SAND2021-14919PE|

Sandia
National
Laboratories

e speed (myr '}
1 2 5 W @D =020 59010020
i

Tuning

-

e .
L rrTprrjik |
=)
=

»—

Ve

-

December 274, 2021

Jerry Watkins

T U CERARTEERE OF
| —

@ ENERGY NISH

Nl ductosr Boculy Adi a0

Contributors: Max Carlson, Carolyn Kao, Kyle Shan, Irina Tezaur

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,

.. . LLC, a wholly owned subsidiary of Honeywell
| ional Inc., for the U.S. D f
Trilinos User-Developer Group Meeting SAND ramaiorsl . forte U Dparimnt
Sandial National islalmultimissionllaboratoryimanagediand Technologvl&IEngineerinalSolutionslofiSandia ILLC
subsidiaryjoff[Honeywelljinternationalfinc. JforitheJU.S JDepartmentfoflEnergy'siNationalNuclearlSecuritylJAdministrationfunderficontracDE-N

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

, | Outline

1) Automated Performance Testing
2) Automated Performance Tuning

3) Conclusions/Discussion

. | Motivation — Automated performance testing

1) Maintaining performance and portability in the presence of active development
Code changes can cause performance regressions (compiler/algorithmic optimizations)
Compiler/TPL changes can cause performance regressions (updates)

Architecture changes can cause performance regressions (CPU->GPU)

2) Improving performance and portability in the presence of active development
Performance can vary greatly with code changes (robustness)
Performance can vary greatly between compiler, architecture (CPU/GPU)

3) Manual testing/analysis is increasingly infeasible

Performance can vary greatly between executions (noise)

Directly tied to developer productivity

Progress has been made towards automating this task
Creating a performance test can be difficult

Are we doing better?

Timeline - GMRES block system: Operation Prec*x:

0.09

e =
o o o
o N @

Wall-clock time (s)

o
o
3]

2019-07-10 2019-08-04 2019-08-29 2019-09-23 2019-10-18

MquU\/__/\//W\/\«wL

Date
Time series data for code executed daily

; ‘ Changepoint detection for performance testing

Maintaining performance and portability through only time series data plots still
requires an expert to determine significant changes

* Changepoint detection: process of finding abrupt variations in time series data

® (ime

: Two STDs
400 mean /
----- upper
----- lower

350

300

250

200

Wall-clock Time (s)

150

Oct 2019 Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 2021 Oct 2021

Simulation Date

Total simulation time for a 2-20km resolution Antarctica mesh, executed nightly in Albany Land Ice

. | Changepoint detection for performance testing

Single Changepoint:

Given time series data: X = {x1,%2,...,2,}, and subset: X,;-j ={z;, Tiy1,...,2;},

Hypothesis tests: Changepoint All possible -
HO : f_l _ fff’ V,i c]C"/ changepoints
Hy: fy=# [, v ek,

* Null hypothesis — X belongs to a single distribution

174 *==r= upper

172

170

Wall-clock Time (s) or Memory (MiB)

o
I~

* Alternative hypothesis — there exists a changepoint v 1
s.t. XY~1 and X! belong to two separate distributions oz Jun 26 s i1z

Simulation Date

* Two-sample Student’s t-test (equal variance), other options not tested
* Bonferroni correction used for multiple hypothesis testing: a/k
* Only k = 10 number of tests determined from largest changes in time series

* Qutliers removed above ~3 STD, up to 10%

, | Changepoint detection for performance testing

Multiple Changepoint: _ 2l .

* Sequential algorithm

* Store changepoints as they appear,
new subset is created after change

Wall-clock Time (s) or Memory (MiB)

* m = 3 consecutive detections
required before confirming
changepoint

Sep 27 Oct 4 Oct 11 Oct 18 Oct 25 Nov 1 Nov 8
2020

Simulation Date

* Max sample size or “lookback window” set to, w = 30, to avoid hypersensitivity

Implementation:

* Performance metrics are store in json files

Wall-clock Time (s) or Memory (MiB)

* Automated post-processing in python

* Results uploaded in html and email reports

° https://sandialabs.github.io/ikalash.github.io/ Example of improvements: Kokkos memory 45k->8k MiB
[Greenland Ice Sheet, 1-7km, First-order Stokes]

https://sandialabs.github.io/ikalash.github.io/

. | Performance comparisons

L green—1—7km7mu7d|57mem7np384I
mean

12

Pe rfo r m a n ce An a Ivs i S : 7 ® green-1-7km_ml_Is_mem_np384

mean

Given two time series: X and Y

* Compute difference

Wall-clock Time (s) or Memory (MiB)

* Find changepoints

* Compute mean between "
Cha ngepOi nts a nd 99% Confide nce Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 2021 Oct 2021
i nte rva I Simulation Date

mean

Exa m p I e : 0T0%, I . ® Time Difference

» Red/Squares: MueLu g T o o - o - T
* Blue/Circles: ML i Olon 99% ClI
* Latest results: S oow . . I

* Starting Nov. 6t (8 samples) oo
* Relative difference mean: 2.49%
* 99% Cl: (1.16%, 3.81%)

