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Abstract

Cyanobacteria possess unique intracellular organization. Many proteomic studies have examined different features of cyano-
bacteria to learn about the intracellular structures and their respective functions. While these studies have made great progress
in understanding cyanobacterial physiology, the conventional fractionation methods used to purify cellular structures have
limitations; specifically, certain regions of cells cannot be purified with existing fractionation methods. Proximity-based
proteomics techniques were developed to overcome the limitations of biochemical fractionation for proteomics. Proximity-
based proteomics relies on spatiotemporal protein labeling followed by mass spectrometry of the labeled proteins to determine
the proteome of the region of interest. We performed proximity-based proteomics in the cyanobacterium Synechococcus
sp. PCC 7002 with the APEX?2 enzyme, an engineered ascorbate peroxidase. We determined the proteome of the thylakoid
lumen, a region of the cell that has remained challenging to study with existing methods, using a translational fusion between
APEX?2 and PsbU, a lumenal subunit of photosystem II. Our results demonstrate the power of APEX?2 as a tool to study
the cell biology of intracellular features and processes, including photosystem II assembly in cyanobacteria, with enhanced
spatiotemporal resolution.
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Introduction systems enclosing a cell wall comprised of peptidoglycan.

However, most cyanobacterial species also possess thylakoid

The intracellular spatial organization of cyanobacteria is
unique among prokaryotes. As Gram-negative bacteria,
cyanobacteria possess the typical inner and outer membrane
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membranes, an extra set of intracellular membranes where
photosynthesis occurs, as well as carboxysomes, proteina-
ceous organelles used for carbon fixation. The distinctive
intracellular spatial organization and protein complexes
found within cyanobacteria have drawn particular interest
to the cell biology of these organisms. Furthermore, cyano-
bacteria can also be used as a model for plant chloroplasts,
as they share structural and biochemical similarities and
have a common evolutionary ancestor. As a result, many
proteomic studies of specific cyanobacterial structures, i.e.
thylakoid membranes, have been performed (Agarwal et al.
2010; Baers et al. 2019; Cheregi et al. 2015; Fulda et al.
2000; Gao et al. 2014a; Herranen et al. 2004; Huang et al.
2002, 2004, 2006; Kashino et al. 2002; Kurian et al. 2006a;
Li et al. 2012; Liberton et al. 2016; Oliveira et al. 2016;
Pisareva et al. 2007, 2011; Rajalahti et al. 2007; Rowland
et al. 2010; Sergeyenko and Los 2000; Srivastava et al. 2005;
Trautner and Vermaas 2013; Wang et al. 2000; Zhang et al.
2009). These studies have made great progress towards
understanding the physiology of cyanobacteria, but lack
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the spatial resolution necessary to resolve the composition
of many intracellular structures resistant to traditional bio-
chemical fractionation and purification methodologies.
Previously, proteomic studies of cyanobacterial com-
ponents were limited to fractionation and separation
techniques which could introduce artifacts and result in
ambiguous cellular localizations. For example, mechani-
cal disruption of cells often leads to cross-contamination
between fractions and is, therefore, impractical for non-
membrane-bound regions or complex structures such as
the thylakoid lumen. However, a technique termed prox-
imity-based proteomics was recently developed in mam-
malian cells to allow for proteomic analysis of cellular
regions or protein interactomes that were unable to be
purified using existing techniques (Kim and Roux 2016).
Proximity-based proteomics relies on targeting a specific
enzyme to a region of interest as a protein fusion to a
full-length protein or signal sequence. The enzyme then
performs chemistry in live cells to label proteins within
a small radius (10-20 nm) of itself (Rhee et al. 2013).
After cell lysis, the labeled proteins can then be separated
from unlabeled proteins and analyzed using mass spec-
trometry. Several proximity-based proteomics techniques
exist, but the most common use enzymes that biotinylate
proteins (Kim and Roux 2016). We chose to use APEX2,
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Fig.1 APEX2-dependent labeling specifically biotinylates proteins
in PCC 7002. a APEX2 reacts with BP in the presence of H,0, to
produce a BP radical. Biotinylated proteins are generated when the
BP radical reacts with peptides, forming a covalent bond. b Cells
expressing GFP and GFP-APEX?2 (green) imaged using fluorescence
microscopy. Scale bars are 2 um. Chlorophyll channel (red) indicates
thylakoid membrane. ¢ 5 ug of protein from cells expressing either
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an engineered ascorbate peroxidase that catalyzes a reac-
tion between biotin-phenol (BP) and hydrogen peroxide
(H,0,) to create a BP radical that covalently attaches to
proteins (Hung et al. 2016; Lam et al. 2015) (Fig. 1a). The
reactivity and short half-life of biotin-phenol gives this
technique a high-spatial specificity. Furthermore, APEX?2
has been shown to be catalytically active in multiple cel-
lular compartments and exhibits a short (1 min) labeling
time, allowing for high temporal specificity (Hung et al.
2016; Lam et al. 2015).

