
Test and Evaluation of Reinforcement Learning via
Robustness Testing and Explainable AI for High-Speed

Aerospace Vehicles
Ali K. Raz

Systems Engineering and Operations Research
George Mason University

Fairfax, VA 22030
araz@gmu.edu

Sean Matthew Nolan
School of Aeronautics and Astronautics

Purdue University
West Lafayette, IN 47907

nolans@purdue.edu
Winston Levin

School of Aeronautics and Astronautics
Purdue University

West Lafayette, IN 47907
wlevin@purdue.edu

Kshitij Mall
School of Aeronautics and Astronautics

Purdue University
West Lafayette, IN 47907

mall@purdue.edu
Ahmad Mia

Systems Engineering and Operations Research
George Mason University

Fairfax, VA 22030
amia2@gmu.edu

Linas Mockus
School of Aeronautics and Astronautics

Purdue University
West Lafayette, IN 47907

lmockus@purdue.edu
Kris Ezra

School of Aeronautics and Astronautics
Purdue University

West Lafayette, IN 47907
kris@purdue.edu

Kyle Williams
Autonomous Sensing and Control

Sandia National Laboratories
Albuquerque, NM 87185

kwilli2@sandia.gov

Abstract—Reinforcement Learning (RL) provides an ability to
train an artificial intelligent agent in dynamic and uncertain
environments. RL has demonstrated an impressive performance
capability to learn nearly optimal policies in various application
domains including aerospace. Despite the demonstrated perfor-
mance outcomes of RL, characterizing performance boundaries,
explaining the logic behind RL decisions, and quantifying re-
sulting uncertainties in RL outputs are major challenges that
slow down the adoption of RL in real-time systems. This is
particularly true for aerospace systems where the risk of failure
is high and performance envelopes of systems of interest may
be small. To facilitate adoption of learning agents in real-time
systems, this paper presents a three-part Test and Evaluation
(T&E) framework for RL built from Systems engineering for
artificial intelligence (SE4AI) perspective. This T&E framework
introduces robustness testing approaches to characterize per-
formance bounds on RL, employs Explainable AI techniques,
namely Shapley Additive Explanations (SHAP) to examine RL
decision-making, and incorporates validation of RL outputs
with known and accepted solutions. This framework is applied
to a high-speed aerospace vehicle emergency descent problem
where RL is trained to provide an angle of attack command
and the framework is utilized to comprehensively examine the
impact of uncertainties in the vehicle’s altitude, velocity, and
flight path angle. The robustness testing characterizes accept-
able ranges of disturbances in flight parameters, while SHAP
exposes the most significant features that impact RL selection
of angle of attack—in this case the vehicle altitude. Finally,
RL outputs are compared to trajectory generated by indirect
optimal control methods for validation.

Keywords: Reinforcement Learning, Robustness Testing, Ex-
plainable AI, SHAP.

978-1-6654-3760-8/22/$31.00 ©2022 IEEE

TABLE OF CONTENTS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. TEST AND EVALUATION METHODOLOGY FOR RE-

INFORCEMENT LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . 3
4. HIGH SPEED AEROSPACE VEHICLE PROBLEM

FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5. T&E FRAMEWORK IMPLEMENTATION AND RE-

SULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6. SUMMARY AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 11
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1. INTRODUCTION
Reinforcement Learning (RL) provides the ability to train an
artificial intelligence (AI) agent to operate in dynamic and
uncertain environments and is becoming increasingly popular
in a variety of domains including aerospace [1]. In this par-
ticular domain, RL has been used to provide missile guidance
[2], flight control [3], and motion planning for swarms of
autonomous vehicles [4], and the list of potential application
areas continues to grow. RL has demonstrated an impressive
capability to approximate nearly optimal solutions in these
applications—and many others—with comparatively low re-
quirements for computational power and training require-
ments in well-curated domains. Despite the demonstrated
performance outcomes of RL, characterizing performance
boundaries, explaining the logic behind RL decisions, and
quantifying resulting uncertainties in RL outputs are major
challenges that slow the adoption of RL in real-time systems.
This is particularly true for aerospace systems where the risk

1

SAND2021-14913CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



of failure is high and performance envelopes of systems of
interest may be small.

Systems engineering for artificial intelligence (SE4AI) is an
emerging area of research in systems engineering community
with the goal of applying systems engineering methods to
the design and operation of learning-based systems [5]. The
role of SE4AI becomes crucial as RL and other machine
learning approaches become increasingly viable for real-time,
practical systems. In this paper, we consider RL from the
standpoint of SE4AI and propose approaches to facilitate test
and evaluation (T&E) of RL solutions. From this perspective,
we identify improved methods for providing RL performance
characterization, explanation of decision-making, and quan-
tification of uncertainty.

