

Sandia
National
Laboratories

EIGER / GEMMA Electromagnetic Code Capabilities

Joseph D. Kotulski, Vinh Dang 1352

jkotul@sandia.gov, vqdang@sandia.gov

Trilinos User Group Meeting 2021

December 1, 2021

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Problem Explained

Code Description EIGER / GEMMA

Solution Methods

Example Problem

Conclusions / Future Effort

Background

What?

- **Provide high-fidelity, robust, computational tools based on Maxwell's Equations.**
 - Frequency Domain → EMR/EMI Interaction with system / components

Why?

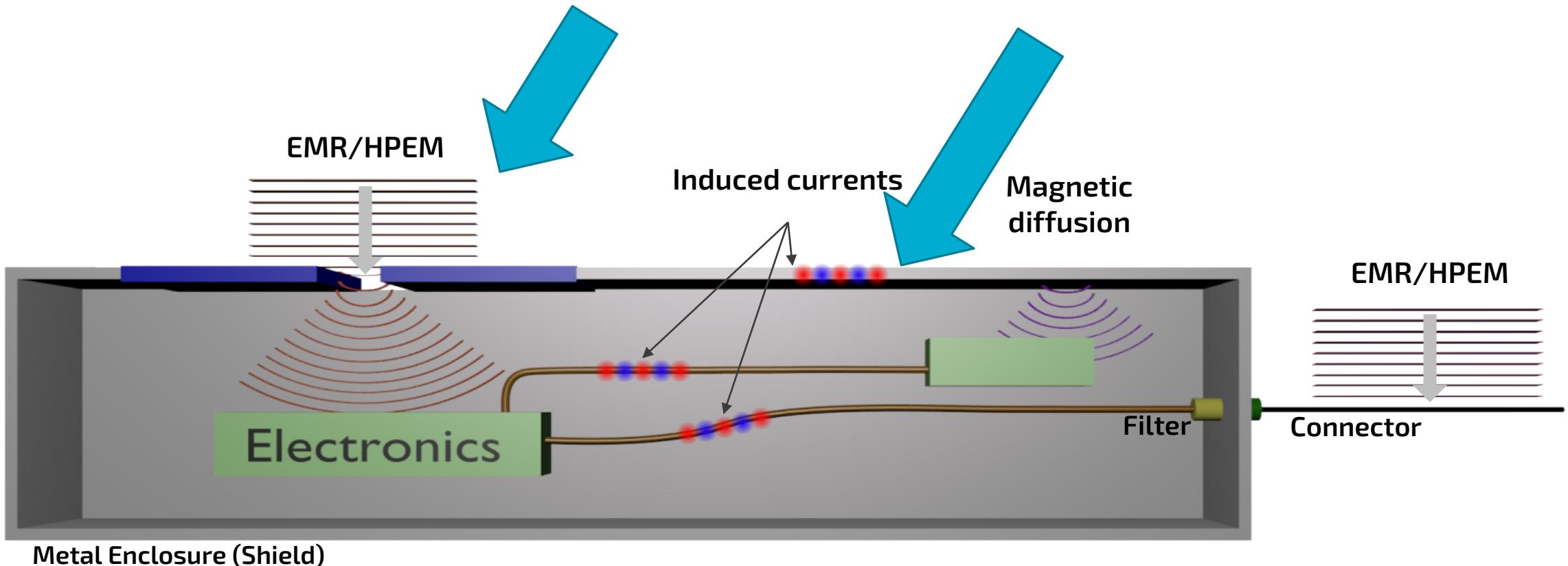
- **To aid in weapons qualification in conjunction with experiments.**
 - Design of experiments
- **Weapon component and subsystem modeling.**
 - Design guidance
- **In addition, can be used to address problems for external customers.**

How?

