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The Multi-Fidelity Toolkit (MFTK) is a simulation tool being developed at Sandia National
Laboratories for aerodynamic predictions of compressible flows over a range of physics fidelities
and computational speeds. These models include the Reynolds-Averaged Navier–Stokes (RANS)
equations, the Euler equations, and modified Newtonian aerodynamics (MNA) equations,
and they can be invoked independently or coupled with hierarchical Kriging to interpolate
between high-fidelity simulations using lower-fidelity data. However, as with any new simulation
capability, verification and validation are necessary to gather credibility evidence. This work
describes formal code- and solution-verification activities. Code verification is performed on
the MNA model by comparing with an analytical solution for flat-plate and inclined-plate
geometries. Solution-verification activities include grid-refinement studies of HIFiRE-1 wind
tunnel measurements, which are used for validation, for all model fidelities.

I. Introduction

The Multi-Fidelity Toolkit (MFTK) is a suite of tools being developed at Sandia National Laboratories to improvethe response time for aerothermodynamic queries for hypersonic flight vehicles. The toolkit comprises three
levels of aerothermodynamic physics fidelity and a series of file- and data-processing scripts: an input-file generator,
a sample-point dispatcher, a data-gathering code, and a multi-fidelity interpolation code. The aerothermodynamic
evaluation fidelity levels are being developed in the Sandia Parallel Aerodynamics and Reentry Code (SPARC) and
consist of a modified Newtonian aerodynamics (MNA) solver, an Euler solver, and a Reynolds-Averaged Navier–Stokes
(RANS) solver. The low- and medium-fidelity models do not have the ability to compute viscous effects such as heat
flux; therefore, both transfer data to different correlation-based models. The multi-fidelity interpolation code uses a
hierarchical Kriging method [1] to perform sample evaluations over a parameter space by using trends from lower-fidelity
predictions and anchoring to high-fidelity predictions, such as those from a RANS solver. This allows for more accurate
predictions to be computed over a large parameter space at a reduced cost, compared to running a RANS solver only.
With the multi-fidelity interpolation method, the focus of the lower-fidelity methods is on minimizing the error in the
trend of aerothermodynamic data rather than the absolute error of each model. However, achieving the expected order
of accuracy is necessary to ensure the lower-fidelity models have been correctly implemented.
To assess the credibility of predictions using MFTK, verification and validation activities are performed to ensure

the correct implementation and appropriate use of the models. Validation assesses how well the implemented models
represent the relevant physical phenomena. This is typically done by comparing simulation predictions with experimental
data to assess the modeling error and ultimately the bounds of validity for a defined application space. By contrast,
verification is, according to the American Society of Mechanical Engineers (ASME) Standard for Verification and
Validation in Computational Solid Mechanics [2], “the process of determining that a computational model accurately
represents the underlying model and its solution.” Verification is further broken up into code verification and solution
verification [3–5]. Code verification focuses on the correct implementation of the mathematical model, whereas solution
verification focuses on estimating the numerical error for a particular solution.
Previous work on the underlying models includes code verification of the Euler equations [6] and code and solution

verification of the laminar equations [7]. To continue this effort, this paper focuses on code verification of the MNA
model and solution verification of all the models in MFTK. When solving the underlying equations numerically, the
geometry is discretized over the surface of the body. One consequence of discretizing the geometry is that the solution
incurs a truncation error, which introduces a discretization error into the solution. By refining the mesh for a problem
with a known solution and measuring the corresponding decrease in the discretization error, we compute an observed
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order of accuracy and compare it to the theoretical order of accuracy. When the comparison is sufficiently close, the
likelihood of coding errors existing within the code is greatly reduced.
For solution verification, the exact solution is unknown. Therefore, we estimate the discretization error using the

grid convergence index (GCI) metric [8]. GCI uses the difference between the Richardson extrapolated solution and
the solution on the finest mesh as an approximation of the discretization error. To account for uncertainty within the
calculation, the GCI metric applies a factor-of-safety multiplier to the estimated discretization error to account for errors
not captured in the Richardson extrapolation calculation. The GCI metric is then applied as a bound on both sides
of the solution on the finest mesh. Additional solution-verification methods exist [9–11], but these methods can be
unnecessarily complex for simple problems.

