 (PCC 6803) proteins with 
evidence for thylakoid lumen or thylakoid membrane locali-
zation (Agarwal et al. 2010; Aldridge et al. 2008; Baers et al. 
2019; Fulda et al. 2002; Heinz et al. 2016; Herranen et al. 
2004; Kashino et al. 2002, 2006; Komenda et al. 2006; Lib-
erton et al. 2016; Ohkawa et al. 2002; Pisareva et al. 2011; 
Rajalahti et al. 2007; Rengstl et al. 2011; Rowland et al. 
2010; Sacharz et al. 2015; Schultze et al. 2009; Srivastava 
et al. 2005; Wang et al. 2000; Xu et al. 2008; Zak et al. 
1999, 2001; Zhang et al. 2004). A false-positive list of PCC 
7002 proteins was constructed from homologous proteins 
found in the soluble proteome of PCC 6803 that do not have 
signal sequences or transmembrane helices, as these pro-
teins are expected to be cytoplasmic (Baers et al. 2019; Choi 
et al. 2000; Fulda et al. 2006; Fuszard et al. 2013; Gan et al. 
2005; Gao et al. 2014b, 2015, 2009; Kurian et al. 2006b; 
Mata-Cabana et al. 2007; Mehta et al. 2014; Mikkat et al. 
2014; Pandhal et al. 2009; Pérez‐Pérez et al. 2006; Plohnke 
et al. 2015; Rowland et al. 2011; Simon et al. 2002; Slabas 
et al. 2006). As expected, proteins from the true-positive list 
have significantly higher enrichment values than proteins 
from the false-positive list (Fig. S2). Using the true- and 
false-positive lists, we identified a cutoff value to discrimi-
nate between enriched proteins and those that bound to the 
beads non-specifically or were enriched by GFP-APEX2. 
This analysis was performed using both enrichment values 
for both PsbU-APEX2 replicates (Table S1). Therefore, two 
analyses were performed on each PsbU-APEX2 replicate, 
one using enrichment values calculated with LFQ intensity 
values and a second using enrichment values calculated with 
normalized spectral counts. To be as stringent as possible, 
only the 123 proteins above the cutoff in all four analyses 
were reported, which we called PsbU-APEX2-enriched pro-
teins (Table 1). The PsbU-APEX2 enriched proteins include 
a subset of the 99 proteins exclusive to the PsbU-APEX2 
replicates, as well as additional proteins enriched in abun-
dance over the GFP-APEX2 replicates. Major functions of 
enriched proteins are shown in Fig. 3d.

The list of 123 PsbU-APEX2 enriched proteins includes 
many proteins expected to be present within the thylakoid 

lumen and membrane (Table 1). The majority of proteins 
(73) have PCC 6803 homologs previously localized to thy-
lakoid membrane or lumen (See Table 1). Out of the 50 
proteins that have not been previously localized to the thyla-
koid membrane, 17 have no PCC 6803 homolog, 12 have no 
localization data for specific cellular structures or regions, 
and 21 have only previously been localized to somewhere 
other than the thylakoid membrane or lumen, such as the 
plasma membrane or periplasm. This analysis of previous 
localizations of homologous proteins in the literature was 
performed in lieu of experimental validation of the localiza-
tion of enriched proteins. There is no other method to bio-
chemically separate the thylakoid lumen from other intra-
cellular structures, and while fluorescence microscopy of 
GFP-tagged proteins could be used to determine if a protein 
associates with the thylakoid membranes, it does not have 
the resolution to determine if a protein is on the cytoplas-
mic or lumenal side of the thylakoid membrane. Previous 
localizations of homologous proteins were used because 
most localization studies in cyanobacteria have been done 
in other species, specifically PCC 6803, and very few have 
been completed in PCC 7002. To further support the hypoth-
esis that PsbU-APEX2 enriched proteins are part of a cellu-
lar compartment and not cytoplasmic, the presence of signal 
sequences and transmembrane helices were predicted from 
their protein sequences (see Table S2). The majority (105) 
of enriched proteins possess either a signal sequence or at 
least one transmembrane helix.