Here, we demonstrate the feasibility and potential of
a proximity-based proteomics technique using APEX2 in
Synechococcus sp. PCC 7002 (PCC 7002), a model cyano-
bacterium and promising chassis for biotechnological
applications (Markley et al. 2015; Ruffing et al. 2016; Xu
etal. 2011). To showcase the ability of APEX2 to interro-
gate regions of the cell where proteomics studies have not
yet been possible due to limitations of existing biochemi-
cal methods, we targeted APEX2 to the thylakoid lumen
by fusing it to PsbU, an extrinsic photosystem II (PSII)
protein (Nishiyama et al. 1998), and identified the PsbU-
associated proteome by mass spectrometry. Determining
the thylakoid lumen proteome is vital for understanding
the physiological roles of the thylakoid membrane system
and the reactions of oxygenic photosynthesis.
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GFP or GFP-APEX2 was separated by SDS-PAGE and transferred
to a membrane for immunoblot analysis using streptavidin to detect
APEX?2 activity. anti-RbcL antibody was used as a loading control
and the same membrane was stripped and re-probed with anti-GFP
antibody to check for expression of GFP (28 kDa) or GFP-APEX2
(54 kDa)
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Results and discussion
Characterization of APEX2 labeling in PCC 7002

To determine if APEX2-dependent labeling of proteins
was possible in cyanobacteria, GFP or GFP-APEX2 was
incorporated into the genome of PCC 7002. Cytoplasmic
localization of GFP and GFP-APEX?2 was confirmed using
fluorescence microscopy (Fig. 1b). To perform APEX2-
dependent biotinylation, cells were incubated with BP
for 30 min and then exposed to H,O, for 1 min. After
quenching the reaction, cells were lysed by bead beating
and a streptavidin blot confirmed the ability of APEX2 to
biotinylate proteins in PCC 7002 (Fig. 1c). Biotin labe-
ling was only detected in the presence of APEX2, BP, and
H,0,, demonstrating reaction specificity in vivo. Further-
more, the rapid reaction enables precise temporal control
of labeling.

Purification of cytoplasmic APEX2-biotinylated
proteins from PCC 7002

Proteins biotinylated in vivo were enriched for further analy-
sis by affinity purification. APEX2-dependent biotinylation
was performed in cells expressing GFP or GFP-APEX2 in
the cytoplasm. Affinity purification of biotinylated pro-
teins was performed by incubating cellular lysates with

streptavidin-coated magnetic beads. The background level
of biotinylation was very low as biotinylated protein was
only detected in cells expressing GFP-APEX2, but not cells
expressing GFP alone (Fig. 2a, b). To confirm cytoplasmic
APEX2 labels cytoplasmic proteins, immunoblots using anti-
bodies against expected cytoplasmic proteins were performed
(Fig. 2c, d). Since the BP radical reacts with proteins within
a 10-20 nm radius of its origin, APEX?2 itself is expected to
be biotinylated. Biotinylated GFP-APEX2 fusion protein was
detected using an anti-GFP antibody, confirming the expected
self-reactivity (Fig. 2c¢). Additionally, the large subunit of
rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase),
RbcL, an abundant cytoplasmic protein, was only enriched
on beads incubated with cells expressing GFP-APEX?2 as
detected using a specific anti-RbcL antibody (Fig. 2d). The
high molecular weight RbcL band in lysates is likely the result
of higher-order complexes formed in vivo; RbcL assembles
into large protein assemblies to form the carboxysome, a bac-
terial microcompartment (Cameron et al. 2013). Following
the more stringent enrichment and elution process, these com-
plexes have been disrupted and RbcL migrates as expected.

PsbU-APEX2 and cytoplasmic APEX2 label different
sets of proteins

APEX?2 was fused to a protein localized to the thyla-
koid lumen to demonstrate the ability of proximity-based
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Fig.2 Enrichment of proteins biotinylated by cytoplasmic APEX2
in vivo. Cells expressing GFP or GFP-APEX2 were incubated with
BP and exposed to H,0,. Biotinylated proteins were captured from
cell lysates on streptavidin coated magnetic beads. Fractions from
each enrichment step were separated by SDS-PAGE and then silver
stained for contrast or transferred to a nitrocellulose membrane and
probed with specific antibodies. a Silver stain of noted fractions

from unlabeled (GFP) or labeled (GFP-APEX2) lysates. b Bioti-
nylated proteins are only detected in fractions containing APEX2 and
are enriched on streptavidin beads. ¢ Expected self-labeling (bioti-
nylation) of GFP-APEX2 (54 kDa, marked with *) is confirmed by
immunoblotting against GFP. d RbcL (55 kDa), a cytoplasmic protein
expected to be labeled by GFP-APEX2 was specifically captured on
beads incubated with GFP-APEX2
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proteomics to interrogate subcellular regions that have not
been successfully purified using traditional methods. To
accomplish this, the localizations of several candidate pro-
teins fused to GFP were examined by fluorescence micros-
copy. Of these candidates, PsbU, an extrinsic subunit of
PSII, exhibited the most promising localization and therefore
was selected to target APEX?2 to the thylakoid lumen. The
PsbU-APEX?2 gene fusion is expressed from neutral site 1
in the chromosome under a constitutive promoter. APEX2-
dependent labeling and biotinylated protein purification was
performed on cells expressing thylakoid lumenal PsbU-
APEX?2 and cells expressing cytoplasmic GFP-APEX2.
A silver stain of purified biotinylated proteins from GFP-
APEX2 and PsbU-APEX?2 shows different banding patterns,
suggesting that a different set of proteins is labeled by the
different APEX2 fusions (Fig. 3a). The thylakoid localiza-
tion of PsbU-GFP was confirmed using fluorescence micros-
copy (Fig. 3b). The localization of PsbU-GFP was used as a
proxy for the localization of PsbU-APEX2, since GFP and
APEX2 are both C-terminal tags of a similar size. To iden-
tify the proteins labeled by the different APEX2 fusion pro-
teins, biotinylated proteins were purified from two independ-
ent samples of both PsbU-APEX?2 labeled and GFP-APEX2