Considering RL from this SE4AI standpoint is particu-
larly relevant because RL—and more generally machine
learning—approaches essentially become an element of a
larger, enterprise system as complexity of the system and
mission-space increase. This AI-driven constituent system
must interact predictably and reliably with the rest of the sys-
tem elements despite the fact that machine learning is often
treated as a “black box” in practice. Commensurately, the
SE4AI viewpoint applies a systems engineering approach to
study, design, verify, and validate the interaction of learning
based elements with other elements.

In this paper, we use RL to select maneuvers for a high-speed
aerospace vehicle to conduct an emergency descent. The
application of RL is particularly important here since closed-
form, optimal solutions for spontaneous maneuvers are likely
to be unavailable in real-time for high-speed vehicles with
narrow performance (and safety) envelopes.

First, we demonstrate training of an AI agent using RL to
achieve the proposed mission for a high-speed aerospace
vehicle. Second, we propose a T&E framework for RL that
includes statistical and mathematical methods for analysis
of RL outcomes by building on a SE4AI perspective. This
framework, which has three parts, provides a characterization
of performance bounds and sensitivities on the vehicle mis-
sion based on RL-guided decisions that not only facilitates
a comprehensive understanding of RL decision-making and
capabilities, but can also be used to derive performance
requirements for other system elements.

There are three primary elements in our proposed T&E
framework:

1. Robustness Testing of RL: The purpose of robustness
testing is to characterize response/output sensitivity to vari-
ations in a system’s inputs which includes training conditions
for learning-based systems. Since the design space of these
variations can be large for high-speed aerospace applications,
we propose a Latin-Hypercube Sampling (LHS) [6] strategy
from Design of Experiments (DoE) [7].

2. Explainability of RL Model: AI Explainability meth-
ods interrogate the deep neural network that underlies RL
decision-making and identifies significant (and insignificant)
features that influence RL actions [8]. Our framework uses an
explainable AI (XAI) technique known as Shapley Additive
Explanations (SHAP) to identify which input features in the
high-speed aerospace mission are most influential for RL
decision making.

3. RL Comparison with Traditional Optimal Control
Techniques: This step examines RL outputs compared to

optimal solutions. These solutions can validate RL output and
inform improvements to the framework prior to training on
more complex scenarios on which traditional optimal control
struggles.

The remainder of the paper is organized as follows. Section 2
provides a brief background on RL and motivates the need
for a T&E framework. Section 3 provides details on the
proposed T&E framework for RL and includes formulation
of the three primary elements described above. Section 4
describes the high-speed aerospace systems mission example
and demonstrates the use of RL to provide guidance com-
mands to a vehicle. Section 5 discusses the implementation
methodology for the T&E framework and demonstrates the
ability of RL to guide a vehicle to satisfy its mission while
closely (but not exactly) following the optimal trajectory.
Further, we demonstrate 1) how robustness testing helps to
establish upper and lower performance bounds on the RL
outputs, and 2) how the explainability insights derived from
the SHAP model aid in understanding RL decision-making
constructs. Finally, Section 6 provides summary and future
work directions.

2. BACKGROUND
Introduction to Reinforcement Learning

This section provides a brief and simplified description of RL
necessary to support the formulation of the T&E framework
and high-speed aerospace vehicle application problem. In
RL, an AI agent learns by interacting with its environment
to develop a mapping between the available action space and
the corresponding environmental changes that maximize its
reward function [1]. RL agent training is defined by this
reward-driven learning that sets it apart from other variants
of machine learning requiring large data sets for training
and validation. With no-prior or limited knowledge of the
underlying dynamics and attributes of the environment, the
RL agent can learn optimal or nearly optimal policies to
achieve its goal and adapt to changing conditions [1, 3, 9].

!"#$%

#$&'()$*#$%

!"#$%&

!
!

'()*+,

"
!

-#*#(

#
!

"
!!"

#
!!"

Figure 1. Reinforcement Learning framework.

Figure 1, adapted from [1], displays the fundamental con-
structs of an RL problem space. Here the Environment
provides a dynamic behavior of the problem of interest which
is typically unknown to the RL agent at the outset. The envi-
ronment produces a state vector St and scalar reward valueRt
based on current state and the learning objective i.e., reaching
a desired state in the environment, which is the mission ob-
jective. The RL agent has access to a predefined action space,
At, at any given time, t, whose selection introduces a change
in the state and reward value at the next time step, St+1 and
Rt+1, respectively. Underlying the RL agent is a deep neural
network (DNN) whose training is accomplished via learning
policies such as Proximal Policy Optimization (PPO) [10],
Deterministic Policy Gradient, Deep Deterministic Policy

2



Gradient [11], etc. DNN training proceeds over multiple
learning episodes under the governing learning policy; to put
it succinctly, a reward value Rt is obtained by selecting an
action At and observing the corresponding changes in St+1
and Rt+1.