II. Code Verification
Code verification is the first credibility activity to be completed for MFTK. This is done to ensure that coding errors

are removed before impacting solution-verification or validation activities. The code-verification activities for this
report focus on verifying the MNA model within MFTK. The MNA model is the inviscid component of the low-fidelity
model within MFTK. In conjunction with a viscous component, such as the flat-plate boundary layer (FPBL) model,
MFTK computes surface quantities for hypersonic flow calculations. MNA falls under the umbrella of local surface
inclination methods. It is an improvement on Newtonian theory by accounting for the freestream Mach number when
computing the coefficient of pressure [12]. Newtonian and MNA methods solve for the pressure coefficients, which in
turn, allow for solving the surface pressure distribution. This method assumes parallel streamlines directed towards
a surface. In the presence of a surface, such as an inclined plane, the fluid creates a pressure on the surface. While
this model does not perform well for low-Mach flow, it has the potential to accurately model hypersonic flow when
a thin hypersonic shock layer exists and most of the momentum from the fluid is transferred to redirecting the fluid.
Additionally, the MNA model within MFTK also includes surface calculations of velocity, temperature, and streamline
length based on tangential velocity vectors and streamline marching. Using the MNA+FPBL model, these streamlines
enable one to compute the shear stress and heat flux using a one-dimensional viscous model [13]. To complete an
in-depth code-verification analysis, a proper understanding of the equations (shown in Appendix IV) and cases with
known solutions are required.

A. Code Verification with Analytical Solutions
Typically, code-verification activities involve verifying differential or integral equations that introduce discretization

error into the solution. Because of the simplicity of the MNA model, initial code-verification test cases do not introduce
discretization error. Therefore, the relative difference between an exact solution from a separate code and the computed
solution from MFTK should be approximately round-off error, such that, if the L∞-norm

ε∞ = max
i

����QoIiExact − QoIiMFTKQoIiExact

���� , (1)

where QoI is the quantity of interest, is less than 10−12, the test passes.

B. Verification Cases
For this analysis, two code-verification cases are studied to identify implementation (also know as constant errors)

and meshing errors. Case 1 is a flat-plate case and Case 2 is an inclined-plate case. The flat-plate case is almost identical
to inclined-plate case except that the mesh for the inclined-plate case can introduce mesh tolerance errors when inclining
the plate. Instead, the flat-plate case inclines the freestream velocity to induce the pressure field since the precision
of the freestream velocity is less prone to errors. For both test cases, the following MNA model QoIs are tested: Cp,
Pe,Ve,Me, Te, ρe, nv , and L. We note that Case 1 and Case 2 do not identify geometry discretization errors, which
require order-of-accuracy testing and is left for future work.

1. Case 1: Flat Plate
The flat-plate case models flow over a flat plate, where the angle of attack is −7◦. The computational domain of the

flat-plate case is a 1.0 m by 1.0 m square on theXZ-plane, which is shown in Fig. 1. Since the mesh perfectly represents
the geometry and the mesh is aligned with the streamlines, which is shown in Fig. 2, this case uses an analytical solution
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to test the correct implementation. This case provides the most simplistic MNA model test case to ensure all variables
computed by MFTK match the exact solution.

x

y
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Fig. 1 Computational domain for the flat-plate case (side view).

Fig. 2 Coarsest mesh for the flat-plate case (top view).

The exact solution uses the input from Table 3 in conjunction with Eqs (14) through (21) and the velocity specified
above. Using Eq (1), the relative error is computed. The results of the code-verification analysis are shown in Table 1.

Table 1 Code-verification results for the flat-plate case.