Fig.3 PsbU-APEX2 and A
Cytoplasmic APEX2 label
different sets of proteins. a
Silver stain of the biotinylated
protein purification from PCC
7002 expressing GFP, GFP-
APEX2, PsbU, PsbU-GFP, or
PsbU-APEX2 after APEX2-
dependent biotinylation. b
Localization of PsbU-GFP and
GFP-APEX2 were visualized
with fluorescence microscopy
(Green). Chlorophyll chan-

nel (red) indicates thylakoid
membrane. Scale bars are 2 um.
¢ Biotinylated proteins from
strains expressing GFP-APEX?2
and PsbU-APEX2 identi-

fied by mass spectrometry. d
Functional categories of the
proteins enriched in PsbU-
APEX?2 samples obtained from
quantitative analysis of mass
spectrometry data (number of
proteins; percentage of 123 total B
proteins). The proteins used
for this analysis are listed in

Chlorophyll GFP
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Table 1. (Also see Supplemen- GFP
tary Tables 1 and 2)
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labeled cells, and the resulting peptides following tryptic
digestion were separated and detected using LC-MS/MS.
Protein identification required a minimum of 2 spectral
counts and 2 peptides in each sample. 99 proteins were
identified exclusively in both PsbU-APEX2 replicates and
297 proteins were identified exclusively in both GFP-APEX2
replicates. 438 proteins were identified in both PsbU-APEX?2
and both GFP-APEX2 replicates (Fig. 3c).

Biotinylated proteins enriched in PsbU-APEX2
samples

Mass spectrometry data were further analyzed to determine
which proteins were labeled by PsbU-APEX2. PsbU is a
lumenal extrinsic subunit of PSII and therefore the majority
of PsbU-APEX?2 is expected to be localized to the thyla-
koid membrane or lumen. However, because PsbU-APEX?2
is translated in the cytoplasm and then translocated to its
final destination in the lumen, we also expected that a small
population of PsbU-APEX2 could be present in the cyto-
plasm, resulting in labeling of cytoplasmic proteins. There-
fore, GFP-APEX?2 was used as a control instead of a sample
lacking APEX2/BP/H,0,, since it would control for the

§
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small cytoplasmic population of PsbU-APEX?2 in addition
to proteins nonspecifically bound to the streptavidin beads
and endogenously biotinylated proteins.

An analysis of the mass spectrometry data using Max-
Quant Label Free Quantitation (LFQ) intensities and nor-
malized spectral counts was used to determine the identity of
proteins specifically enriched with PsbU-APEX?2 compared
to the GFP-APEX2 control (Old et al. 2005). As part of this
analysis, proteins were organized by descending enrichment
value (log,(PsbU-APEX?2 LFQ intensity/GFP-APEX2 LFQ
intensity) or log,(PsbU-APEX2 normalized spectral counts/
GFP-APEX2 normalized spectral counts). A true-positive
list was constructed from PCC 7002 proteins homologous
to Synechocystis sp. PCC 6803 (PCC 6803) proteins with
evidence for thylakoid lumen or thylakoid membrane locali-
zation (Agarwal et al. 2010; Aldridge et al. 2008; Baers et al.
2019; Fulda et al. 2002; Heinz et al. 2016; Herranen et al.
2004; Kashino et al. 2002, 2006; Komenda et al. 2006; Lib-
erton et al. 2016; Ohkawa et al. 2002; Pisareva et al. 2011;
Rajalahti et al. 2007; Rengstl et al. 2011; Rowland et al.
2010; Sacharz et al. 2015; Schultze et al. 2009; Srivastava
et al. 2005; Wang et al. 2000; Xu et al. 2008; Zak et al.
1999, 2001; Zhang et al. 2004). A false-positive list of PCC
7002 proteins was constructed from homologous proteins
found in the soluble proteome of PCC 6803 that do not have
signal sequences or transmembrane helices, as these pro-
teins are expected to be cytoplasmic (Baers et al. 2019; Choi
et al. 2000; Fulda et al. 2006; Fuszard et al. 2013; Gan et al.
2005; Gao et al. 2014b, 2015, 2009; Kurian et al. 2006b;
Mata-Cabana et al. 2007; Mehta et al. 2014; Mikkat et al.
2014; Pandhal et al. 2009; Pérez-Pérez et al. 2006; Plohnke
et al. 2015; Rowland et al. 2011; Simon et al. 2002; Slabas
et al. 20006). As expected, proteins from the true-positive list
have significantly higher enrichment values than proteins
from the false-positive list (Fig. S2). Using the true- and
false-positive lists, we identified a cutoff value to discrimi-
nate between enriched proteins and those that bound to the
beads non-specifically or were enriched by GFP-APEX2.
This analysis was performed using both enrichment values
for both PsbU-APEX2 replicates (Table S1). Therefore, two
analyses were performed on each PsbU-APEX2 replicate,
one using enrichment values calculated with LFQ intensity
values and a second using enrichment values calculated with
normalized spectral counts. To be as stringent as possible,
only the 123 proteins above the cutoff in all four analyses
were reported, which we called PsbU-APEX2-enriched pro-
teins (Table 1). The PsbU-APEX2 enriched proteins include
a subset of the 99 proteins exclusive to the PsbU-APEX2
replicates, as well as additional proteins enriched in abun-
dance over the GFP-APEX?2 replicates. Major functions of
enriched proteins are shown in Fig. 3d.