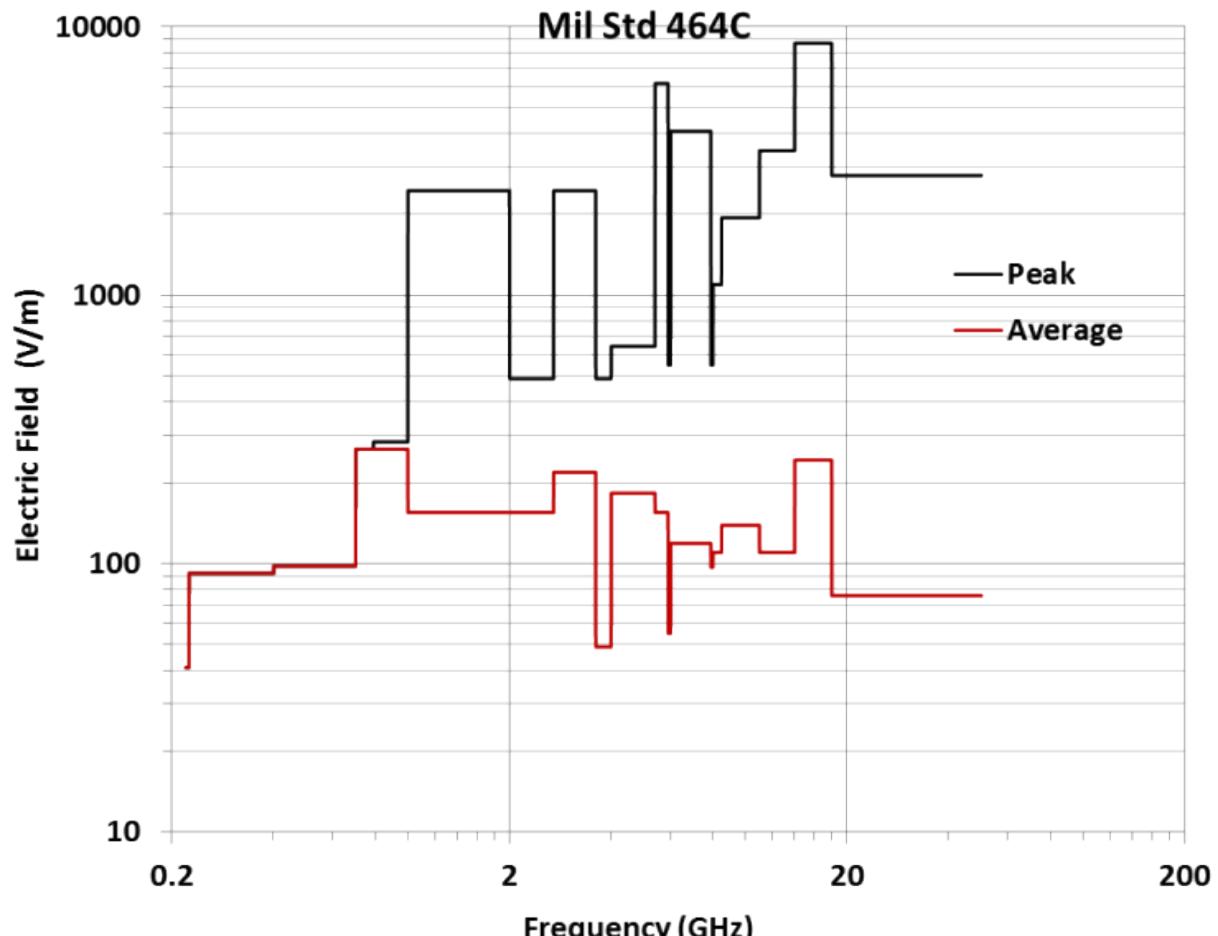
- **Frequency domain boundary element formulation.**
 - EIGER
 - GEMMA → Next generation EIGER

EMR Problem Overview

Focus – coupling through gaps and external currents



Electromagnetic Environment



Ground Based System

External to System

Code Description EIGER / GEMMA

Frequency-domain method of moments solution

- Steady state solution
- With specialized algorithms (thin-slot, etc.)

