SAND2021-14919PE|

Sandia
National
Laboratories

e speed (myr '}
1 2 5 W @D =020 59010020
i

Tuning

-

e .
L rrTprrjik |
=)
=

»—

Ve

-

December 274, 2021

Jerry Watkins

T U CERARTEERE OF
| —

@ ENERGY NISH

Nl ductosr Boculy Adi a0

Contributors: Max Carlson, Carolyn Kao, Kyle Shan, Irina Tezaur

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,

.. . LLC, a wholly owned subsidiary of Honeywell
| ional Inc., for the U.S. D f
Trilinos User-Developer Group Meeting SAND ramaiorsl . forte U Dparimnt
Sandial National islalmultimissionllaboratoryimanagediand Technologvl&IEngineerinalSolutionslofiSandia ILLC
subsidiaryjoff[Honeywelljinternationalfinc. JforitheJU.S JDepartmentfoflEnergy'siNationalNuclearlSecuritylJAdministrationfunderficontracDE-N

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.




, | Outline
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. | Motivation — Automated performance testing

1) Maintaining performance and portability in the presence of active development
Code changes can cause performance regressions (compiler/algorithmic optimizations)
Compiler/TPL changes can cause performance regressions (updates)

Architecture changes can cause performance regressions (CPU->GPU)

2) Improving performance and portability in the presence of active development
Performance can vary greatly with code changes (robustness)
Performance can vary greatly between compiler, architecture (CPU/GPU)

3) Manual testing/analysis is increasingly infeasible

Performance can vary greatly between executions (noise)

Directly tied to developer productivity

Progress has been made towards automating this task
Creating a performance test can be difficult

Are we doing better?
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; ‘ Changepoint detection for performance testing

Maintaining performance and portability through only time series data plots still
requires an expert to determine significant changes

* Changepoint detection: process of finding abrupt variations in time series data
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Total simulation time for a 2-20km resolution Antarctica mesh, executed nightly in Albany Land Ice



. | Changepoint detection for performance testing

Single Changepoint:

Given time series data: X = {x1,%2,...,2,}, and subset: X,;-j ={z;, Tiy1,...,2;},

Hypothesis tests: Changepoint All possible -
HO : f_l _ fff’ V,i c ]C"/ changepoints
Hy: fy=# [, v ek,

* Null hypothesis — X belongs to a single distribution
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*  Two-sample Student’s t-test (equal variance), other options not tested
* Bonferroni correction used for multiple hypothesis testing: a/k
* Only k = 10 number of tests determined from largest changes in time series

* Qutliers removed above ~3 STD, up to 10%



, | Changepoint detection for performance testing

Multiple Changepoint: _ 2l .

* Sequential algorithm

* Store changepoints as they appear,
new subset is created after change
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* m = 3 consecutive detections
required before confirming
changepoint
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* Max sample size or “lookback window” set to, w = 30, to avoid hypersensitivity

Implementation:

* Performance metrics are store in json files

Wall-clock Time (s) or Memory (MiB)

* Automated post-processing in python

* Results uploaded in html and email reports

° https://sandialabs.github.io/ikalash.github.io/  Example of improvements: Kokkos memory 45k->8k MiB
[Greenland Ice Sheet, 1-7km, First-order Stokes]



https://sandialabs.github.io/ikalash.github.io/

. | Performance comparisons
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9 ‘ Performance comparisons
More Examples:
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+ | Motivation — Automated performance tuning

Problem Description:

* Find a robust set of parameters for optimal performance and accuracy.
* Often many runtime parameters to choose from (e.g. discretization, solver)
* Abundance of research/development on this topic

Motivations are similar to performance testing:

1) Maintaining performance and portability in the presence of active development
*  Code changes can cause optimal parameters to shift (algorithmic optimizations)
*  Compiler/TPL changes can cause optimal parameters to shift (new parameters)
*  Architecture changes can cause optimal parameters to shift (CPU->GPU)

2) Improving performance and portability in the presence of active development
*  Optimal parameters can vary greatly between compiler, architecture (CPU/GPU)
*  Performance can vary greatly with code changes (robustness)

3) Manual tuning is increasingly infeasible
*  Directly tied to developer/user productivity
*  Parameters become outdated



» | Blackbox optimization for performance tuning

Grid/Random Search:

*  Simple, can be used for parameter exploration

Implementation:

* Utilize performance test to check robustness, performance and accuracy
* Parameters are in input files with yaml format

* Files are modified with python and scikit-learn is used for parameter selection

Partially Explored Extensions:

* Sequential optimization algorithms (model-based, Bayesian optimization)
* Sandia or open-source libraries (GPTune, Dakota)

* Integrate into performance testing framework (automated tuning)



s | Blackbox optimization for performance tuning

Example: Albany Land Ice multigrid preconditioner smoothers

Smoother parameters: Results:
* Limited to three levels, two smoothers ) Ai‘ppI'Ed to four cases (Greenland, 3-20km)

Different equations

* Good parameter ranges provided by  Different architectures (CPU/GPU)

Christian/Ichi )
- Timer: NOX Preconditioner + Linear Solve

100 iterations, random search

type: RELAXATION
ParameterList:
’relaxation: type’: MT Gauss-Seidel : :
, . , o Cases Manual Tuning (sec.) | Autotuning (sec.) | Speedup
relaxation: sweeps’: positive integer
’relaxation: damping factor’: positive real number blake vel 3.533972 2.658731 1.33x
e e blake_ent 3.07725 2.036044 1.51x
ParameterList: Weaver_vel 19.13084 16.30672 1.17x
'relaxation: type’: Two-stage Gauss-Seidel weaver_ent 19.76345 15.00014 1.32x
’relaxation: sweeps’: positive integer
’relaxation: inner damping factor’: positive real number - -
| Cases | #Passed Runs | #Failed Runs | %Failure |
;YPe’ CHEEYSHEV blake_vel 70 30 30%
arameterList:
! , . R blake_ent 37 63 63%
chebyshev: degree’: positive integer
’chebyshev: ratio eigenvalue’: positive real number weaver_vel 71 29 29%
’chebyshev: eigenvalue max iterations’: positive integer weaver_ent 26 74 T74%







< | Conclusions/Discussion

Automated Performance Testing

* Changepoint detection adds some level of confidence to changes in performance
(regressions/improvements)
*  Doesn’t always work — sometimes too sensitive — trade-offs when tuning
* Still requires good performance tests/metrics
* Still requires human-in-the-loop to address regressions
* Large number of tests/metrics could be overwhelming

Automated Performance Tuning

* Blackbox optimization coupled with nightly testing adds some level of confidence in
optimal parameters
* Preliminary results are promising but more research needed
* Large number of failures, raises questions about robustness/applicability
* Optimization is expensive!



