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2a. (Saturated) Secondary Electron Avalanche

3. Electric Breakdown in Desorbed Gas
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surface flashover. One way transit time of charging and
foad coaxial line is approx. 135 ns.
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Fig. 2. Experimental current and X-ray emission at a breakdown voltage of

11.4 kV.

[1] Neuber, A. et al. The role of outgassing in surface
flashover under vacuum /EEE TPS 28, No. 5, 2000




Increasing Flashover Potential

» Electric field parallel to surface - SEE easily forms, followed by

electron induced outgassing and gaseous breakdown
LOW THRESHOLD

» Electric field in angle with the surface &> SEE cannot easily form
electrons are pulled away from the surface
HIGHER FLASHOVER THRESHOLD
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[5] Yan et al. “Experimental investigation of surface flashover in
vacuum using nanosecond pulses,” IEEE TDEI 14, 634-642, 2007

For 45 degree positive angle: Field at anode much higher (~ factor 4) than at cathode - Anode initiated flashover
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(Working Theory)
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: Desorbed Gasses +
o Eroded Insulat
 Anode initiated flashover dominates due to (AT], CT]) 100CA HISWLOE
e Initiation may be due to degassing, not surface breakdown @

~ +

dielectric surface.

e Interest in whether field-emitted electrons liberate adsorbed gasses on the 6

[2] R. A. Anderson, Surface flashover measurements on conical insulator suggesting possible

design improvements, SAND75 0667, 1976

[3] Stygar et al. Flashover of a vacuum-insulator interface: a statistical model Phys. Rev. ST
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VE% + E% Sufficiently

large to cause bulk
breakdown close to

\ surface (~1 pm deep) \

Gas/Plasma Formation:
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+

Accel. Beams, American Physical Society, 2004, 7, 070401

[4] Stygar et al. Improved design of a high-voltage vacuum-insulator interface Phys. Rev. ST
Accel. Beams, American Physical Society, 2005, 8, 050401
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Base Wedge Geometry
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Anode Plug Geometry
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Anode plug offered 21% + improvement in
flashover strength (630 kV /cm vs
522 kV /cm) limited by bulk breakdown.

* The anode plug slightly
enhances fields:
 CTJ to midpoint

* The anode plug reduces fields:
* ATJ to midpoint

* Suggest breakdown is initiated
from the upper half of the
insulator, likely the ATJ
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Figure 4. (a) The stacked ring insulator in our 2MV pulsed power machine as — .
described in Fig. 3. (b) A polypropelene ring damaged by breakdown. 0 50 1 00 1 50 Z[C I'I‘l]
[6] ). G. Leopold, R. Gad, E. Hillel, C. Leibovitz, M. Markovits and I. Navon,
Field Shaplng conflgured to prevent field "Applying a different approach to pulsed high-voltage insulation," 2010

emi S Si on from CT J, in SUl at or from strikin g IEEE International Power Modulator and High Voltage Conference, 2010

insulator. Optlmlzed placement resulted in (See also) [7] Different approach to pulsed high-voltage vacuum-insulation

; : design, John G. Leopold, Chaim Leibovitz, tamar Navon, and Meir
Superlor performance to msulator StaCk' Markovits, Phys. Rev. ST Accel. Beams 10, 060401
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[8] Ya. E. Krasik and J. G. Leopold , "Initiation of vacuum insulator surface high-voltage
flashover with electrons produced by laser illumination”, Physics of Plasmas 22,
083109 (2015) https://doi.org/10.1063/1.4928580

50 mm Polyetherimide Cylinders, 15 mm long;
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FIG. 4. The voltage waveform across the insulator. The arrows indicate the
starting time of the laser beam followed by the synchro-pulse of the 4QuikE
camera (frame duration 2 ns, camera amplification 850 V). Inset: light radia-
tion from the surface flashover plasma. Here, the laser beam is applied in the
vicinity of the CTJ of a 1.5 cm-long cylindrical sample. The applied voltage
amplitude is 90 kV and the laser beam power density is ~10°W/cm?,

Operated at 60 kV/cm
(breakdown threshold ~165 kV/
cm), ~10° W/cm? laser pulse on
CTJ would trigger breakdown.
(90 kV applied)
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FIG. 6. The voltage waveform across the insulator inclined at 45°. The arrows
indicate the starting time of the laser beam and synchro-pulse of the 4QuikE
camera (frame duration 2ns, camera amplification 650 V) application. Inset:
light radiation from the surface flashover plasma. The laser beam is applied in
the vicinity of the CTJ of sample inclined at 45°. The applied voltage ampli-
tude is 90kV and the laser beam power density is ~3 % 107 W/cm?.

The 45-degree cone shows a high
degree of resiliency, requiring
~500 x greater (~5 x 107 W/cm?)
laser pulse intensity on CTJ.