Thylakoid lumen proteins, including the lumenal extrinsic 
subunits of PSII (PsbU, PsbQ, PsbO, and PsbV) and Cyt 
c6 (PetJ1) were enriched in PsbU-APEX2 samples (Fig. 4). 
Unlike PCC 6803, PCC 7002 does not express plastocyanin, 
and therefore, PetJ1 is the only protein known that is solu-
ble in the thylakoid lumen and not tightly associated with a 
protein complex. This protein was enriched in our analysis, 
demonstrating that the technique used is able to enrich for 
soluble proteins within the thylakoid lumen. Additionally, 
enrichment of the PSII integral membrane subunits and 
extrinsic lumenal subunits shows the capability of APEX2 to 
label membrane-associated and integral membrane proteins. 
Integral membrane proteins from PSII, photosystem I (PSI), 
cytochrome b6f, ATP synthase, and NADH dehydrogenase 
(NDH), if identified by mass spectrometry, were enriched in 
the PsbU-APEX2 samples, with the exception of the PsbD 
subunit of PSII and the NdhD3 (A0173) and NdhF3 (A0172) 
subunits of NDH. PsbD and NdhF3 protein were above the 
enrichment cutoff in two analyses, but the below the cutoff 
in the other two analyses (Tables S1 and S2). The NdhD3 
protein was above the cutoff in only one analysis. Most of 
the cytoplasmic non-membrane integral protein subunits of 
PSI, ATP synthase, and NDH complexes are not enriched in 
the PsbU-APEX2 samples, and some are unique to the GFP-
APEX2 samples. The lack of enrichment of proteins on the 
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cytoplasmic side of the thylakoid membrane demonstrates 
the specificity of PsbU-APEX2 to label proteins within the 
lumen and thylakoid membrane. The cytoplasmic facing 
subunits that were enriched in the PsbU-APEX2 samples are 
PsaC and PsaD. These subunits and PsaE are within the top 
15% of proteins ranked by membrane association, and are 
more tightly associated with the membrane than the phyco-
bilisome proteins and the cytoplasmic subunits of NDH and 
ATP synthase (Gao et al. 2015). PsbU-APEX2 will be more 
efficient at labeling cytoplasmic side proteins closely asso-
ciated with the thylakoid membrane, like PsaC and PsaD, 
since proteins closely associated with the thylakoid mem-
brane are within the biotinylation radius of lumenal PsbU-
APEX2 for more time. Following that same logic, freely 
diffusing cytoplasmic GFP-APEX2 is likely more efficient 
at biotinylating freely diffusing cytoplasmic proteins than 
proteins closely associated with the thylakoid membrane.

Many factors involved in the assembly of PSII were 
also PsbU-APEX2 enriched (Fig. 5). Proteins both early 
and late in the assembly process were enriched. SecY and 
Alb3, proteins involved in inserting the PsbA into the mem-
brane were enriched (Chidgey et al. 2014; Linhartová et al. 

2014; Sachelaru et al. 2013). PratA, a protein that is thought 
to deliver Mn2+ to PsbA, and CtpA, which processes the 
C-terminal tail of PsbA, have previously been localized to 
the periplasm and plasma membrane, respectively, but were 
exclusively found in PsbU-APEX2 samples in this study 
(Anbudurai et al. 1994; Klinkert et al. 2004; Komenda et al. 
2006; Schottkowski et al. 2009; Stengel et al. 2012; Zak 
et al. 2001). PsbP, Ycf48, and Psb27 are PSII assembly fac-
tors enriched by PsbU-APEX2 that are thought to be local-
ized within the thylakoid lumen (Heinz 2016). The assembly 
factors Ycf39 and Psb28, along with the PSII repair factor 
Psb29, are on the cytoplasmic side of membranes and were 
not enriched by PsbU-APEX2 (Bec̆ková et al. 2017; Heinz 
2016). The lumenal proteins YtfC and A2294 (homologous 
to sll0408 in PCC 6803) are homologs to factors important 
for PSII assembly in plants that were also PsbU-APEX2 
enriched (Heinz 2016). Proteins involved in PSII repair were 
also enriched by PsbU-APEX2. For example, Psb32, a pro-
tein that protects PSII from photodamage and aids in PSII 
repair, was exclusive to PsbU-APEX2 samples (Wegener 
et al. 2011). Additionally, FtsH2, a protein involved in the 
repair of damaged PSII, was also enriched in PsbU-APEX2 