Variable Mesh 1 Error Mesh 2 Error Mesh 3 Error Mesh 4 Error
nx 0.00 0.00 0.00 0.00
ny 0.00 0.00 0.00 0.00
Cp [×10−14] 9.67 9.67 9.67 9.67
P [×10−14] 3.18 3.18 3.18 3.18
u [×10−14] 5.31 5.31 5.31 5.31
v 0.00 0.00 0.00 0.00
M [×10−15] 8.14 8.14 8.14 8.14
T [×10−15] 2.06 2.06 2.06 2.06
ρ [×10−14] 5.97 5.97 5.97 5.97
Dist [×10−16] 2.18 2.07 2.07 1.71
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All of the errors in the MNA variables are below 10−13 and clearly below the test criteria of 10−12, which means the
MNA model equations do not have constant errors when the staggered mesh is aligned, which simplifies the streamline
calculation. If an implementation error were present, the relative error would be much higher than 10−13, making this
verification test quite sensitive to constant errors. One note in completing this verification testing is that precision
tolerances are much more important for these tests than realistic problems. This makes setting up the test cases difficult
since hidden or rarely used settings can cause issues to the results. We also note that the error in the streamline distance
is increasing with mesh refinement. Increasing error is to be expected since round-off error increases with the number
of calculations being performed.

2. Case 2: Inclined Plate
The inclined-plate case is identical to the flat-plate case, but the implementation is slightly different. For this case,

the velocity is along the x-axis and the plate is inclined by −7◦, as shown in Fig. 3. Since the mesh perfectly represents
the geometry and the mesh is aligned with the streamlines, this case uses an analytical solution to test the correct
implementation. This case provides the second most simplistic MNA model test case to ensure all variables computed
by MFTK match the exact solution.

θ
x

y

V∞

Fig. 3 Computational domain for the inclined-plate case.

Fig. 4 Coarsest Mesh for the inclined-plate case.

The exact solution uses the input from Table 3 in conjunction with Eqs (14) through (21) and the velocity specified
in Section II.B.2. Using Eq (1), the relative error is computed, and the results are shown in Table 2.
All of the errors in the MNA variables are at most ∼ 10−13 and clearly below the test criteria of 10−12, which

means the MNA model equations do not have constant errors when the staggered mesh is aligned, which simplifies the
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Table 2 Code Verification Results for the Flat Plate Case

Variable Mesh 1 Error Mesh 2 Error Mesh 3 Error Mesh 4 Error
nx [×10−13] 4.76 4.36 4.35 4.08
ny [×10−14] 2.36 2.29 2.26 2.24
Cp [×10−13] 2.72 2.72 2.72 0.97
P [×10−13] 1.48 0.84 0.32 0.32
u [×10−13] 1.55 1.54 1.54 1.54
v [×10−13] 1.38 0.91 0.47 0.19
M [×10−15] 8.14 8.14 8.14 8.14
T [×10−15] 2.06 2.06 2.06 2.06
ρ [×10−14] 5.97 5.97 5.97 5.97
Dist [×10−14] 9.51 4.42 1.63 0.92

streamline calculation. One note on this particular problem is that initial results were impacted by the precision of the
mesh. This problem requires the maximum precision available from the meshing software to ensure mesh precision
does not impact the exact verification results.

3. Coding Error Identified
During the development of Cases 1 and 2, a coding error in how the stagnation point is computed at the edge of a

face was identified and corrected. Partial geometry simulations are undertaken to reduce the computational cost of the
simulation by utilizing symmetry within the solution. Since partial geometries would have the stagnation point located
at the edge of a face, this coding error would have impacted all partial geometry simulations. This finding highlights the
importance of completing code verification.

C. Future Work
For future work, an additional test case should also be completed to ensure the MNA model can pass an order-of-

accuracy test. One proposed test case would be simulating flow over a blunt-nose cone. This curved geometry would
introduce geometry discretization error as well as discretization error from the streamline distance calculation because
of the use of an unstructured grid. Additionally, code verification of the FPBL model should be completed for all three
test cases. Lastly, code verification should be applied to the momentum/energy integral technique (MEIT) since there
is currently no code verification for the implementation within MFTK. Once all these tests have been successfully
implemented, these code-verification tests should be automated to ensure MFTK continues to pass these tests with
ongoing development.

III. Solution Verification
Once code-verification activities are complete, solution-verification activities can start. Solution-verification

activities assess how well discrete equations can approximate the converged solution. This is crucial to complete
before validation activities start because the numerical uncertainty can impact the validation assessment. Since the
different models in MFTK (MNA, Euler, and RANS) use discrete equations to represent the model, an assessment
of the numerical uncertainty needs to be completed for each validation case. For an initial assessment of numerical
uncertainty, we will use the GCI metric.