(90 kV applied)

213 nm (10° to 108) W/cm?
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(Figure 5a)
~5 X 109% pulse, plasma
generation found necessary
to trigger breakdown from
ATJ. (150 kV applied)
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Field in Bulk is largely unaffected by
field-dependent conduction. No
significant self-grading observed.
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Equation(s) from [9] Lai, S. T. “Deep dielectric charging,” in Fundamentals of
spacecraft charging: spacecraft interactions with space plasmas
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Ceramics g °

« Bakeout Compatible = 4

» Vacuum Compatible -

« Low Tolerance for Mechanical Shock E 3T

Plastics é i

* Low thermal tolerance % 1

« Qutgassing is a concern E ol o . 1
» Tolerant of Mechanical Shock 1 2 3 4 5 6 7 8 9 10
» Low dielectric constant (¢) (Stygar et al. 2005) e of the insulator

¢ Eatj Increases Wlth IncreaSIng € FIG. 6. (Color) The characteristic value of E,, near the anode
Ectj decreaseS W|th InCI’eaSIng € and cathode triple junctions for the idealized 45° vacuum-

insulator interface outlined in Figs. 1 and 2. Plotted is the field

H |gh breakdown Strength (Stygar et al . 2005) on the vacuum side of the interface as a function of the dielectric

constant . We arbitrarily define the characteristic field to be that
at the interface. at a distance (0.01)2'/2d from a junction.

PMMA (Stygar et al. 2005) Suppression of
« Originally Used CTJ is rapidly diminishing; ATJ
XLPS (Cross-linked Polystyrene) Investigated =~ 9rows aggressively
* Predicted to be about 11% better than
PMMA (Stygar et al. 2004)
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—brygar et fLI 2005
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% 15t Generation Insulator Test Geometry (g2

Earliest tests
breakdown
along the sharp
edges was the
dominant
pathway

Breakdown along back (top surface, and down) was a persistent issue.

« Breakdown along the
vertical surfaces proved to
be far more likely than
breakdown in the center
(45° Wedge)

« Non-Critical Edges were
rounded off to prevent
breakdown along the
edges of the structure.
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AJ: Flashover of PMMA a

Dark Scarring on Acrylic Insulator (Most Likely Carbon)
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Norm. Electric Field

» Extended wedge improved voltage hold-off.

» Flashover across back (top) surface still is

an issue.
> -

* Flashover of
mechanical defects
provided a striking
contrast to breakdown

04 0.6 0.8 1

directly in the gap.
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Anode Initiated Flashover

« Initiation was localized by use of the aluminum wire
» Cathode Spots are developed after initial breakdown.

(20 SHOTS) Visible to the eye;
breakdown scarring showed no
appreciable texture under SEM
imagin
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Next Generation Insulator
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Additional Results of Interest
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Cathode Raimi Clark later this week (40-A).
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Conclusions

Conclusions:

Future Work:

e (Cathode initiated flashover
typically occurs first
— Hide the CTJ
— Suppress the field at the CTJ

* Positive 45-degree wedge
— High flashover voltage
— Anode 1nitiated flashover
* Bulk conduction is not believed to
contribute any significant field
grading.
— External doping necessary if desired
* Anode initiated flashover

— Observed early light and treeing from
the anode

— Detected carbon spectra near anode
which may indicate breakdown of
insulator near anode

Refine the Insulator Test Bed
— Add a CVD directly under the insulator
— Move to a larger chamber and test fixture
(scaling mechanics)
Continued development of insulator
geometry

— Localize the breakdown without the need
for the wire

— Explore the impact of differing materials

Continued measurements
— Voltage & Current Diagnostics
— Gated & Long Exposure Photography

— Optical emission spectroscopy

Develop additional diagnostics

— Temporally resolved gas densities
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* Modelled in Commercial FEM Solver (COMSOL)

— Time Dependent (Axisymmetric) Model Using Electric Currents Interface

and Circuit Excitation 1.8 uH 30 O

- V-J=Q
> 675p_F_ Test Gap
. J= _|_ 9D _|_ 7. — 2200 Q
(Insulator)
I ZAN
— Field Dependent Insulator Conductivity | Fig.1 Exciting
g2 =19 5 = 1nm; T = 293k o(T) = o7 —  Circuit
« o(E,T)=0(T) [2 + cosh < 2'5;)] L;;T'a i |qzefT|8>]

(Fundamentals of Spacecraft Charging: Spacecraft Interactions with
Space Plasmas, Chapter 16: Deep Dielectric Charging by Shu T. Lai,
p-152 (16.14), Princeton University Press)

|
| N |1
Solver Settings | / a=45° Anode R
* Fully Coupled, Direct Solver (MUMPS) i D=1.88cm é:
. Nonhpear Method: Constant (Ne.wton) LIH=7mm :‘?:
» Jacobian update: On Every Iteration | 12]
» Stabilization: Anderson acceleration Ll R=10 mm ! 1=
* Adaptive Mesh Refinement |\ . ﬁ: Cat h Od e: :

........

| Fig.2 Geometry Cathode Triple Junction (CTJ)



% Appendix: CAD Model

Receives 20 mm R Sphere

Electrode _
5 mm Fillet (Top, Sides) (Isometric)
Variable Fillet (Sphere)

Variable Fillet about circumference

5Smm @ 0 % (Top) 2mm @ 60 %
4 mm @ 20 % Omm @ 80 %
3mm @ 40 % 0mm @ 100 % 45 Deg > 45 Deg
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