Boundary element formulation

- Mesh surfaces of parts – interface between regions

Exact radiation boundary condition

- Due to Green's function

Formulation results in dense (fully populated) matrix

- Simulations can be limited by available memory
- Entries are double precision complex

Maxwell's Equations in the Frequency Domain

Maxwell's Equations:

$$\text{Faraday : } \nabla \times \mathbf{E} = -j\omega \mathbf{B}$$

$$\text{Ampere - Maxwell : } \nabla \times \mathbf{H} = \mathbf{J} + j\omega \mathbf{D}$$

$$\text{Electric Gauss : } \nabla \cdot \mathbf{D} = \rho$$

$$\text{Magnetic Gauss : } \nabla \cdot \mathbf{B} = 0$$

Wave Equations:

$$\nabla^2 \mathbf{A} + \omega^2 \mu \epsilon \mathbf{A} = -\mu \mathbf{J}$$

$$\nabla^2 \Phi + \omega^2 \mu \epsilon \Phi = \rho / \epsilon$$

For a **linear** homogeneous, unbounded medium:

$$\mathbf{A} = \int_V \mu \mathbf{J}(\mathbf{r}') g(\mathbf{r} | \mathbf{r}') dV'$$

$$\Phi = - \int_V \frac{\rho(\mathbf{r}')}{\epsilon} g(\mathbf{r} | \mathbf{r}') dV'$$

Vector and Scalar Potentials:

$$\mathbf{E} = -j\omega \mathbf{A} - \nabla \Phi$$

$$\mathbf{B} = \nabla \times \mathbf{A}$$

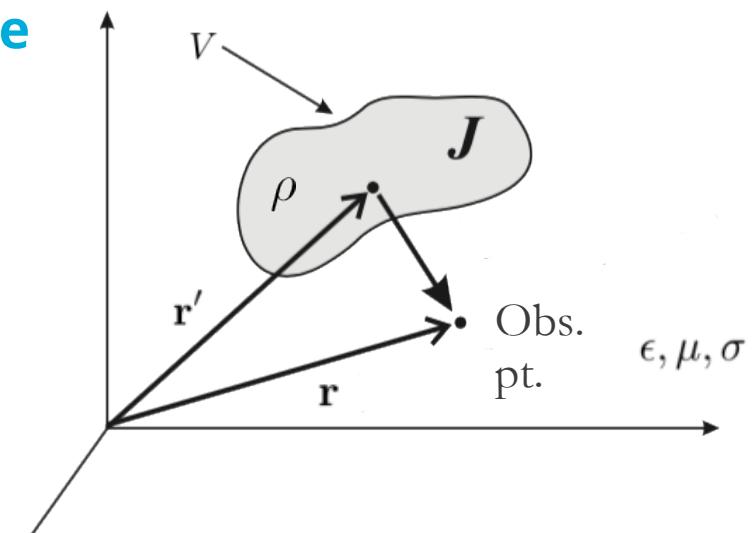
Lorenz gauge condition:

$$\nabla \cdot \mathbf{A} = -j\omega \epsilon \mu \Phi$$

Instead of solving Maxwell's equations in 3D space via the wave equations, we solve them on the boundary between regions.

Free-Space Green's Function:

$$g(\mathbf{r} | \mathbf{r}') = \frac{e^{-jk|\mathbf{r} - \mathbf{r}'|}}{4\pi|\mathbf{r} - \mathbf{r}'|}$$



Integral Equations (Boundary Element Method – BEM)

Example of an electric field integral equation (EFIE) for metallic scatterer:

Through the equivalence principle, we consider the current on an objects boundary instead of the field around and inside the object. Enforcing the boundary condition at the surface:

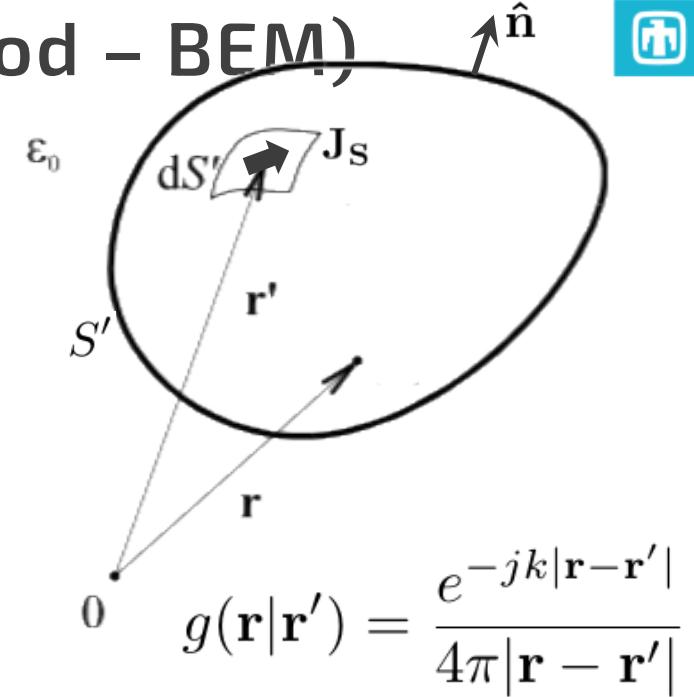
$$\hat{\mathbf{n}} \times (\mathbf{E}_{\text{inc}} + \mathbf{E}_{\text{scat}}) = \mathbf{0}$$

$$\mathbf{E}_{\text{scat}} = -j\omega\mu \int_{S'} \left(\mathbf{J}_S(\mathbf{r}') g(\mathbf{r}|\mathbf{r}') + \frac{1}{\omega^2\mu\epsilon} \nabla' \cdot \mathbf{J}_S(\mathbf{r}') \nabla g(\mathbf{r}|\mathbf{r}') \right) d\mathbf{s}'$$

results in the following integral equation:

$$\int_{S'} \hat{\mathbf{n}} \times \left(\mathbf{J}_S(\mathbf{r}') g(\mathbf{r}|\mathbf{r}') + \frac{1}{\omega^2\mu\epsilon} \nabla' \cdot \mathbf{J}_S(\mathbf{r}') \nabla g(\mathbf{r}|\mathbf{r}') \right) d\mathbf{s}' = \frac{1}{j\omega\mu} \hat{\mathbf{n}} \times \mathbf{E}_{\text{inc}}$$

$$L \{ \mathbf{J}_S \} = \frac{1}{j\omega\mu} \hat{\mathbf{n}} \times \mathbf{E}_{\text{inc}}$$



$$g(\mathbf{r}|\mathbf{r}') = \frac{e^{-jk|\mathbf{r}-\mathbf{r}'|}}{4\pi|\mathbf{r}-\mathbf{r}'|}$$

Method of Moments (MoM)

Numerical solution of integral equation:

$$L \{ \mathbf{J}_S \} = \frac{1}{j\omega\mu} \hat{\mathbf{n}} \times \mathbf{E}_{\text{inc}}$$

Discretize the scatterer

Expand unknown in a set of basis functions:

$$\mathbf{J}_S(\mathbf{r}) \approx \sum_n I_n \mathbf{f}_n(\mathbf{r})$$

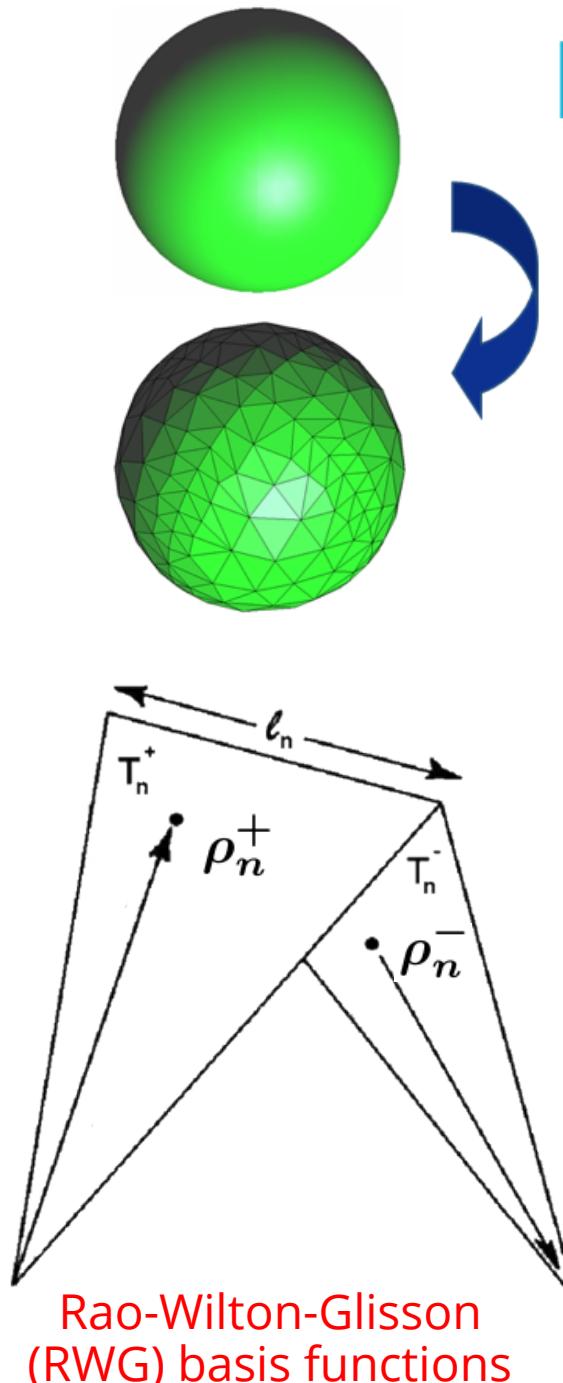
$$\mathbf{f}_n(\mathbf{r}) = \begin{cases} \frac{\ell_n}{2A_n^+} \rho_n^+ & \mathbf{r} \in T_n^+ \\ \frac{\ell_n}{2A_n^-} \rho_n^- & \mathbf{r} \in T_n^- \\ 0 & \text{otherwise} \end{cases}$$

Test integral equation with basis functions.

$$\int_S \mathbf{f}_m \cdot L \{ \mathbf{J}_S \} ds = \frac{1}{j\omega\mu} \int_S \mathbf{f}_m \cdot (\hat{\mathbf{n}} \times \mathbf{E}_{\text{inc}}) ds$$

$$\bar{\mathbf{Z}} \mathbf{I} = \mathbf{V}$$

$$Z_{m,n} = \int_{f_m} \int_{f_n} \left[j\omega\mu \mathbf{f}_m \cdot \mathbf{f}_n - \frac{j}{\omega\epsilon} \nabla \cdot \mathbf{f}_m \nabla' \cdot \mathbf{f}_n \right] \frac{e^{-ikr}}{4\pi r}$$



EIGER and GEMMA Comparison

Feature	EIGER	GEMMA
Language	Fortran 2007	C++ 11
Parallel Implementation	MPI	MPI + Threading (CPU + GPU)
Solution Options	Direct Iterative Matrix Compression	Direct, Iterative Iterative - MLFMM, Matrix Compression*
Code Implementation	Pre-processor , solver Separate Codes	Pre-processor , solver Not separate
Code Enhancements Usage Algorithms	Enhanced with SAW / IWF integration	Deep Slot Formulation Enhanced with SAW / IWF integration

***Possible Future Enhancements**

Solution Methods

EIGER / GEMMA- Computational considerations

Problem Discretization Requirement

- Triangles , quadrilaterals, or bar elements (**SURFACE MESH**)
- Mesh requirements
 - Average Edge length should be $\sim \lambda/10$
 - $(\# \text{ faces} \times \lambda^2) / \text{surface area} > 250$

Matrix memory requirements

- $16 * N^2$ bytes (N order of the matrix)
- Example
 - W88_alt meshed and prepared for 18 GHz
 - N = 2 million
 - Memory = 64 terabytes

Matrix Solution

- Fill is $O(N^2)$
- Solve is $O(N^3)$ -- for Direct Solve
- The solution is the Current on the surfaces
 - Using the Green's function the fields can be determined.