A. GCI Equations
The grid convergence index (GCI) is the most simple and popular method to assess numerical uncertainty. GCI

requires solutions on at least three mesh sets (f1, f2, and f3) to compute the observed order of accuracy. The base
case developed for the validation study produced a solution on the medium mesh. For this study, a coarser and finer
mesh were developed with a uniform refinement (and coarsening) factor of two (r = 2)in each direction to generate
the additional solutions required. Since the MNA+FPBL model is a panel method, whereas Euler+MEIT and both
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RANS models are control-volume methods, two separate mesh triplets were generated. Fig. 5 shows the coarsest 3D
surface mesh used for the MNA+FPBL model, whereas Fig. 6 shows the coarsest 2D axisymmetric volume mesh
used for the Euler+MEIT and both RANS models. For both meshes, the only significant mesh refinement is near the
nose-cone region since large gradients are expected in this region. Each figure focuses on the mesh resolution details
in the nose-cone region. The medium and fine cell sizes can resolve length scales approximately two- and four-times
smaller than the coarse cell sizes, respectively.

Fig. 5 MNA+FPBL coarse mesh example in nose-cone region.

Fig. 6 Euler+MEIT and RANS coarse mesh examples in nose-cone region.

This provides enough information to compute the observed order of accuracy, pobs, which is

(2)pobs =
ln
�

f3−f2
f2−f1

�
ln r

.

Once we compute the pobs, a factor of safety, Fs, is chosen. This factor of safety turns the discretization error estimate
into a 95% confidence interval. Based on [4], when the difference between pobs and the theoretical order of accuracy,
pth, is smaller than 10%, Fs = 1.25. For all other cases, Fs = 3.0. While multiplying the estimated discretization error
significantly inflates the reported error, being close to or outside the asymptotic range can negatively impact the quality
of the Richardson extrapolation. Additionally, when pobs is positive, but larger in magnitude than pth, it is conservative
to use pth in the GCI metric, which will be seen in the order-of-accuracy plots below as a ceiling. When pobs is smaller
in magnitude than pth, it is conservative to use pobs in the GCI metric. For the case when pobs is positive, but less
than 0.5, the order of accuracy is set to 0.5, which will be seen in the order-of-accuracy plots below as a floor. For the
case when pobs is negative, this suggests that the simulation is non-convergent and numerical uncertainty cannot be
estimated. Now that Fs and p are known, the GCI metric is computed using

(3)GCI = Fs
|f3 − f2|
(rp − 1)

B. Solution Verification Assessment
For the solution verification assessment, there are a variety of fidelities and viscous models assessed to match the

validation assessment of the HIFiRE-1 wind tunnel test in [14]. To assess the numerical uncertainty for each simulation
case, the GCI is computed along the downstream flow. The HIFiRE-1 geometry, shown in Fig. 7, is used for all
simulation cases. The model fidelities assessed are MNA+FPBL, Euler+MEIT, and Reynold-averaged Navier–Stokes
(RANS) for the 0◦ angle of attack case. Since the validation assessment is performed on the pressure (P ) and wall
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heat flux (qw), the solution-verification assessment needs to quantify the numerical uncertainty for those QoIs. In
addition to the normalized GCI values, we report simulation results for each level of refinement to quickly assess the
mesh sensitivity. Lastly, we also report the observed order of accuracy to show how well the numerical method is
performing. For all simulation results, except for the heat flux results from the MNA+FPBL model, the theoretical
order of accuracy is assumed to be two, due to the linear approximation of the angle. For the heat-flux results in the
MNA+FPBL model, the theoretical order of accuracy is assumed to be one, due to the sub-linear approximation of the
streamline distance. To ensure consistently converging results in the future, the streamline distance calculation should
be improved to second-order accurate.

Fig. 7 The HIFiRE-1 wind tunnel test geometry that shows the fore-cone on the left, the cylindrical section in the
center, and the flare on the right, from [15]. The text states that the final nosetip was changed from sharp to a radius of
2.5 mm and the flare angle was changed from 37◦ to 33◦.