The Need for Test and Evaluation Framework of RL

An extensive body of literature and conceptual demonstra-
tions is available to illustrate the efficacy of RL across many
domains including aerospace. Most publications related to
RL focus on algorithmic formulations and domain-specific
demonstration of performance. This is reasonable consid-
ering that learning policy developments and configurations
are often unintuitive or esoteric; however, comprehensive
testing and validation of RL—including near or outside the
boundaries of the training data—is also extremely important.
This is not to claim or insinuate that no RL validation testing
is performed on RL outputs: most authors and developers do
include a set of test cases (albeit selective and/or nominal) to
showcase RL performance. For example, Sun and Kampen
utilize Monte Carlo simulations and additive zero-mean white
noise disturbances in state observations for characterizing
RL implementation for flight control solutions [3]. Wu et
al., introduce new environment regions in RL testing [12].
Fedrici et al., specify six different test cases that include vari-
ations in initial conditions and state observations and evaluate
the learning performance using Monte Carlo simulations,
whereas Izzo and Ozturk consider two cases of environment
initial conditions for studying DNN performance [13, 14].
McGuire et al., propose a cumulative reward as a metric to
compare different policies using analysis of variance, while
Buzii et al. employ a similar metric of cumulative reward to
compare different learning policies via Monte Carlo simula-
tions [15, 16]. The main point here is that all of these test
and evaluation approaches are valid and necessary, but none
are independently rigorous or comprehensive. More directly,
none are sufficient to meaningfully characterize performance
implications outside of—or at the boundary of—the trained
input conditions.

Once trained, an RL agent is essentially a black box DNN
whose decisions are generally unexplainable except that they
are driven by a user-specified reward function. While a black
box is sufficient for simple problems, identifying RL per-
formance bounds, sensitivities, uncertainties, and motivation
are vitally important in real-time operational systems with
high cost, high risk, or both. A comprehensive and widely
applicable T&E framework is necessary to satisfy this need
for RL testing, validation, and explanation. Following the
systems engineering approach, identifying the features and
attributes of RL by considering it as an integrated part of
a complex system provides the right type of perspective to
answer these questions. We propose a T&E framework that
can be utilized by RL developers and testers, particularly
in aerospace applications, to validate and explain RL-driven
system outcomes.

3. TEST AND EVALUATION METHODOLOGY
FOR REINFORCEMENT LEARNING

Testing, evaluation, and validation of RL is a multi-faceted
problem that requires a suite of methods and tools to accom-
plish. Sensitivity analysis of RL performance to both mod-
eled (i.e., included in the training) and unmodeled considera-
tions is important and so is validating RL performance against
any available known solutions. Furthermore, understanding
RL decision-making and knowing why and how an RL agent

is going to select what action is also of significant value to
system designer and operators.

The T&E approach proposed in this section attempts to incor-
porate these multi-faceted requirements of RL performance
evaluation and postulates a framework with various engineer-
ing methods and tools that can be tailored to accomplish RL
T&E goals. This RL T&E framework, shown in Figure 2,
is composed of three interdependent and complementary ele-
ments that provide a comprehensive evaluation of RL-based
solutions when applied together. The subsequent sections
describe the purpose, methodology, and value of these three
elements (namely, Robustness Testing, XAI, and Comparison
with known solutions).

Robustness Testing of RL

The purpose of Robustness Testing is to quantify upper and
lower bounds of RL performance and characterize impact of
uncertainties on that performance in practice.

One of the first steps in Robustness Testing is to identify
sources of uncertainty and the scope of input and environment
variations in a system design space. Best practices in systems
engineering emphasizes identification of these variations in
factors that are both within and outside the designer’s in-
fluence and control [17]. From an RL perspective, factors
such as the tuning parameters of RL learning policies and
definition of the reward function (commonly known as reward
function shaping) remain under the control of designers and
are thoroughly investigated to create RL solutions. However,
it is important to note that once an RL solution is integrated
into a larger system, it may face additional uncertainties
originating in the environment, state space, or the action
space. For example, consider an RL agent that selects an
angle of attack (α) command for an aircraft, which is then
implemented by a flight control system. The flight control
system moves control surfaces to the desired value within a
tolerance limit, say α ± µ, but may not exactly match α as
specified by RL. It then becomes important to characterize the
behaviour of RL for variations of αwithin±µ and assess how
those unintended variances may impact the behavior of the
system. The purpose of Robustness Testing is to holistically
identify such variations and establish RL performance bounds
when variations occur.