Fig. 4   Enrichment of Protein Complex Subunits in the Thylakoid 
Membrane. The protein complexes present in the thylakoid mem-
brane are color-coded by their enrichment; the key is located on 
the right side of the figure. Light and dark green subunits are both 
enriched in the PsbU-APEX2 samples over the GFP-APEX2 sam-
ples; the dark green samples were unique to the PsbU-APEX2 
samples, while the light green subunits were also identified in the 
GFP-APEX2. Yellow subunits represent proteins identified in both 
PsbU-APEX2 and GFP-APEX2 samples but not enriched in PsbU-
APEX2. Red subunits are proteins unique to the GFP-APEX2 sam-

ples. Gray proteins were not identified by mass spectrometry in this 
study. The identity of each protein complexes is either above or 
below the complex. The proteins associated with a specific complex 
are named with the following prefixes followed by the letter or num-
ber the protein is labeled with: Psb for PSII, Pet for cyt b6f, Psa for 
PSI, Ndh for NADH dehydrogenase, and Atp for ATP synthase. The 
exceptions to this are Fd (PetF) and FNR (PetH). Note—there are 
two different proteins both called AtpG; the yellow subunit refers to 
A0733 and the light green subunit refers to A0737
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samples (Komenda et al. 2006, 2010). PsbQ, a protein pre-
sent in the most active PSII fraction that is thought to define 
the complete assembly of PSII was also exclusive to PsbU-
APEX2 (Roose et al. 2007). The variety of early and late 
assembly factors enriched by PsbU-APEX2 demonstrate 
the ability of APEX2-based proximity-based proteomics to 
capture assembly intermediates of protein complexes of low 
abundance. In the future, this technique could be used to 
gain novel insights into low abundance assembly intermedi-
ates of protein complexes in other processes.

Many proteins involved in other cellular processes were 
localized to the thylakoid membrane and lumen in this 
study. At least ten proteases were enriched in PsbU-APEX2, 
including the thylakoid signal peptidase LepB (Zhbanko 
et al. 2005). PsbU-APEX2 enriched proteins also include 
proteins involved in transport of numerous different known 
and unknown substrates. Many of the proteins involved in 
transport and protein trafficking, assembly, and process-
ing have previously been localized to the periplasm or the 
plasma membrane, and have not been localized to the thyla-
koid membrane. Furthermore, many other proteins enriched 
by PsbU-APEX2 have been localized to the plasma mem-
brane and/or the periplasm in addition to the thylakoid mem-
brane. The biological relevance of the plasma membrane and 
periplasmic proteins enriched by PsbU-APEX2 is unclear. 
It is possibly an artifact of overexpression of PsbU-APEX2. 
However, the cyanobacterium Gloeobacter violaceus does 
not contain a thylakoid membrane (Mareš et al. 2013) and 
instead performs oxygenic photosynthesis in the inner mem-
brane. If the thylakoid membrane and lumen originated from 
the plasma membrane and periplasmic space, respectively, 

perhaps it is not surprising that some proteins are found in 
both cellular fractions. Furthermore, ultrastructural stud-
ies of PCC 6803 using cryo-electron tomography identified 
sites of contact between the thylakoid and plasma membrane 
(Rast et al. 2019). Additional possibilities include dual local-
ization of proteins, low fidelity of the sorting mechanism of 
translocated proteins into the lumen and the periplasm, and 
post-translocation sorting of proteins into their final localiza-
tion. Further experiments are needed to determine the bio-
logical relevance of the periplasmic and inner membrane 
proteins observed.