The list of 123 PsbU-APEX2 enriched proteins includes
many proteins expected to be present within the thylakoid

lumen and membrane (Table 1). The majority of proteins
(73) have PCC 6803 homologs previously localized to thy-
lakoid membrane or lumen (See Table 1). Out of the 50
proteins that have not been previously localized to the thyla-
koid membrane, 17 have no PCC 6803 homolog, 12 have no
localization data for specific cellular structures or regions,
and 21 have only previously been localized to somewhere
other than the thylakoid membrane or lumen, such as the
plasma membrane or periplasm. This analysis of previous
localizations of homologous proteins in the literature was
performed in lieu of experimental validation of the localiza-
tion of enriched proteins. There is no other method to bio-
chemically separate the thylakoid lumen from other intra-
cellular structures, and while fluorescence microscopy of
GFP-tagged proteins could be used to determine if a protein
associates with the thylakoid membranes, it does not have
the resolution to determine if a protein is on the cytoplas-
mic or lumenal side of the thylakoid membrane. Previous
localizations of homologous proteins were used because
most localization studies in cyanobacteria have been done
in other species, specifically PCC 6803, and very few have
been completed in PCC 7002. To further support the hypoth-
esis that PsbU-APEX?2 enriched proteins are part of a cellu-
lar compartment and not cytoplasmic, the presence of signal
sequences and transmembrane helices were predicted from
their protein sequences (see Table S2). The majority (105)
of enriched proteins possess either a signal sequence or at
least one transmembrane helix.

Thylakoid lumen proteins, including the lumenal extrinsic
subunits of PSII (PsbU, PsbQ, PsbO, and PsbV) and Cyt
¢ (Pet]1) were enriched in PsbU-APEX?2 samples (Fig. 4).
Unlike PCC 6803, PCC 7002 does not express plastocyanin,
and therefore, PetJ1 is the only protein known that is solu-
ble in the thylakoid lumen and not tightly associated with a
protein complex. This protein was enriched in our analysis,
demonstrating that the technique used is able to enrich for
soluble proteins within the thylakoid lumen. Additionally,
enrichment of the PSII integral membrane subunits and
extrinsic lumenal subunits shows the capability of APEX2 to
label membrane-associated and integral membrane proteins.
Integral membrane proteins from PSII, photosystem I (PSI),
cytochrome bgf, ATP synthase, and NADH dehydrogenase
(NDH), if identified by mass spectrometry, were enriched in
the PsbU-APEX2 samples, with the exception of the PsbD
subunit of PSII and the NdhD3 (A0173) and NdhF3 (A0172)
subunits of NDH. PsbD and NdhF3 protein were above the
enrichment cutoff in two analyses, but the below the cutoff
in the other two analyses (Tables S1 and S2). The NdhD3
protein was above the cutoff in only one analysis. Most of
the cytoplasmic non-membrane integral protein subunits of
PSI, ATP synthase, and NDH complexes are not enriched in
the PsbU-APEX?2 samples, and some are unique to the GFP-
APEX2 samples. The lack of enrichment of proteins on the
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A C B

NADH dehydrogenase

Fig.4 Enrichment of Protein Complex Subunits in the Thylakoid
Membrane. The protein complexes present in the thylakoid mem-
brane are color-coded by their enrichment; the key is located on
the right side of the figure. Light and dark green subunits are both
enriched in the PsbU-APEX2 samples over the GFP-APEX2 sam-
ples; the dark green samples were unique to the PsbU-APEX2
samples, while the light green subunits were also identified in the
GFP-APEX2. Yellow subunits represent proteins identified in both
PsbU-APEX2 and GFP-APEX?2 samples but not enriched in PsbU-
APEX?2. Red subunits are proteins unique to the GFP-APEX2 sam-

cytoplasmic side of the thylakoid membrane demonstrates
the specificity of PsbU-APEX2 to label proteins within the
lumen and thylakoid membrane. The cytoplasmic facing
subunits that were enriched in the PsbU-APEX?2 samples are
PsaC and PsaD. These subunits and PsaE are within the top
15% of proteins ranked by membrane association, and are
more tightly associated with the membrane than the phyco-
bilisome proteins and the cytoplasmic subunits of NDH and
ATP synthase (Gao et al. 2015). PsbU-APEX2 will be more
efficient at labeling cytoplasmic side proteins closely asso-
ciated with the thylakoid membrane, like PsaC and PsaD,
since proteins closely associated with the thylakoid mem-
brane are within the biotinylation radius of lumenal PsbU-
APEX?2 for more time. Following that same logic, freely
diffusing cytoplasmic GFP-APEX2 is likely more efficient
at biotinylating freely diffusing cytoplasmic proteins than
proteins closely associated with the thylakoid membrane.
Many factors involved in the assembly of PSII were
also PsbU-APEX?2 enriched (Fig. 5). Proteins both early
and late in the assembly process were enriched. SecY and
Alb3, proteins involved in inserting the PsbA into the mem-
brane were enriched (Chidgey et al. 2014; Linhartova et al.