An intuitive question that may arise here is why not include
these known variations in RL training in the first place? Of
course, these variations should be included in the RL training
to best extent possible, but it is also important to note that
the efficacy and convergence of RL solution decreases as the
number of factors and uncertainties increase in the RL design
space. Moreover, including the uncertainties and variations
in the training does not absolve the need for Robustness
Testing because the robustness and performance envelopes
of trained RL solutions must still be established—which is
a core motivation of the Robustness Testing. Such variations
may be themselves functions of the environment (i.e., very
high or very low temperatures may increase variation) and
may be difficult to provide as training inputs.

In addition to the training policies and reward function defini-
tion, the uncertainties and variations in the other constituent
elements of RL—i.e., the environment, the state space, and
the action space—must also be considered. Table 1 pro-
vides summary of the different types of variations that are
commonly expected in aerospace applications and include
approaches on how to model them for the Robustness Testing.

3



!"#$%&'()"(*+",+(-"./)0"+1
!"#$%&'(

!"#$%#&'()*(+',-.,/#01'(&.(20.30(#04(#11'+&'4(

5.$%&6.05

)'*+%,%-%./(0

7,.8$'/(5+#1'(4'+'04'0&9(1$.5'4(-.,/(/#&:'/#&61#$(

5.$%&6.05;(

12-"'(

<#$64#&'()*(+',-.,/#01'(#04(,.8%5&0'55(&'5&60=(,'5%$&5

23$.%0+%4.'(56(78569
!"#$%&'(

>'&',/60'(60-$%'0&6#$(-'#&%,'5(.-(&,#60'4(
)*(4'1656.0?/#260=($.=61

)'*+%,%-%./(0

7.5&?:.1(@AB(/'&:.4C(D:#+'$E(A446&6"'(

!F+$#0#&6.05

12-"'(

!F+$#60(3:61:(5&#&'("'1&.,("#$%'5(

1.0&,68%&'(&.()*(4'1656.0(#04(3:E(
5'056&6"6&6'5(#,'(+,'5'0&(60(,.8%5&0'55(&'5&

:"4/1)+'11(;'1)0+<
!"#$%&'(

D'056&6"6&E(#0#$E565(.-("#,6#&6.05(60(#1&6.0(

5+#1'G('0"6.,/'0&G(#04(5&#&'(.85',"#&6.0

)'*+%,%-%./(0

>'56=0(.-(!F+',6/'0&5(#04(D&#&65&61#$(A0#$E565

12-"'(

7',-.,/#01'(8.%045(#04(1:#,#1&',6H#&6.0(.-(

%01',&#06&6'5

Figure 2. RL Test and Evaluation framework.

Table 1. Sources of variation in RL for robustness testing.

Source Nature of
Variation

Modeling Approach
for Robustness Testing

Environment Initial
Conditions

Latin Hypercube Sampling
Monte Carlo Simulations
Design of Experiments

Action Space
or

State Space

Tolerance
and Sensitivity

Expected probability
distribution with
parameters (e.g., N

(
µ, σ2

)
)

Impulses
and Hard Overs

Expected magnitude
and time duration

Considering the different options of variations identified in
Table 1, two potential challenges that arise in the Robustness
Testing of RL are: 1) how to sample the design space for
building data sets with sufficient coverage of the design space,
and 2) how to analyze the resulting data to derive Robustness
Testing insights.

For the first challenge, Monte Carlo methods and random
sampling are commonly used in Robustness Testing, whereas
we propose the use of LHS for generating data sets for
analysis. Monte Carlo sampling generates a random sample
of some numberN of points for each uncertain input variable
of a model. Since Monte Carlo sampling relies on pure
randomness, it can be inefficient because one might end
up with some points clustered closely, while other intervals
within the design space get no samples. LHS, on the other
hand, aims to spread the sample points more evenly across all
possible values. It partitions each input distribution into N in-
tervals of equal probability, and selects one sample from each
interval. Furthermore, it can drastically reduce the number of
runs necessary to achieve a reasonably accurate result. For
additional information on using LHS for engineering design
and analysis, the interested reader is referred to Refs. [18] and
[19]. For the second challenge, we propose utilizing DoE in
conjunction with statistical analysis methods such as Analysis
of Variance and hypothesis testing as demonstrated in Ref.
[20].