1. MNA+FPBL with 0◦ Angle of Attack
The MNA+FPBL model with 0◦ angle of attack case has the option of two different viscous models: flat-plate

laminar and flat-plate turbulent using the van Driest model, shown in Figs. 8 and 9. Note that the HIFiRE-1 geometry is
shown as a shaded figure in the background of each plot to show the increase in uncertainty due to changes in geometry.
For pressure, both the GCI and order of accuracy perform quite well for the laminar and van Driest cases, except

near the discontinuity at the front of the nose cone, which is to be expected. We note that there is a drop in order of
accuracy when the angle of the HIFiRE-1 geometry is zero, in the cylindrical portion, since the model is designed to be
insensitive when the angle is 0◦. For heat flux, the results are less desirable because of the larger sensitivity to the mesh
and due to the large variation in order of accuracy, although the numerical uncertainty is still quite small (approximately
3% maximum difference) and the uncertainty and spike in order of accuracy are quite localized. Refinement of the mesh
in areas where the angle of the geometry changes should help reduce the increase in numerical uncertainty.

2. Euler+MEIT with 0◦ Angle of Attack
The Euler+MEIT model with the 0◦ angle of attack case is shown in Fig. 10. This case represents the standard

mid-fidelity option within MFTK. Note that the HIFiRE-1 geometry is shown as a shaded figure in the background of
each plot to show the increase in uncertainty due to changes in geometry.
For pressure, there are areas in the domain that are not fully resolved with a GCI ratio of up to 3.5. Additionally, the

order of accuracy confirms this lack of convergence with spikes from the order of accuracy. For heat flux, rather than
modeling the laminar-to-turbulent transition region, MFTK currently switches from laminar to turbulent at x = 0.45 m.
This is a relatively new addition to MFTK to include both laminar and turbulent solutions. At x = 0.45 m, the GCI ratio
is up to 10.0, which indicates the manual method of modeling the transition region could use improvement. To improve
the transition modeling, the transition model should be adjusted to include a length scale to the transition region to
ensure a resolvable transition model. In addition to the transition region, the sharp aft region looks to be under-resolved.
If the numerical uncertainty is too large, this could be addressed in future studies by locally refining this region.
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Fig. 8 GCI calculation for laminar case with 0◦ angle of attack.
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Fig. 9 GCI calculation for turbulent (Van Driest) case with 0◦ angle of attack.
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Fig. 10 GCI calculation for turbulent (MEIT) case with 0◦ angle of attack.
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3. RANS with 0° Angle of Attack
The RANS model with 0° angle of attack case has the option of two different viscous models: Spalart–Allmaras

(SA) and Shear Stress Transport (SST), shown in Figs. 11 and 12. These cases represent the high-fidelity options within
MFTK. Note that the HIFiRE-1 geometry is shown as a shaded figure in the background of each plot to show the
increase in uncertainty due to changes in geometry.
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Fig. 11 GCI calculation for turbulent (SA) case with 0◦ angle of attack.

For pressure, the GCI and order of accuracy for the SA model performs much better than the SST model, which
almost never has an order of accuracy that is close to the theoretical value and a maximum GCI ratio of around 11.0.
For heat flux, the results are similar to pressure where the GCI and order of accuracy for the SA model perform much
better than the SST model, except for the spike in the GCI ratio near the laminar–turbulent transition region. Regardless
of the turbulence model, the chaotic nature of the order of accuracy is concerning and a more refined mesh is probably
required unless a large numerical uncertainty is acceptable.