@ Springer

Not Identified

Ny JNENy &

prc
i
ATP synthase

ples. Gray proteins were not identified by mass spectrometry in this
study. The identity of each protein complexes is either above or
below the complex. The proteins associated with a specific complex
are named with the following prefixes followed by the letter or num-
ber the protein is labeled with: Psb for PSII, Pet for cyt byf, Psa for
PSI, Ndh for NADH dehydrogenase, and Atp for ATP synthase. The
exceptions to this are Fd (PetF) and FNR (PetH). Note—there are
two different proteins both called AtpG; the yellow subunit refers to
A0733 and the light green subunit refers to A0737

2014; Sachelaru et al. 2013). PratA, a protein that is thought
to deliver Mn2* to PsbA, and CtpA, which processes the
C-terminal tail of PsbA, have previously been localized to
the periplasm and plasma membrane, respectively, but were
exclusively found in PsbU-APEX?2 samples in this study
(Anbudurai et al. 1994; Klinkert et al. 2004; Komenda et al.
2006; Schottkowski et al. 2009; Stengel et al. 2012; Zak
et al. 2001). PsbP, Ycf48, and Psb27 are PSII assembly fac-
tors enriched by PsbU-APEX2 that are thought to be local-
ized within the thylakoid lumen (Heinz 2016). The assembly
factors Ycf39 and Psb28, along with the PSII repair factor
Psb29, are on the cytoplasmic side of membranes and were
not enriched by PsbU-APEX?2 (Beckova et al. 2017; Heinz
2016). The lumenal proteins YtfC and A2294 (homologous
to 5110408 in PCC 6803) are homologs to factors important
for PSII assembly in plants that were also PsbU-APEX?2
enriched (Heinz 2016). Proteins involved in PSII repair were
also enriched by PsbU-APEX?2. For example, Psb32, a pro-
tein that protects PSII from photodamage and aids in PSII
repair, was exclusive to PsbU-APEX?2 samples (Wegener
et al. 2011). Additionally, FtsH2, a protein involved in the
repair of damaged PSII, was also enriched in PsbU-APEX?2
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Thylakoid Lumen/
Periplasm

PratA-Defined
Membrane

Fig.5 Enrichment of PSII assembly factors. The PSII assembly and
repair components known in PCC 6803 are shown. The proteins are
color-coded by their enrichment, the key is located on the top. Light
and dark green subunits are both enriched in the PsbU-APEX2 sam-
ples over the GFP-APEX2 samples; the dark green samples were
unique to the PsbU-APEX?2 samples, while the light green subunits
were also identified in the GFP-APEX2. Yellow subunits represent

samples (Komenda et al. 2006, 2010). PsbQ, a protein pre-
sent in the most active PSII fraction that is thought to define
the complete assembly of PSII was also exclusive to PsbU-
APEX2 (Roose et al. 2007). The variety of early and late
assembly factors enriched by PsbU-APEX?2 demonstrate
the ability of APEX2-based proximity-based proteomics to
capture assembly intermediates of protein complexes of low
abundance. In the future, this technique could be used to
gain novel insights into low abundance assembly intermedi-
ates of protein complexes in other processes.

Many proteins involved in other cellular processes were
localized to the thylakoid membrane and lumen in this
study. At least ten proteases were enriched in PsbU-APEX?2,
including the thylakoid signal peptidase LepB (Zhbanko
et al. 2005). PsbU-APEX?2 enriched proteins also include
proteins involved in transport of numerous different known
and unknown substrates. Many of the proteins involved in
transport and protein trafficking, assembly, and process-
ing have previously been localized to the periplasm or the
plasma membrane, and have not been localized to the thyla-
koid membrane. Furthermore, many other proteins enriched
by PsbU-APEX2 have been localized to the plasma mem-
brane and/or the periplasm in addition to the thylakoid mem-
brane. The biological relevance of the plasma membrane and
periplasmic proteins enriched by PsbU-APEX2 is unclear.
It is possibly an artifact of overexpression of PsbU-APEX2.
However, the cyanobacterium Gloeobacter violaceus does
not contain a thylakoid membrane (Mares et al. 2013) and
instead performs oxygenic photosynthesis in the inner mem-
brane. If the thylakoid membrane and lumen originated from
the plasma membrane and periplasmic space, respectively,
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proteins identified in both PsbU-APEX2 and GFP-APEX2 samples
but not enriched in PsbU-APEX2. Red subunits are proteins unique to
the GFP-APEX2 samples. Gray proteins were not identified by mass
spectrometry in this study. The prefix “Psb” should be added to any
proteins labeled with only a letter or number to obtain the name of the
protein

perhaps it is not surprising that some proteins are found in
both cellular fractions. Furthermore, ultrastructural stud-
ies of PCC 6803 using cryo-electron tomography identified
sites of contact between the thylakoid and plasma membrane
(Rast et al. 2019). Additional possibilities include dual local-
ization of proteins, low fidelity of the sorting mechanism of
translocated proteins into the lumen and the periplasm, and
post-translocation sorting of proteins into their final localiza-
tion. Further experiments are needed to determine the bio-
logical relevance of the periplasmic and inner membrane
proteins observed.