Solution via Direct and Iterative Solve -> TRILINOS Packages

DIRECT Solve

- **PLIRIS**
 - C – code
 - MPI only no threading
- **ADELUS**
 - New packaging of PLIRIS
 - C++ code
 - MPI + Threading
 - Threading via KOKKOS
 - GPUs, CPUs
- **Key Implementation Features**
 - TORUS WRAP Distribution
 - Blocks supplied by user
 - No processor will have no more than 1 row or column than the other

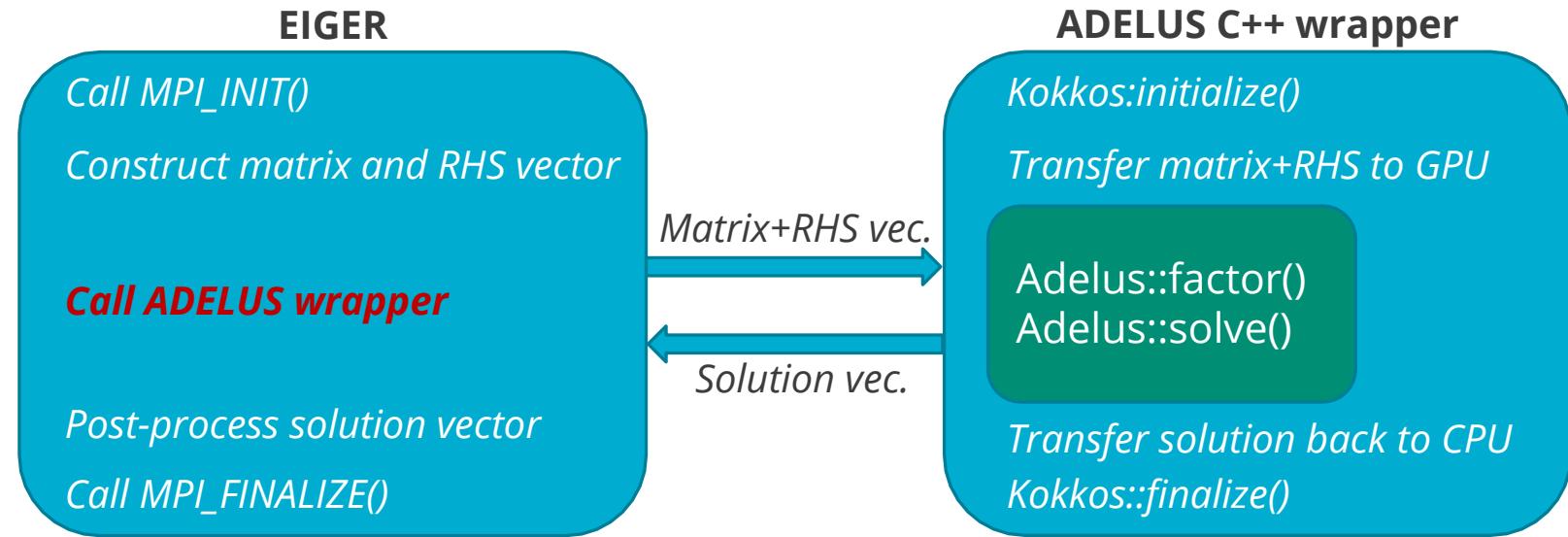
Iterative Solve

- **BELOS**
 - **Preconditioner usage**

Large-Scale EM Simulation with EIGER with Adelus

- ❑ Couple EIGER with ADELUS to perform large-scale electromagnetic simulations on the LLNL's Sierra platform
- ❑ First time Petaflops performance with a complex, dense LU solver: 7.72 Petaflops (16.9% efficiency) when using 7,600 GPUs on 1,900 nodes on a 2,564,487-unknown problem
- ❑ ADELUS's performance is affected by the distribution of the matrix on the MPI processes
 - Assigning more processes per row yields higher performance