C. Future Work
For future work, additional code verification should be performed for the FPBL, MEIT, and RANS equations to

ensure the proper implementation of the models. When reviewing the mid- and high-fidelity numerical uncertainties, the
RANS-SA is much lower than the other models. We also point out that even though the RANS-SA model had the lowest
numerical uncertainty of the mid- and high-fidelity models, the order of accuracy was sporadic and the GCI value is still
quite high. The high GCI value is an important result since these mid- and high-fidelity meshes were considered to be
well refined before the analysis was completed. This means that future simulations should use more refined meshes and
will unfortunately add to the computational expense, which adds to the appeal of the low-fidelity model. As expected,
the low-fidelity MNA+FPBL model’s numerical uncertainty is the lowest of all the simulation results. This is due to

11



0.0 0.5 1.0 1.5

Axial Position (m)

0

20

40

60

80

100

120

140

160

P
[

k
P

a
]

PFine

PMedium

PCoarse

GCI
P

0

2

4

6

8

10

12

G
C

I
P

(a) Pressure

0.0 0.5 1.0 1.5

Axial Position (m)

0

50

100

150

200

250

300

350

400

q w
[
W c
m

2
]

qwFine

qwMedium

qwCoarse

GCI
qw

0

1

2

3

4

5

G
C

I
q
w

(b) Heat flux

0.0 0.5 1.0 1.5
Axial Location (m)

0.0

0.5

1.0

1.5

2.0

O
rd

er
of

A
cc

u
ra

cy
fo

r
P

(c) Order of accuracy for pressure

0.0 0.5 1.0 1.5
Axial Location (m)

0.0

0.5

1.0

1.5

2.0

2.5

O
rd

er
of

A
cc

u
ra

cy
fo

r
q w

(d) Order of accuracy for heat flux

Fig. 12 GCI Calculation for turbulent (SST) case with 0◦ angle of attack.
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the simplistic nature of the model and reaching well inside the asymptotic region is less computationally expensive.
When these cases are evaluated in the validation chapter of this report, results where the GCI ratio is unacceptably
high should either be locally or globally refined to ensure the solution is within the asymptotic region. In addition to
local and global mesh refinement, the transition from laminar to turbulent solutions should be improved to ensure the
transition is smooth. Without a smooth transition, this region is not able to enter the asymptotic range and will yield
large numerical uncertainty.

IV. Conclusion
This work undertakes the first known verification activities for the Multi-Fidelity Toolkit to provide credibility

evidence for its use in high-consequence decision making in hypersonic vehicle analysis at a variety of physics-fidelity and
computational-expense levels. It has leveraged best practices in both code and solution verification. The code-verification
activities focused on the modified Newtonian aerodynamics model that is a large component of the low-fidelity capability
of MFTK. The other component, the flat-plate boundary layer models, should be the subject of future code-verification
efforts. Solution-verification activities were applied to all three fidelity levels of MFTK.
Code and solution verification are vital precursors for high-quality validation activities. By minimizing the coding

errors and measuring the numerical uncertainty, we can ensure the impact of discretizing the equations and geometry is
minimized. The MNA code-verification results showed that for all QoIs, the difference between the MFTK results and
the analytical solution are less than 10−13 when the mesh perfectly represents the geometry and the mesh lines up with
the streamlines. This means the MNA model has been implemented correctly in MFTK without coding errors for all
situations matching the code-verification case scenarios. Additionally, the MNA model has significantly less numerical
uncertainty than the Euler-MEIT or either RANS models, which is expected since the asymptotic range for the low
fidelity MNA model starts significantly earlier than the Euler-MEIT or either RANS cases. Future Euler-MEIT and
RANS-SST cases should be refined where significant numerical uncertainty exists.

Appendix: Derivation of Modified Newtonian Aerodynamics
This appendix focuses on the derivation of the MNA model for inviscid flow regions and the three flat plate boundary

layer (FPBL) models for the viscous flow regions.

Assumed Inputs
Before discussing the derivation of the MNA model and the FPBL models, the model inputs should be stated. The

following constants are used as inputs into MFTK and will be used as part of the analytic solution. The constant names,
notation, and values are listed in Table 3.

Table 3 Table of values used in code-verification analysis.