In addition to large protein complexes involved in energy
metabolism, PSII assembly factors, and proteases, the PsbU-
APEX2-enriched proteins include proteins with other func-
tions. For example, several thioredoxins, including the thy-
lakoid specific thioredoxin A2695, were enriched (Zhu et al.
2016). A beta-carotene desaturase (A1248) was also identi-
fied. Proteins involved in maintaining the cell wall (A0339
and A0578) and S-layer proteins (A2605 and A1020) were
also enriched. Another protein (A1522) with homology to
biotin carboxylases was also enriched by PsbU-APEX2 in
this study. Additionally, there are several proteins that have
not been previously localized and have unknown functions
(A1127, A1207, A1664, A2166, A2439, A2578, A2847,
and G0157). These proteins could be the subject of future
research.

The experiments performed here demonstrate the poten-
tial of APEX2 to interrogate the proteome of regions of
cyanobacteria that have not been previously biochemically
purified, like the thylakoid lumen. It also demonstrates the
ability of APEX2 to capture low abundance protein complex

@ Springer



190

Photosynthesis Research (2021) 147:177-195

assembly intermediates. In the future, this technique can be
used to monitor the proteomes of specific regions of the
cell under different environmental conditions. Additionally,
APEX2 can be used to determine the topology of membrane
proteins and identify candidates for protein—protein inter-
actions (Lee et al. 2016; Lobingier et al. 2017; Mavylutov
et al. 2018; Paek et al. 2017). Proximity-based proteomics
using APEX2 has the potential to be a powerful tool in the
pursuit of understanding the physiology of photosynthetic
organisms.

Methods
Creation of PCC 7002 strains

The psbU gene (SynPCC7002_A0322) was amplified from
PCC 7002 while APEX2 was amplified from a plasmid
gifted to us by Alice Ting (Addgene plasmid # 72,558;
http://n2t.net/addgene:72558; RRID:Addgene_72558). Plas-
mids were assembled using Gibson Assembly (Gibson et al.
2009) with neutral site 1 as the homology arms, p,..,.x> as
the promoter (Cameron et al. 2013; Ruffing et al. 2016), and
kanamycin resistance for selection. The Gibson reactions
were transformed into DHS5a E. coli, and minipreps of liquid
cultures started from single colonies were performed to col-
lect plasmid. Plasmid was transformed into PCC 7002 (Ste-
vens and Porter, 1980) and colonies containing the desired
insert were serially passaged in the presence of antibiotic
until segregated.

Biotinylation of proteins by APEX2 in PCC 7002

Biotinylation of proteins was performed using a modified
protocol from Hung et al. and Hwang and Espenshade that
was optimized for PCC 7002 (2016; 2016). Briefly, 50 mL
cultures of PCC 7002 strains were grown in A +media (Ste-
vens et al. 1973) in air at 37 °C with a light intensity of
185 umol photons m~2 s~! for 2 days to an OD5;, of about
0.5. Several uL of culture were saved to image on the micro-
scope. The culture was pelleted at 4300xg for 10 min at
4 °C. The supernatant was poured off and cells were resus-
pended in 4 mL A + medium with 2.5 mM BP and trans-
ferred to a six-well plate. Six-well plates were incubated
shaking in air at 37 °C with a light intensity of 185 umol
photons m™ s™! for 30 min. Samples were then pelleted in
a 1.5 mL tube and resuspended in 1 mL phosphate buffered
saline pH 7.8 (Bio-Rad) (PBS). 10 uL of 100 mM H,0, was
added and cells were inverted for 30 s before pelleting for
30 s. Supernatant was removed and cells were resuspended
in quencher solution (PBS with 10 mM sodium ascorbate,
5 mM Trolox and 10 mM sodium azide) and pelleted. This
step was repeated two additional times. The supernatant was
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removed and the cell pellets were frozen at — 80 °C for stor-
age and to facilitate cell lysis.

Cell lysis

The cell pellet was resuspended in RIPA lysis buffer with
quenchers (50 mM Tris pH 7.4, 150 mM NaCl, 0.1% (w/v)
SDS, 0.5% (w/v) sodium deoxycholate, 1% (v/v) Triton
X-100, 10 mM sodium ascorbate, 5 mM Trolox, 10 mM
sodium azide, | mM PMSF). Cells were lysed using bead
beating, with 30 cycles of 20 s on and 20 s off on ice. The
lysate and beads were pelleted at 2000xg and the superna-
tant was collected. The supernatant was then pelleted for
5 min at 15000xg and the supernatant was collected and
flash frozen.

Protein concentration measurement

The protein concentration of cell lysate was quantified using
the Pierce 660 nm Protein Assay (Thermo Fisher).