-30.0%

Jan 2020 Apr 2020 Jul 2020 O(;t 2020 Jan 2021 Apr 2021 Jul 2021 Oct 2021

Simulation Date

Wall-clock Time (s) or Memory (MiB)

Relative Performance

9 ‘ Performance comparisons
More Examples:

12
B green-1-7km_mu_dIls_mem_np384
50 O ® humboldt-1-10km_cop_fro_wdg_np384 mean
mean .
4 2 ® green-1-7km_mu_ls_mem_np384
® humboldt-1-10km_cop_if2_wdg np384 o r] ® mean
mean é
50 " 2
o
E
o)
=
<]
40 Sy
o
)
E
=
&
30 2
B
&
= 8
20
¥
May 2021 Jul 2021 Sep 2021 Nov 2021 Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 2021 Oct 2021
Simulation Date Simulation Date

Ifpack2/FROSch: MueLu/pra((:)kZ wiothout/withoblock dicoupling:
20.40% (99% Cl: (19.48%, 21.30%)) -4.12% (99% Cl: (-5.13%, -3.11%))

40.0% o
® Time Difference B.0%

® Time Difference

mean
_— L L]
ITMEETY | | [(R I Rt A D e upper
..... upper -===- lower
200% T hanptae. efe et s 4.0%
@
S 20%
-0.0% & :
E
(=]
=
@
b o 0.0%
-20.0% g
T
T
o -20%
-40.0%
-4.0%
~60.0% M
‘e
-6.0%
Apr2021 May 2021 Jun 2021 Jul 2021 Aug2021 Sep2021 Oct2021 Nov2021 Dec2021 Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 2021 Oct 2021

Simulation Date Simulation Date

+ | Motivation — Automated performance tuning

Problem Description:

* Find a robust set of parameters for optimal performance and accuracy.
* Often many runtime parameters to choose from (e.g. discretization, solver)
* Abundance of research/development on this topic

Motivations are similar to performance testing:

1) Maintaining performance and portability in the presence of active development
* Code changes can cause optimal parameters to shift (algorithmic optimizations)
* Compiler/TPL changes can cause optimal parameters to shift (new parameters)
* Architecture changes can cause optimal parameters to shift (CPU->GPU)

2) Improving performance and portability in the presence of active development
* Optimal parameters can vary greatly between compiler, architecture (CPU/GPU)
* Performance can vary greatly with code changes (robustness)

3) Manual tuning is increasingly infeasible
* Directly tied to developer/user productivity
* Parameters become outdated

» | Blackbox optimization for performance tuning

Grid/Random Search:

* Simple, can be used for parameter exploration

Implementation:

* Utilize performance test to check robustness, performance and accuracy
* Parameters are in input files with yaml format

* Files are modified with python and scikit-learn is used for parameter selection

Partially Explored Extensions:

* Sequential optimization algorithms (model-based, Bayesian optimization)
* Sandia or open-source libraries (GPTune, Dakota)

* Integrate into performance testing framework (automated tuning)

s | Blackbox optimization for performance tuning

Example: Albany Land Ice multigrid preconditioner smoothers

Smoother parameters: Results:
* Limited to three levels, two smoothers) Ai‘ppI'Ed to four cases (Greenland, 3-20km)

Different equations

* Good parameter ranges provided by Different architectures (CPU/GPU)

Christian/Ichi)
- Timer: NOX Preconditioner + Linear Solve

100 iterations, random search

type: RELAXATION
ParameterList:
’relaxation: type’: MT Gauss-Seidel : :
, . , o Cases Manual Tuning (sec.) | Autotuning (sec.) | Speedup
relaxation: sweeps’: positive integer
’relaxation: damping factor’: positive real number blake vel 3.533972 2.658731 1.33x
e e blake_ent 3.07725 2.036044 1.51x
ParameterList: Weaver_vel 19.13084 16.30672 1.17x
'relaxation: type’: Two-stage Gauss-Seidel weaver_ent 19.76345 15.00014 1.32x
’relaxation: sweeps’: positive integer
’relaxation: inner damping factor’: positive real number - -
| Cases | #Passed Runs | #Failed Runs | %Failure |
;YPe’ CHEEYSHEV blake_vel 70 30 30%
arameterList:
! , . R blake_ent 37 63 63%
chebyshev: degree’: positive integer
’chebyshev: ratio eigenvalue’: positive real number weaver_vel 71 29 29%
’chebyshev: eigenvalue max iterations’: positive integer weaver_ent 26 74 T74%

< | Conclusions/Discussion

Automated Performance Testing

* Changepoint detection adds some level of confidence to changes in performance
(regressions/improvements)
* Doesn’t always work — sometimes too sensitive — trade-offs when tuning
* Still requires good performance tests/metrics
* Still requires human-in-the-loop to address regressions
* Large number of tests/metrics could be overwhelming

Automated Performance Tuning

* Blackbox optimization coupled with nightly testing adds some level of confidence in
optimal parameters
* Preliminary results are promising but more research needed
* Large number of failures, raises questions about robustness/applicability
* Optimization is expensive!