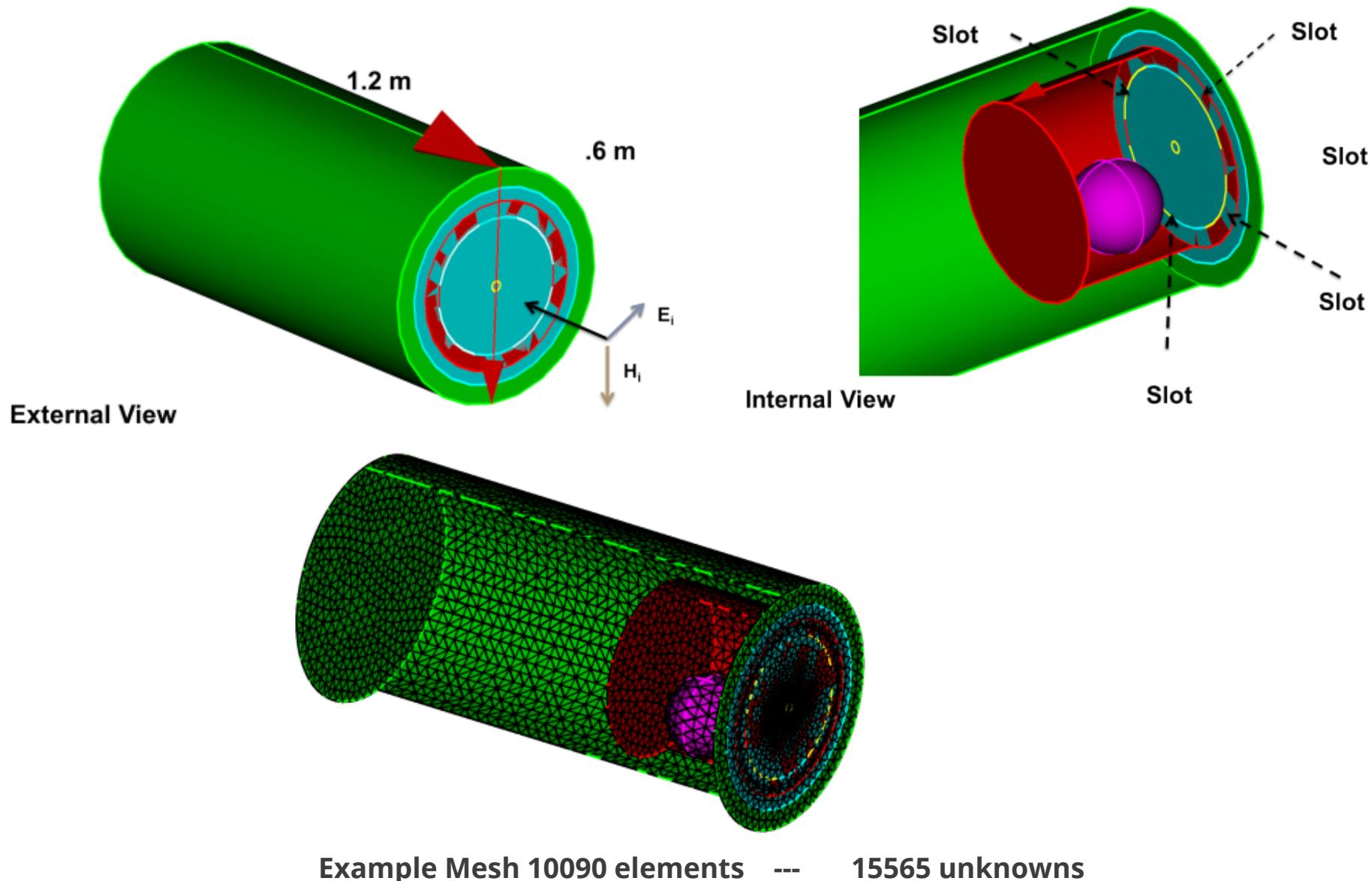
ON SIERRA



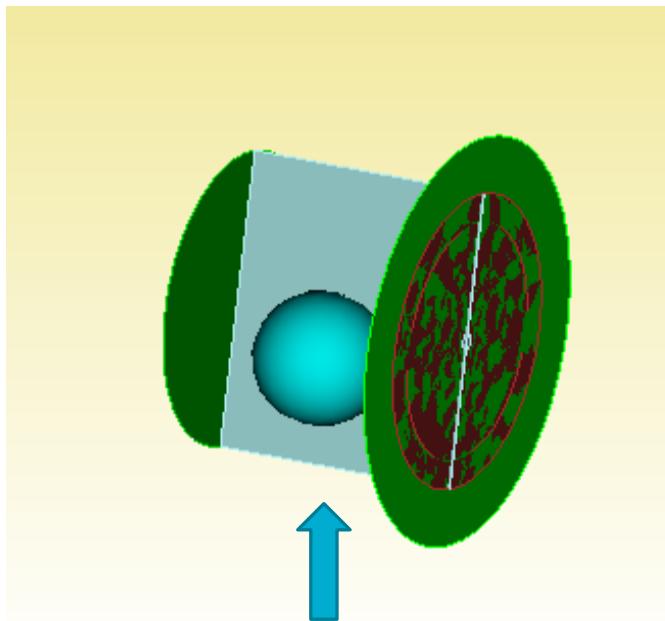
N	Nodes (GPUs)	Solve time (sec.)	TFLOPS	Procs/row
226,647	25 (100)	240.5	1291.0	10
1,065,761	310 (1240)	1905.1	1694.5	31
1,322,920	500 (2,000)	6443.9	958.1	20
1,322,920	500 (2,000)	2300.2	2684.1	50
1,322,920	500 (2,000)	2063.6	2991.9	100
2,002,566	1,200 (4,800)	3544.1	6042.6	100
2,564,487	1,900 (7,600)	5825.2	7720.7	80

Example Problem

Example Problem

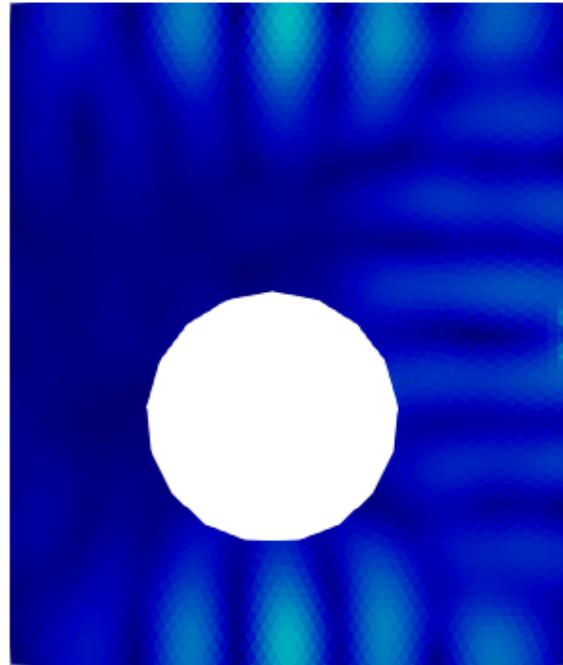


Example Problem -- Results

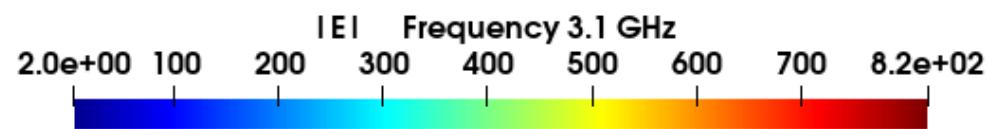


Cut Plane

494533 Unknowns



Incident Field



Magnitude of Electric Field on the Cut Plane

Conclusions

Conclusions / Future Effort

The EIGER /GEMMA codes have benefited from collaboration with the Trilinos team:
PLIRIS -> ADELUS, BELOS , KOKKOS

GEMMA

- **Additional Algorithms being pursued:**
 - Physics models
 - Advanced solution methods
 - Preconditioner identification

These will leverage and require continued teaming and support with the Trilinos team.