In addition to large protein complexes involved in energy 
metabolism, PSII assembly factors, and proteases, the PsbU-
APEX2-enriched proteins include proteins with other func-
tions. For example, several thioredoxins, including the thy-
lakoid specific thioredoxin A2695, were enriched (Zhu et al. 
2016). A beta-carotene desaturase (A1248) was also identi-
fied. Proteins involved in maintaining the cell wall (A0339 
and A0578) and S-layer proteins (A2605 and A1020) were 
also enriched. Another protein (A1522) with homology to 
biotin carboxylases was also enriched by PsbU-APEX2 in 
this study. Additionally, there are several proteins that have 
not been previously localized and have unknown functions 
(A1127, A1207, A1664, A2166, A2439, A2578, A2847, 
and G0157). These proteins could be the subject of future 
research.

The experiments performed here demonstrate the poten-
tial of APEX2 to interrogate the proteome of regions of 
cyanobacteria that have not been previously biochemically 
purified, like the thylakoid lumen. It also demonstrates the 
ability of APEX2 to capture low abundance protein complex 

Fig. 5   Enrichment of PSII assembly factors. The PSII assembly and 
repair components known in PCC 6803 are shown. The proteins are 
color-coded by their enrichment, the key is located on the top. Light 
and dark green subunits are both enriched in the PsbU-APEX2 sam-
ples over the GFP-APEX2 samples; the dark green samples were 
unique to the PsbU-APEX2 samples, while the light green subunits 
were also identified in the GFP-APEX2. Yellow subunits represent 

proteins identified in both PsbU-APEX2 and GFP-APEX2 samples 
but not enriched in PsbU-APEX2. Red subunits are proteins unique to 
the GFP-APEX2 samples. Gray proteins were not identified by mass 
spectrometry in this study. The prefix “Psb” should be added to any 
proteins labeled with only a letter or number to obtain the name of the 
protein
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assembly intermediates. In the future, this technique can be 
used to monitor the proteomes of specific regions of the 
cell under different environmental conditions. Additionally, 
APEX2 can be used to determine the topology of membrane 
proteins and identify candidates for protein–protein inter-
actions (Lee et al. 2016; Lobingier et al. 2017; Mavylutov 
et al. 2018; Paek et al. 2017). Proximity-based proteomics 
using APEX2 has the potential to be a powerful tool in the 
pursuit of understanding the physiology of photosynthetic 
organisms.

Methods

Creation of PCC 7002 strains

The psbU gene (SynPCC7002_A0322) was amplified from 
PCC 7002 while APEX2 was amplified from a plasmid 
gifted to us by Alice Ting (Addgene plasmid # 72,558; 
http://n2t.net/addge​ne:72558​; RRID:Addgene_72558). Plas-
mids were assembled using Gibson Assembly (Gibson et al. 
2009) with neutral site 1 as the homology arms, pccmK2 as 
the promoter (Cameron et al. 2013; Ruffing et al. 2016), and 
kanamycin resistance for selection. The Gibson reactions 
were transformed into DH5α E. coli, and minipreps of liquid 
cultures started from single colonies were performed to col-
lect plasmid. Plasmid was transformed into PCC 7002 (Ste-
vens and Porter, 1980) and colonies containing the desired 
insert were serially passaged in the presence of antibiotic 
until segregated.

Biotinylation of proteins by APEX2 in PCC 7002

Biotinylation of proteins was performed using a modified 
protocol from Hung et al. and Hwang and Espenshade that 
was optimized for PCC 7002 (2016; 2016). Briefly, 50 mL 
cultures of PCC 7002 strains were grown in A + media (Ste-
vens et al. 1973) in air at 37 °C with a light intensity of 
185 µmol photons m−2 s−1 for 2 days to an OD730 of about 
0.5. Several µL of culture were saved to image on the micro-
scope. The culture was pelleted at 4300×g for 10 min at 
4 °C. The supernatant was poured off and cells were resus-
pended in 4 mL A + medium with 2.5 mM BP and trans-
ferred to a six-well plate. Six-well plates were incubated 
shaking in air at 37 °C with a light intensity of 185 µmol 
photons m−2 s−1 for 30 min. Samples were then pelleted in 
a 1.5 mL tube and resuspended in 1 mL phosphate buffered 
saline pH 7.8 (Bio-Rad) (PBS). 10 µL of 100 mM H2O2 was 
added and cells were inverted for 30 s before pelleting for 
30 s. Supernatant was removed and cells were resuspended 
in quencher solution (PBS with 10 mM sodium ascorbate, 
5 mM Trolox and 10 mM sodium azide) and pelleted. This 
step was repeated two additional times. The supernatant was 

removed and the cell pellets were frozen at − 80 °C for stor-
age and to facilitate cell lysis.