Purification of biotinylated proteins

Streptavidin magnetic beads (Pierce) were washed twice
in RIPA lysis buffer (50 mM Tris pH 7.4, 150 mM NacCl,
0.1% (w/v) SDS, 0.5% (w/v) sodium deoxycholate, 1% (v/v)
Triton X-100) and the supernatant was removed. 800 uL
of RIPA lysis buffer with quenchers containing 50 ug of
protein for every 50 uL of streptavidin magnetic beads was
added. Beads were incubated with protein for 1 h at room
temperature on a rotator. The beads were then washed twice
with RIPA lysis buffer, once with 1 M KCI, once with 0.1 M
Na,CO;, once with 8 M urea in 10 mM Tris pH 7.5, and
once again with RIPA lysis buffer.

Elution of biotinylated proteins for gels and blots

Beads were denatured at 98 °C for 10 min in 30 pL of elu-
tion buffer (3X Laemmli buffer, 2 mM biotin, 20 mM DTT)
to elute biotinylated proteins. The eluate was collected and
diluted with 60 uL of water to run on gels.

Preparation for mass spectrometry

Beads were washed an additional 5 times with 50 mM
NH,HCO; containing 0.2% (w/v) sodium deoxycholate. The
supernatant was removed and beads were resuspended in 50
pL 10 mM TCEP and 40 mM chloroacetamide and incubated
at 37 °C for 30 min to reduce and alkylate the proteins. 150
pL water containing 0.225% (w/v) sodium deoxycholate
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and 0.2 ug Promega sequencing grade modified trypsin was
added. An on-bead digestion was performed overnight on
a rotator at 37 °C. Beads were pelleted and the supernatant
was collected. Formic acid was added to 2% (w/v) to stop
digestion. Sodium deoxycholate was removed using 3 phase
transfers with ethyl acetate. The samples were desalted using
in-house STAGE tips with 3 M Empore SDB-RPS mem-
brane and dried using a vacuum centrifugation.

LC-MS/MS

The tryptic peptides were resolved using an UltiMate 3000
UHPLC system (Thermo Fisher) in a direct injection mode.
Peptides were reconstituted in Buffer A (0.1% formic acid
in water), and peptide concentration was measured using
Fluoraldehyde o-Phthaldialdehyde Reagent (Thermo
Fisher). For each sample, 250 ng (5 pL) of the peptides
were loaded onto a Waters BEH C18 column (130 A,
1.7 pm X 75 um x 250 mm) with 98.4% Buffer A and 1.6%
Buffer B (0.1% formic acid in acetonitrile) at 0.4 uL./min for
16.67 min. Peptides were resolved and eluted using a gradi-
ent of 1.6 to 8% B (0-8 min), 8-20% B (8-140 min), and
20-32% B (140-160 min) at 0.3 uL/min. MS/MS was per-
formed on a Q-Exactive HF-X mass spectrometer (Thermo
Fisher), scanning precursor ions between 380-1580 m/z
(60,000 resolution, 3 X 10° jons AGC target, 45 ms maxi-
mum ion fill time), and selecting the 12 most intense ions
for MS/MS (15,000 resolution, 1 X 10° ions AGC target,
150 ms maximum ion fill time, 1.4 m/z isolation window, 27
NCE, 30 s dynamic exclusion). Ions with unassigned charge
state, + 1, and > + 7 were excluded from the MS/MS.

Silver stain protocol

Proteins were separated on a 10% SDS-PAGE gel and
stained using the short silver nitrate staining protocol
described in by Chevallet et al. (2006).

Immunoblotting

Proteins were separated on a 10% SDS-PAGE gel and immu-
noblots were performed following the protocol from Green
and Sambrook (2012). Protein was transferred to a nitro-
cellulose membrane, or a polyvinylidene fluoride (PVDF)
membrane if fluorescent secondary antibodies were used.
After blocking membranes overnight, membranes were
incubated with GFP (Invitrogen, cat. no. A6455) or RbcL
(Agrisera, cat. no. AS03037) antibodies, or streptavidin-
HRP (Life Technologies, cat. no. R960-25). Membranes
probed for GFP or RbcL were then incubated with a second-
ary antibody conjugated to HRP or AlexaFluor 488 (Thermo
Fisher, cat. no. A-11008 or cat. no. 31460). Membranes were

visualized using chemiluminescence after exposure to the
Clarity Western ECL substrate (Bio-Rad) or fluorescence.
If necessary, blots were stripped using ReBlot Plus Mild
Solution (Millipore).

Fluorescence microscopy

Cells were spotted onto an agar pad (A + with 1% agar)
and placed onto a microscope slide. Cells were imaged on
a customized Nikon TiE inverted wide-field microscope
with a Near-IR-based Perfect Focus system. Images were
acquired with an ORCA Flash4.0 V2 + Digital SCMOS cam-
era (Hamamatsu) using a Nikon CF160 Plan Apochromat
Lambda 100 X oil immersion objective (1.45 N.A.). Chlo-
rophyll fluorescence of thylakoid membranes was imaged
using a 640 nm LED light source (SpectraX) for excitation
and a standard Cy5 emission filter. GFP localization was
imaged using a 470 nm LED light source (SpectraX) for
excitation and a standard GFP emission filter.