Constant Name Notation Value Units
Gas constant for air R 287.05 J/kg/K
Ratio of specific heats γ 1.4 –
Prandtl number Pr 0.73684 –
Freestream density ρ∞ 0.066958 kg/m3

Freestream speed V∞ 2170.0 m/s
Freestream velocity V∞ Problem Specific m/s
Freestream temperature T∞ 226.46 K
Wall temperature Tw 300 K
Sutherland constant C Cvisc 1.458 × 10−6 –
Sutherland constant S Svisc 110.3 –
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Newtonian Theory
Based on Section 3.2 of [12], Newtonian theory computes the pressure applied by the fluid’s momentum in

pe − p∞ = ρ∞V 2
∞ sin2 θ, (4)

where pe is the edge pressure, p∞ is the freestream pressure shown in

p∞ = ρ∞RT∞, (5)

ρ∞ is the freestream density, R is the gas constant for air, T∞ is the freestream temperature, V∞ is the freestream speed
of the flow, and θ is the local surface angle relative to the freestream flow direction. The ratio between the static pressure
and the dynamic pressure is Cp and is defined as

Cp = pe − p∞
1
2ρ∞V 2

∞
. (6)

Substituting Eq. (4) into Eq. (7) results in
Cp = 2 sin2 θ. (7)

While it is typical to derive these equations on an angled, one-dimensional plate, θ in Eq. (7) is the local angle of the
surface. This means that these equations are applicable on two- and three-dimensional surfaces. For complex surfaces,
θ is calculated by

θ = sin−1
�

V∞
V∞

· n
�

. (8)

where V∞ is the freestream velocity and n is the element surface unit vector. Another important portion of the domain
is the other side of the body (also known as the shadow region). Since the shadow region does not undergo the increase
in pressure due to the flow, the pressure in the shadow region is the same as p∞. To account for the shadow region,
when θ < 0, Cp = 0.

MNA Model
The MNA model [16] is an improved method to compute the edge pressure distribution, pe, over blunt-nosed

bodies [12]. Additionally, we use pe to compute edge velocities, Ve, and edge temperatures, Te. MNA assumes the
pressure at the stagnation point is equal to the stagnation pressure behind a normal shock wave (pO2). This exactly
computes Cp at the stagnation point, so it is natural to replace the factor of two in Newtonian theory with a new
coefficient. This new coefficient, Cpmax is used in the MNA model, such that Eq. (7) becomes

Cp = Cpmax sin2 θ, (9)

where
Cpmax = pO2 − p∞

1
2ρ∞V 2

∞
. (10)

Noting that q = 1
2ρ∞V 2

∞ = γ
2 p∞M2

∞ (see [12, pg. 44]), Eq. (10) is simplified to

Cpmax = 2
γM2

∞

�
pO2

p∞
− 1
�

, (11)

where γ is the ratio of specific heats andM∞ is the freestream Mach number and computed using

M∞ = V∞√
γRT∞

(12)

Using the Rayleigh pitot tube formula from normal shock-wave theory, the relationship between the total pressure behind
the pressure wave compared to the freestream pressure is shown by [12, pg. 65]

pO2

p∞
=
 (

γ + 1
�2

M2
∞

4γM2
∞ − 2

(
γ − 1

�! (13)
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By substituting Eq. (11) and Eq. (13) into Eq. (9), the equation is now a function of the ratio of specific heats for air,
γ, andM∞, which matches Eq. (2.3) in [17]. Now that Cp is derived, we can compute pe by rearranging the terms in
Eq. (6) to obtain

pe = 1
2Cpρ∞V 2

∞ + p∞ (14)

Now that pe has been derived, edge velocity, Ve, and edge temperature, Te, can be derived. Ve is defined as

Ve = Ve · nv (15)

where the edge velocity unit vector, nv , is computed using the freestream speed of the flow, freestream velocity, and the
surface unit vector given by the surface of the body, ns, in

nv =
ns ×

�
V∞
V∞

�
���ns ×

�
V∞
V∞

���� . (16)

The edge speed Ve is computed using the edge Mach number,Me, (see [12, pg. 79]) and the speed of sound, a in

Ve = Mea, (17)

where

Me =

vuut 2
γ − 1

 �
pe

pemax

� 1−γ
γ

− 1
!

, (18)

a =
√︁

γRTe, (19)

pmax = 1
2Cpmax , (20)

and

Te = T∞
1 + 1

2
(
γ − 1

�
M2

∞

1 + 1
2
(
γ − 1

�
M2

e

. (21)
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