The results section of this paper discusses how the variations
identified in Table 1 are applied for Robustness Testing of RL
for high-speed aerospace applications and aids in establishing
the performance bounds.

It is important to note that while the Robustness Testing
immensely helps in understanding performance attributes
and limitations of trained RL agent, it does not expose any
decision-making logic or constructs of the RL agent. In
other words, Robustness Testing will highlight sensitivities
of the RL agent without describing why such sensitivities
are present. XAI techniques attempt to answer this ‘why’
question and are described in the next section.

Explainable AI for RL

The actions taken by an RL agent are sometimes non-intuitive
and hard to explain. To improve the explainability of RL
agent’s actions, XAI analysis was carried out. Two different
types of XAI analysis are used based on two different types
of AI models: Transparent Models and Post-Hoc Analysis.
While simple AI models like linear/logistic regression can be
explained by transparent XAI models, post-hoc analysis is
required for more complicated AI models like RL. Since the
scope of this paper involves an RL agent, post-hoc analysis
was chosen.

There are several types of approaches in post-hoc analysis,
including visualization, model simplification, text explana-
tion, local explanations, explanations by example, and feature
importance [23]. Since the RL agent developed in this study
involves various input features (see Section 4), the feature
importance approach was selected.

This study employs a popular, recently devised python-based
XAI tool named as SHAP [24]. The application of XAI
to RL, dubbed as explainable RL (XRL), has been sparsely
studied [25, 26] and implemented [27–29]. Based on the
literature study carried out for this paper, this possibly is
the first instance of applying XRL analysis in high-speed
aerospace systems domain, which is one of the main contri-
butions of this paper. Literature in this domain suggests the
use of SHAP for explaining the actions of RL [25, 26]. As

4



!!"#$%&'(")*"+',-$('.
/,0

!"#$%&'(")"$*+,"-'$#$.+/&0"1

2$34*5 1(,23234"5,-,6""

64*34*5 #7"8

2$34*5

7831-$-*#&$+/&0"1

64*34*5 47"$8

!"#$

Figure 3. Converting the RL black box model to a more explainable model using SHAP [21, 22].

the name indicates, SHAP is based on Shapley values that
were first introduced by Dr. Lloyd Shapley in 1953 [30]. A
Shapley value captures the contribution of the corresponding
feature towards the prediction of interest from among all
features used as input for the model. Further, SHAP involves
additive explanations because the Shapley values sum to give
the output generated by the learning model.

Figure 3 shows the implementation of SHAP to obtain a
simple linear explanation model from the complex RL model
used in this study. The input data, z, is mapped to simpler
inputs, z′, using a mapping function, hz(z′). Thus, z is
converted to z′, with elements taking values only of 0 and
1, corresponding to a feature being absent or present, respec-
tively. The linear XAI model outputs g(z′) that has the form
given by eq. (1). Let zS be the set of features in z with non-
zero entries in z’. Then, the φ in eq. (1) are attributions for
each feature present in z’, and the SHAP values are averages
of these attributions over all possible ordered subsets zS of
z such that the values satisfy local accuracy, “missingness”,
and consistency properties [31]. Note that SHAP values
can have positive or negative values. The additive nature of
explanations provided by SHAP is also captured in eq. (1).

f(z) = g(z′) = φ0 +

M∑
i=1

φiz
′
i (1)

For this study, we employed the SHAP toolbox developed
by Lundberg [24] for all SHAP analysis. As shown in
fig. 4, four different type of explainers are available in the
SHAP toolbox: Tree Explainer, Deep Explainer, Gradient
Explainer, and Kernel Explainer. Tree Explainer is relevant
only for decision tree based models. On the other hand, Deep
Explainer and Gradient Explainer are used for deep learning
models, but are not supported for RL models. Therefore,
Kernel Explainer was chosen for this study as it uses a

model agnostic approach. Kernel Explainer is based on Local
Interpretable Model-Agnostic Explanations (LIME) [32] and
Shapley values [30].

!"#$%&'()*+,-%&$%.$(

!"##$%&'()*+#"

,##'$%&'()*+#"

-").*#+/$%&'()*+#"

0#"+#($%&'()*+#"

Figure 4. Available SHAP explainers.

The positive and negative SHAP values are indicated by red
and blue colors respectively in the plots generated by this
toolbox. The SHAP results obtained for this study are shown
in Section 5.