LC-MS/MS data analysis

MaxQuant/Andromeda (version 1.6.1.10) was used to pro-
cess raw files from the Q Exactive HF-X and search the
peak lists against a database consisting of Uniprot PCC 7002
proteome (UP000001688, total 3,179 entries, downloaded
at 6/22/2019). The search allowed trypsin specificity with
a maximum two missed-cleavage and set carbamidomethyl
modification on cysteine as a fixed modification and protein
N-terminal acetylation and oxidation on methionine as vari-
able modifications. MaxQuant used 4.5 ppm main search
tolerance for precursor ions, 20 ppm MS/MS match toler-
ance, searching top 12 peaks per 100 Da. False discovery
rates for both protein and peptide were 0.01 with a minimum
of seven amino acid peptide length. Label-free quantifica-
tion was enabled with minimum 2 LFQ ratio counts and a
fast LFQ option. The mass spectrometry proteomics data
have been deposited to the ProteomeXchange Consortium
via the PRIDE partner repository with the dataset identifier
PXDO021787 (Perez-Riverol et al. 2019).

Only proteins with at least two unique peptides and two
spectral counts were considered identified in an individual
sample. PCC 7002 proteins identified in both GFP-APEX?2
replicates and/or both PsbU-APEX?2 replicates were retained
for further analysis, including the PsbU-APEX enriched pro-
tein analysis and the Venn diagram (Table S1). A presence/
absence Venn diagram was constructed (Fig. 3c). A protein
must be identified in both replicates of a sample to appear
in the Venn diagram. Proteins identified in both replicates
of a sample and only one replicate of the other sample (176
proteins) were not added to the Venn diagram as their locali-
zation was unclear.
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PsbU-APEX2 enriched protein analysis

The log, ratio of the MAXQUANT LFQ intensities and the
log, ratio of normalized spectral counts were used as met-
rics to determine enrichment in the PsbU-APEX?2 A and
PsbU-APEX?2 B samples over the GFP-APEX2 B sample
(log,(U/G)) (Old et al. 2005). If a protein was not identified
in a sample, the LFQ intensity was set to zero. To determine
the cutoff for proteins enriched in PsbU-APEX?2 samples,
identified proteins were cross-referenced with true positive
(TP) or false positive (FP) lists. The TP lists were assembled
using localization data from studies of the thylakoid lumen
or thylakoid membrane in PCC 6803. All proteins experi-
mentally localized or predicted to localize to the thylakoid
lumen in any study were included in the TP list (Aldridge
et al. 2008; Fulda et al. 2002; Heinz et al. 2016; Kashino
et al. 2006; Rajalahti et al. 2007). To include integral thyla-
koid membrane proteins, proteins localized to the thylakoid
membrane in at least 4 studies that had at least 1 predicted
transmembrane helix were also added to the TP list (Agar-
wal et al. 2010; Baers et al. 2019; Herranen et al. 2004;
Kashino et al. 2002; Komenda et al. 2006; Liberton et al.
2016; Ohkawa et al. 2002; Pisareva et al. 2011; Rengstl et al.
2011; Rowland et al. 2010; Sacharz et al. 2015; Schultze
et al. 2009; Srivastava et al. 2005; Wang et al. 2000; Xu et al.
2008; Zak et al. 1999, 2001; Zhang et al. 2004). The FP list
was assembled using data from studies of the soluble pro-
teome of PCC 6803. The FP list contained proteins that were
found in the soluble proteome in at least 4 studies, had no
predicted signal sequence or transmembrane helix, and was
found in 1 or less studies of the thylakoid membrane (Baers
et al. 2019; Choi et al. 2000; Fulda et al. 2006; Fuszard
et al. 2013; Gan et al. 2005; Gao et al. 2014b, 2015, 2009;
Kurian et al. 2006b; Mata-Cabana et al. 2007; Mehta et al.
2014; Mikkat et al. 2014; Pandhal et al. 2009; Pérez-Pérez
et al. 2006; Plohnke et al. 2015; Rowland et al. 2011; Simon
et al. 2002; Slabas et al. 2006). The TP and FP lists are in
Supplementary Table 3.

A total of four analyses were performed, one for each
enrichment metric (Log,(U/G) using LFQ intensity and
Log,(U/G) using normalized spectral counts) in each PsbU-
APEX2 sample. For each protein in every analysis, the true
positive rate (TPR) and the false-positive rate (FPR) were
calculated. The TPR for a specific protein was the number
of TP proteins with an enrichment greater than or equal to
the enrichment of the specific protein divided by the total
number of TP proteins found in the experiment. The FPR
for a specific protein was the number of FP proteins with
an enrichment greater than or equal to the enrichment of
the specific protein divided by the total number of FP pro-
teins. The cutoff for each sample was the enrichment with
the greatest difference between the TPR and FPR value. The
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proteins above the cut-off of the in all 4 analyses are reported
in Table 1 and were used to make Fig. 3d.

Signal sequence prediction

To predict if a protein had a signal sequence and the cut site
to the remove the signal sequence, all proteins in the UniProt
reference proteome for PCC 7002 were analyzed with Sig-
nalP-5.0 using both the Gram-positive and Gram-negative
bacterial options.

Transmembrane helices prediction

To predict if a protein had transmembrane helices, all pro-
teins in the UniProt reference proteome for PCC 7002 were
analyzed using the TMHMM Server v. 2.0.
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