
P R E S E N T E D B Y

Sandia National Laboratories is a multimission

laboratory managed and operated by National

Technology & Engineering Solutions of Sandia,

LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of

Energy’s National Nuclear Security

Administration under contract DE-NA0003525.

NASA

Automated Performance Testing and
Tuning

Je r r y Wa tk ins

C o n t r i b u t o r s : M a x C a r l s o n , C a r o l y n K a o, Ky l e S h a n , I r i n a Te z a u r

Tr i l i nos Use r-Deve lope r Group Mee t ing SAND

December 2nd, 2021

SAND2021-14919PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline2

1) Automated Performance Testing

2) Automated Performance Tuning

3) Conclusions/Discussion

Automated Performance Testing

Motivation – Automated performance testing4

1) Maintaining performance and portability in the presence of active development
• Code changes can cause performance regressions (compiler/algorithmic optimizations)

• Compiler/TPL changes can cause performance regressions (updates)

• Architecture changes can cause performance regressions (CPU->GPU)

2) Improving performance and portability in the presence of active development
• Performance can vary greatly with code changes (robustness)

• Performance can vary greatly between compiler, architecture (CPU/GPU)

• Performance can vary greatly between executions (noise)

3) Manual testing/analysis is increasingly infeasible
• Directly tied to developer productivity

• Progress has been made towards automating this task

• Creating a performance test can be difficult

• Are we doing better?

Time series data for code executed daily

Changepoint detection for performance testing5

Maintaining performance and portability through only time series data plots still
requires an expert to determine significant changes

• Changepoint detection: process of finding abrupt variations in time series data

Total simulation time for a 2-20km resolution Antarctica mesh, executed nightly in Albany Land Ice

Two STDs

Changepoint detection for performance testing6

Single Changepoint:

Given time series data: and subset:

Hypothesis tests:

• Null hypothesis – 𝑋 belongs to a single distribution

• Alternative hypothesis – there exists a changepoint 𝜈
s.t. 𝑋1

𝜈−1 and 𝑋𝜈
𝑛 belong to two separate distributions

• Two-sample Student’s t-test (equal variance), other options not tested

• Bonferroni correction used for multiple hypothesis testing: 𝛼/𝑘

• Only 𝑘 = 10 number of tests determined from largest changes in time series

• Outliers removed above ~3 STD, up to 10%

Changepoint All possible
changepoints

Changepoint detection for performance testing7

Multiple Changepoint:

• Sequential algorithm
• Store changepoints as they appear,

new subset is created after change

• 𝑚 = 3 consecutive detections
required before confirming
changepoint

• Max sample size or “lookback window” set to, 𝑤 = 30, to avoid hypersensitivity

Implementation:

• Performance metrics are store in json files

• Automated post-processing in python

• Results uploaded in html and email reports
• https://sandialabs.github.io/ikalash.github.io/ Example of improvements: Kokkos memory 45k->8k MiB

[Greenland Ice Sheet, 1-7km, First-order Stokes]

https://sandialabs.github.io/ikalash.github.io/

Performance comparisons8

Performance Analysis:

Given two time series: 𝑋 and 𝑌

• Compute difference

• Find changepoints

• Compute mean between
changepoints and 99% confidence
interval

Example:

• Red/Squares: MueLu

• Blue/Circles: ML

• Latest results:
• Starting Nov. 6th (8 samples)

• Relative difference mean: 2.49%

• 99% CI: (1.16%, 3.81%)

99% CI

Performance comparisons9

More Examples:

Ifpack2/FROSch:
20.40% (99% CI: (19.48%, 21.30%))

MueLu/Ifpack2 without/with block decoupling:
-4.12% (99% CI: (-5.13%, -3.11%))

Automated Performance Tuning

Motivation – Automated performance tuning11

Problem Description:

• Find a robust set of parameters for optimal performance and accuracy.

• Often many runtime parameters to choose from (e.g. discretization, solver)

• Abundance of research/development on this topic

Motivations are similar to performance testing:

1) Maintaining performance and portability in the presence of active development
• Code changes can cause optimal parameters to shift (algorithmic optimizations)

• Compiler/TPL changes can cause optimal parameters to shift (new parameters)

• Architecture changes can cause optimal parameters to shift (CPU->GPU)

2) Improving performance and portability in the presence of active development
• Optimal parameters can vary greatly between compiler, architecture (CPU/GPU)

• Performance can vary greatly with code changes (robustness)

3) Manual tuning is increasingly infeasible
• Directly tied to developer/user productivity

• Parameters become outdated

Blackbox optimization for performance tuning12

Grid/Random Search:

• Simple, can be used for parameter exploration

Implementation:

• Utilize performance test to check robustness, performance and accuracy

• Parameters are in input files with yaml format

• Files are modified with python and scikit-learn is used for parameter selection

Partially Explored Extensions:

• Sequential optimization algorithms (model-based, Bayesian optimization)

• Sandia or open-source libraries (GPTune, Dakota)

• Integrate into performance testing framework (automated tuning)

Blackbox optimization for performance tuning13

Example: Albany Land Ice multigrid preconditioner smoothers

Smoother parameters:

• Limited to three levels, two smoothers

• Good parameter ranges provided by
Christian/Ichi

Results:

• Applied to four cases (Greenland, 3-20km)
• Different equations
• Different architectures (CPU/GPU)

• 100 iterations, random search

• Timer: NOX Preconditioner + Linear Solve

Conclusions/Discussion

Conclusions/Discussion15

Automated Performance Testing

• Changepoint detection adds some level of confidence to changes in performance
(regressions/improvements)
• Doesn’t always work – sometimes too sensitive – trade-offs when tuning

• Still requires good performance tests/metrics

• Still requires human-in-the-loop to address regressions

• Large number of tests/metrics could be overwhelming

Automated Performance Tuning

• Blackbox optimization coupled with nightly testing adds some level of confidence in
optimal parameters
• Preliminary results are promising but more research needed

• Large number of failures, raises questions about robustness/applicability

• Optimization is expensive!