Comparison with Known Solutions

In applications where known solutions can be found with-
out the use of RL to identical or even similar problems, it
becomes necessary to evaluate the quality of RL output as
compared to those solutions. This can assist in validating
RL solutions and identify the strength and weaknesses of
both RL and known solutions. For example, if the purpose
of deploying RL is to provide control for a vehicle, the RL
solution will need to be compared to the optimal control
solution. Here the objective is not to mimic the optimal
control solution entirely (although in some cases it maybe
possible), but to develop an understanding of the solution
profile including commonalities and difference between the
two.

5



4. HIGH SPEED AEROSPACE VEHICLE
PROBLEM FORMULATION

Problem Description

The problem of interest for this paper is trajectory planning
for a high-speed, unthrusted passenger vehicle that experi-
ences some emergency situation and must descend to a safe
altitude in minimum time.

The objective functional (eq. (2)), equations of motion
(eq. (3)), and nominal boundary conditions (eq. (4)) describe
the problem mathematically for a starting altitude of 30 km
at 3 km/s and a safe altitude of 3 km. The state variables
are altitude h, downrange angle θ, velocity v, and flight path
angle γ. The control variable is angle of attack α. Vehicle
information including massm and aerodynamic functions for
lift L (α) and drag D (α) are taken from the CAV-H model
given in [33].

min
α
J = tf =

∫ tf

0

dt (2)

ẋ =

ḣθ̇
v̇
γ̇

 =



v sin γ
v

h+Re
cos γ

−D (α)

m
− µ

(h+Re)
2 sin γ

L (α)

mv
+

(
v

h+Re
− µ

v (h+Re)
2

)
cos γ


(3)

Ψ0 =

h− 30 km
θ

v − 3 km/s
γ


∣∣∣∣∣∣∣
t=0

= 0

Ψf =

[
h− 3 km

γ

]∣∣∣∣
t=tf

= 0

(4)

The problem is solvable with traditional indirect optimal
control methods allowing for the validation of the RL imple-
mentation in Section 5.

Reinforcement Learning Implementation

The RL problem is implemented in Python following the
framework depicted in fig. 1.

RL Agent—The vehicle’s trajectory was optimized using the
PPO method of training a DNN [10]. This method was
implemented to train the network, log the training process,
and save the trained DNN using the stable-baselines3 package
in Python [34]. This trained DNN is the RL agent shown in
Figure 1.

Environment—The optimal descent problem along with the
vehicle equations of motion and boundary conditions was
implemented with a target altitude htarget = 3000 m. Each
episode ran for up to tmax = 50 seconds starting with a
randomly selected normally distributed initial states given in
eq. (5).

State Space—The four states t, h, v, and γ were used as the
state space input to the DNN.

Action Space—The action space for DNN was to chose one
of 11 values for α distributed evenly between αmin = −20◦

and αmax = 20◦. The α chosen by the DNN lasted for a
1-second time step, after which the state was observed and a
new action was chosen.

Reward Function—After each 1-second time step, a reward
was also calculated as given in eq. (7). The observed state
recorded whether the episode had successfully completed
the mission (done, success) or had violated constraints that
caused the mission to end and fail (done, ¬ success). If
after the 1-second time step the episode had not ended, the
incremental reward was calculated (otherwise).

The reward function is calculated from t̄, h̄, and γ̄ as defined
in eq. (6). The incremental reward was kept negative to
incentivize achieving the goal in the minimum number of
time steps, and is calculated from h̄ to guide the vehicle
to the destination altitude. The successful terminal reward
is weighted between valuing minimum time and achieving
γ = 0.

x0 =

h0θ0v0
γ0

 ∼ N

30 km

0◦

3 km/s
0◦

 ,
 5 km

0◦

0.5 km/s
2.5◦


 (5)

h̄ =

∣∣∣∣ h− htargeth0 − htarget

∣∣∣∣
t̄ = t/tmax

γ̄ = |γ/5◦|

(6)

80(1− t̄) + 20(1− γ̄) if done, success
−100h̄+ 16(1− t̄) + 4(1− γ̄) if done, ¬ success
−h̄ otherwise

(7)

The Optuna package for Python was used to optimize the
hyperparameters governing the PPO training [35]. Using
64 trials with 200,000 steps was sufficient to produce good
hyperparameters for training. After optimizing the hyperpa-
rameters, the DNN was trained for 500,000 episodes.

Results of Training for Nominal Case

The results of the agent training using the reward defined
in eq. (7) are shown in Figure 5. Once trained, the agent
returns a cumulative reward of about +30, which is sufficient
to develop a policy to feasibly accomplish the mission of
descending the vehicle from an altitude of 30 km to an
altitude of 3 km. Figure 6 shows the results for the nominal
case where the vehicle starts at 30 km and the RL agent
selects a sequence of α (angle of attack) commands to guide
the vehicle to its target altitude. For more discussion on
validation of the trained agent, see Section 5.