Cell lysis

The cell pellet was resuspended in RIPA lysis buffer with 
quenchers (50 mM Tris pH 7.4, 150 mM NaCl, 0.1% (w/v) 
SDS, 0.5% (w/v) sodium deoxycholate, 1% (v/v) Triton 
X-100, 10 mM sodium ascorbate, 5 mM Trolox, 10 mM 
sodium azide, 1 mM PMSF). Cells were lysed using bead 
beating, with 30 cycles of 20 s on and 20 s off on ice. The 
lysate and beads were pelleted at 2000×g and the superna-
tant was collected. The supernatant was then pelleted for 
5 min at 15000×g and the supernatant was collected and 
flash frozen.

Protein concentration measurement

The protein concentration of cell lysate was quantified using 
the Pierce 660 nm Protein Assay (Thermo Fisher).

Purification of biotinylated proteins

Streptavidin magnetic beads (Pierce) were washed twice 
in RIPA lysis buffer (50 mM Tris pH 7.4, 150 mM NaCl, 
0.1% (w/v) SDS, 0.5% (w/v) sodium deoxycholate, 1% (v/v) 
Triton X-100) and the supernatant was removed. 800 µL 
of RIPA lysis buffer with quenchers containing 50 µg of 
protein for every 50 µL of streptavidin magnetic beads was 
added. Beads were incubated with protein for 1 h at room 
temperature on a rotator. The beads were then washed twice 
with RIPA lysis buffer, once with 1 M KCl, once with 0.1 M 
Na2CO3, once with 8 M urea in 10 mM Tris pH 7.5, and 
once again with RIPA lysis buffer.

Elution of biotinylated proteins for gels and blots

Beads were denatured at 98 °C for 10 min in 30 µL of elu-
tion buffer (3X Laemmli buffer, 2 mM biotin, 20 mM DTT) 
to elute biotinylated proteins. The eluate was collected and 
diluted with 60 µL of water to run on gels.

Preparation for mass spectrometry

Beads were washed an additional 5 times with 50 mM 
NH4HCO3 containing 0.2% (w/v) sodium deoxycholate. The 
supernatant was removed and beads were resuspended in 50 
µL 10 mM TCEP and 40 mM chloroacetamide and incubated 
at 37 °C for 30 min to reduce and alkylate the proteins. 150 
µL water containing 0.225% (w/v) sodium deoxycholate 

http://n2t.net/addgene:72558
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and 0.2 µg Promega sequencing grade modified trypsin was 
added. An on-bead digestion was performed overnight on 
a rotator at 37 °C. Beads were pelleted and the supernatant 
was collected. Formic acid was added to 2% (w/v) to stop 
digestion. Sodium deoxycholate was removed using 3 phase 
transfers with ethyl acetate. The samples were desalted using 
in-house STAGE tips with 3 M Empore SDB-RPS mem-
brane and dried using a vacuum centrifugation.

LC–MS/MS

The tryptic peptides were resolved using an UltiMate 3000 
UHPLC system (Thermo Fisher) in a direct injection mode. 
Peptides were reconstituted in Buffer A (0.1% formic acid 
in water), and peptide concentration was measured using 
Fluoraldehyde o-Phthaldialdehyde Reagent (Thermo 
Fisher). For each sample, 250 ng (5 µL) of the peptides 
were loaded onto a Waters BEH C18 column (130  Å, 
1.7 µm × 75 µm × 250 mm) with 98.4% Buffer A and 1.6% 
Buffer B (0.1% formic acid in acetonitrile) at 0.4 µL/min for 
16.67 min. Peptides were resolved and eluted using a gradi-
ent of 1.6 to 8% B (0–8 min), 8–20% B (8–140 min), and 
20–32% B (140–160 min) at 0.3 µL/min. MS/MS was per-
formed on a Q-Exactive HF-X mass spectrometer (Thermo 
Fisher), scanning precursor ions between 380–1580 m/z 
(60,000 resolution, 3 × 106 ions AGC target, 45 ms maxi-
mum ion fill time), and selecting the 12 most intense ions 
for MS/MS (15,000 resolution, 1 × 105 ions AGC target, 
150 ms maximum ion fill time, 1.4 m/z isolation window, 27 
NCE, 30 s dynamic exclusion). Ions with unassigned charge 
state, + 1, and >  + 7 were excluded from the MS/MS.