5. T&E FRAMEWORK IMPLEMENTATION
AND RESULTS

In this section, we exercise the trained agent with RL T&E
framework described earlier in Section 3. First, we perform
robustness testing on the trained agent for examining the
impact of variations on the RL performance. Second, we
investigate the DNN with the XAI SHAP method to identify

6



M
ea

n 
cu

m
ul

at
iv

e 
re

w
ar

d

Episode

Figure 5. Reward curve for the training agent, calculated
from eq. (7).

0.0 0.2 0.4 0.6 0.8

10000

20000

30000

RL Solution
Safe Altitude

0 5 10 15 20 25 30 35
10

0

10

20

Downrange Angle [deg]

A
lti

tu
de

 [m
]

Time [s]A
ng

le
 o

f A
tta

ck
 [d

eg
]

Figure 6. Trajectory from control history generated by the
trained RL agent.

most influential inputs on RL agent’s angle of attack selec-
tion. Finally, we validate the RL solution by comparing it
to the trajectory generated by optimal control methods. The
implementation details for T&E framework and results are
described in the following paragraphs.

Robustness Testing Results

The Robustness Testing of the trained RL agent is performed
by identifying sources of variation in the agent’s environment
model, action space, and observation state space. Table 5
provides details on the Robustness Testing tests cases (TCs)
that were created to incorporate these variations based on the
problem description and implementation details provided in
Section 4.

TC-1: Individually Vary Environment ICs — In TC-1, the
trained DNN is executed with different ICs for altitude,
velocity, and FPA within the ranges of±10%,±20%,±30%,
and ±40%. Note that the objective function of the RL agent
is to descend from 30 km to 3 km starting at 3 km/s velocity
and 0◦ FPA. This TC examines the performance of RL agent
outside these nominal ICs. Figure 7 provides the results for
the ±30% variation in the ICs.

Table 2. Robustness test cases.

Test Cases Objective
TC-1 Individually vary environment Initial Con-

ditions (ICs) (i.e., altitude, velocity, and
FPA) to examine RL performance

TC-2 Quantify performance bounds on ICs vari-
ations with LHS

TC-3 Sensitivity to impulses on the action space
TC-4 Sensitivity to random variations in the ac-

tion space
TC-5 Sensitivity to impulses on the state space
TC-6 Sensitivity to random variations in the state

space

From the velocity and FPA variation plots, it is evident that
the vehicle is able to reach the target despite the variation
in ICs. However, the altitude plot illustrates that for higher
altitude values, the RL is unable to accomplish the mission.
Figure 7 can be used to establish that the RL agent is able
to perform across a variety of ICs but does fail under high
altitude considerations. Now it becomes necessary to statisti-
cally establish the performance bounds individually on these
ICs, which is the objective of TC-2.

TC-2: Varying Multiple ICs using LHS—In TC-2, we utilize
LHS to generate a data set of varying ICs defined by eq. (8).
The LHS method allows for testing a wider sample space
with comparatively less number of samples by selectively
identifying sample points and providing a comprehensive
coverage. The LHS space is generated by using the pyDOE
package in Python and using a normal distribution with the
inputs from eq. (8) for altitude h, velocity v, and FPA γ
and generating 50 samples. Figure 8 depicts the results of
executing the trained DNN with the ICs specified by the LHS
set with remarkable insights on DNN’s performance (each
cell shows percentage of successfully completed missions
out of 50 missions). Figure 8 clearly shows that among the
three ICs, the DNN is most sensitive to variation in altitude.
The DNN successfully completes 100% mission for only 5%
variation in altitude magnitude, whereas it is able to tolerate
up to 10% and 20% variation in FPA and velocity magnitudes,
respectively. A comprehensive analysis of Figure 8 will be
instrumental in identifying the limitations of the trained DNN
(Figure 9 illustrates selected failed mission trajectories based
on altitude variations).

x0 =

[
h0
v0
γ0

]
∼ N

([
30 km
3 km/s

0◦

]
,

[
8 km

0.8 km/s
5.33◦

])
(8)

TC-3: Impulse Injection in the Action Space—This test aimed
to identify the sensitivity of the DNN to constant action
impulse changes. In this case, the prediction from the model
was overwritten and instead a new command was given to
the vehicle as an impulse with a 5-seconds duration. The
vehicle was able to reach the target when the impulse was
introduced before the first 20 seconds. Figure 10 shows the
case where the vehicle was unable to reach the target, the
impulses occur after 25 seconds. It is important to note
the angle of attack command values frequently change after
20 seconds (see Figure 6), which may make the impact of
disturbances particularly detrimental.