Silver stain protocol

Proteins were separated on a 10% SDS-PAGE gel and 
stained using the short silver nitrate staining protocol 
described in by Chevallet et al. (2006).

Immunoblotting

Proteins were separated on a 10% SDS-PAGE gel and immu-
noblots were performed following the protocol from Green 
and Sambrook (2012). Protein was transferred to a nitro-
cellulose membrane, or a polyvinylidene fluoride (PVDF) 
membrane if fluorescent secondary antibodies were used. 
After blocking membranes overnight, membranes were 
incubated with GFP (Invitrogen, cat. no. A6455) or RbcL 
(Agrisera, cat. no. AS03037) antibodies, or streptavidin-
HRP (Life Technologies, cat. no. R960-25). Membranes 
probed for GFP or RbcL were then incubated with a second-
ary antibody conjugated to HRP or AlexaFluor 488 (Thermo 
Fisher, cat. no. A-11008 or cat. no. 31460). Membranes were 

visualized using chemiluminescence after exposure to the 
Clarity Western ECL substrate (Bio-Rad) or fluorescence. 
If necessary, blots were stripped using ReBlot Plus Mild 
Solution (Millipore).

Fluorescence microscopy

Cells were spotted onto an agar pad (A + with 1% agar) 
and placed onto a microscope slide. Cells were imaged on 
a customized Nikon TiE inverted wide-field microscope 
with a Near-IR-based Perfect Focus system. Images were 
acquired with an ORCA Flash4.0 V2 + Digital sCMOS cam-
era (Hamamatsu) using a Nikon CF160 Plan Apochromat 
Lambda 100 × oil immersion objective (1.45 N.A.). Chlo-
rophyll fluorescence of thylakoid membranes was imaged 
using a 640 nm LED light source (SpectraX) for excitation 
and a standard Cy5 emission filter. GFP localization was 
imaged using a 470 nm LED light source (SpectraX) for 
excitation and a standard GFP emission filter.

LC–MS/MS data analysis

MaxQuant/Andromeda (version 1.6.1.10) was used to pro-
cess raw files from the Q Exactive HF-X and search the 
peak lists against a database consisting of Uniprot PCC 7002 
proteome (UP000001688, total 3,179 entries, downloaded 
at 6/22/2019). The search allowed trypsin specificity with 
a maximum two missed-cleavage and set carbamidomethyl 
modification on cysteine as a fixed modification and protein 
N-terminal acetylation and oxidation on methionine as vari-
able modifications. MaxQuant used 4.5 ppm main search 
tolerance for precursor ions, 20 ppm MS/MS match toler-
ance, searching top 12 peaks per 100 Da. False discovery 
rates for both protein and peptide were 0.01 with a minimum 
of seven amino acid peptide length. Label-free quantifica-
tion was enabled with minimum 2 LFQ ratio counts and a 
fast LFQ option. The mass spectrometry proteomics data 
have been deposited to the ProteomeXchange Consortium 
via the PRIDE partner repository with the dataset identifier 
PXD021787 (Perez-Riverol et al. 2019).

Only proteins with at least two unique peptides and two 
spectral counts were considered identified in an individual 
sample. PCC 7002 proteins identified in both GFP-APEX2 
replicates and/or both PsbU-APEX2 replicates were retained 
for further analysis, including the PsbU-APEX enriched pro-
tein analysis and the Venn diagram (Table S1). A presence/
absence Venn diagram was constructed (Fig. 3c). A protein 
must be identified in both replicates of a sample to appear 
in the Venn diagram. Proteins identified in both replicates 
of a sample and only one replicate of the other sample (176 
proteins) were not added to the Venn diagram as their locali-
zation was unclear.
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PsbU‑APEX2 enriched protein analysis

The log2 ratio of the MAXQUANT LFQ intensities and the 
log2 ratio of normalized spectral counts were used as met-
rics to determine enrichment in the PsbU-APEX2 A and 
PsbU-APEX2 B samples over the GFP-APEX2 B sample 
(log2(U/G)) (Old et al. 2005). If a protein was not identified 
in a sample, the LFQ intensity was set to zero. To determine 
the cutoff for proteins enriched in PsbU-APEX2 samples, 
identified proteins were cross-referenced with true positive 
(TP) or false positive (FP) lists. The TP lists were assembled 
using localization data from studies of the thylakoid lumen 
or thylakoid membrane in PCC 6803. All proteins experi-
mentally localized or predicted to localize to the thylakoid 
lumen in any study were included in the TP list (Aldridge 
et al. 2008; Fulda et al. 2002; Heinz et al. 2016; Kashino 
et al. 2006; Rajalahti et al. 2007). To include integral thyla-
koid membrane proteins, proteins localized to the thylakoid 
membrane in at least 4 studies that had at least 1 predicted 
transmembrane helix were also added to the TP list (Agar-
wal et al. 2010; Baers et al. 2019; Herranen et al. 2004; 
Kashino et al. 2002; Komenda et al. 2006; Liberton et al. 
2016; Ohkawa et al. 2002; Pisareva et al. 2011; Rengstl et al. 
2011; Rowland et al. 2010; Sacharz et al. 2015; Schultze 
et al. 2009; Srivastava et al. 2005; Wang et al. 2000; Xu et al. 
2008; Zak et al. 1999, 2001; Zhang et al. 2004). The FP list 
was assembled using data from studies of the soluble pro-
teome of PCC 6803. The FP list contained proteins that were 
found in the soluble proteome in at least 4 studies, had no 
predicted signal sequence or transmembrane helix, and was 
found in 1 or less studies of the thylakoid membrane (Baers 
et al. 2019; Choi et al. 2000; Fulda et al. 2006; Fuszard 
et al. 2013; Gan et al. 2005; Gao et al. 2014b, 2015, 2009; 
Kurian et al. 2006b; Mata-Cabana et al. 2007; Mehta et al. 
2014; Mikkat et al. 2014; Pandhal et al. 2009; Pérez‐Pérez 
et al. 2006; Plohnke et al. 2015; Rowland et al. 2011; Simon 
et al. 2002; Slabas et al. 2006). The TP and FP lists are in 
Supplementary Table 3.

A total of four analyses were performed, one for each 
enrichment metric (Log2(U/G) using LFQ intensity and 
Log2(U/G) using normalized spectral counts) in each PsbU-
APEX2 sample. For each protein in every analysis, the true 
positive rate (TPR) and the false-positive rate (FPR) were 
calculated. The TPR for a specific protein was the number 
of TP proteins with an enrichment greater than or equal to 
the enrichment of the specific protein divided by the total 
number of TP proteins found in the experiment. The FPR 
for a specific protein was the number of FP proteins with 
an enrichment greater than or equal to the enrichment of 
the specific protein divided by the total number of FP pro-
teins. The cutoff for each sample was the enrichment with 
the greatest difference between the TPR and FPR value. The 

proteins above the cut-off of the in all 4 analyses are reported 
in Table 1 and were used to make Fig. 3d.

Signal sequence prediction

To predict if a protein had a signal sequence and the cut site 
to the remove the signal sequence, all proteins in the UniProt 
reference proteome for PCC 7002 were analyzed with Sig-
nalP-5.0 using both the Gram-positive and Gram-negative 
bacterial options.

Transmembrane helices prediction

To predict if a protein had transmembrane helices, all pro-
teins in the UniProt reference proteome for PCC 7002 were 
analyzed using the TMHMM Server v. 2.0.
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