7



Figure 7. Initial condition variations in altitude, velocity
and FPA.

TC-4 Angle of Attack Tolerance—In order to determine the
angle of attack tolerance of the vehicle, the angle of attack
command options needed to be expanded. This was done by
allowing the model to command an angle of attack and then
randomly choosing a value between ±2◦ and then later to
±4◦. When modifying the angle of attack command within
the range of ±2◦, it did not impact the vehicle’s ability to
descend to the target altitude. Figure 11 shows results where
the angle of attack is not modified (i.e., the nominal case)

Figure 8. L-H heat map.

Figure 9. Failed missions with initial condition variations in
high altitude values using LHS.

Figure 10. Action impulse injection.

and is able to descend to the target successfully. Results in
Figure 12 show the failed case generated from where the
angle of attack values were randomly chosen to be within
±4◦ of the intended angle of attack command. This failure
was observed after 1000 different runs, where the angle of
attack command was modified to be within ±4◦ Hence, the
tolerance of the angle of attack command is within ±4◦.

TC-5 Impulse in the State Space—In this test the observation
data for the altitude was injected with a constant impulse at
random intervals during the vehicle descent. These observa-
tion disturbances were introduced for 10 seconds and were

8



Figure 11. Vehicle trajectory for unmodified angle of attack.

Figure 12. Vehicle trajectory for perturbed angle of attack.

accomplished by overwriting the observation data for the
altitude. It was observed that the altitude impulse presented
no noticeable changes in the vehicle’s ability to reach the
target when the perturbation was solely present within the
first 20 seconds, if the altitude impulse was less than twice the
observed altitude. When the altitude observation disturbance
occurred within the 20-40 seconds mark and lasted at least 10
seconds, a mission failure was observed. Figure 13 depicts
the case where the vehicle was unable to descend to the target
altitude.

TC-6 Random Variation in the State Space—This is an exten-
sion of the prior TC but rather than introducing a constant im-
pulse, random impulses are introduced during the run. These
disturbances range from 0.5 to 3 times the observed altitude
and were injected at random times throughout the run and last
for 5 seconds. Figure 14 show the case where the vehicle was
unable to descend to the target altitude successfully.

A note on TC-5 and TC-6: These two test cases counter intu-
itively highlight that altitude disturbances injected in the state
space in the form of impulse or random variation has limited
impact on the RL output despite the altitude IC having the

Figure 13. Altitude disturbance.

most significant impact on the RL output. The reason for this
discrepancy is how these TCs are modeled. As described in
the test case formulation, the state space observations are only
perturbed on the RL state input (e.g., modeling an erroneous
sensor), whereas the ICs are changed in the environment and
directly effect the vehicle dynamics. Therefore, a potential
mismatch is created between the RL reward value (calculated
based on a true state) and the observed state by the agent (this
is also evident by the vehicle’s trajectory plot in Figure 13
and Figure 14). In future, we plan to expand these test cases
to include state space disturbance modeling directly in the
vehicle dynamics.

Figure 14. Random Altitude Disturbance

Explainable AI Results

The SHAP results were generated from around 39,000 data
points obtained from 1,000 trajectories. As previously men-
tioned, a Kernel SHAP explainer was employed. For testing
explainability, 999 trajectories were chosen as the training set
and 1 feasible trajectory was chosen as the testing set. The
entire input data for SHAP was normalized between 0 and 1.

The SHAP summary plot is shown in Figure 15. The most
important feature is altitude, which is shown at the top of
Figure 15. The least significant feature is FPA and is shown
at the bottom.

Note that there can be many different feature values that can
result in the same SHAP value for that particular feature.
This means that there is a non-linear interaction between that
feature and the remaining features. The SHAP summary plot
shows a spread of feature values and the corresponding SHAP
values. The values of features are represented by different
colors. Red color indicates high values, blue indicates low
values and purple color shows medium values for the features.
Negative SHAP value indicates the feature is negatively im-
pacting the outcome or the action chosen by the RL agent and

9



−6 −4 −2 0 2 4 6 8
SHAP value (impact on model output)

FPA

time

velocity

altitude

Low

High

Fe
at

ur
e 

va
lu

e

Figure 15. SHAP summary plot.

vice versa.

It is not intuitive at first which of the features is most
important. SHAP helps unveil the fact that altitude impacts
the decisions made by the RL agent the most, followed
by velocity. Although this is an overall observation, for a
particular point in the trajectory altitude might not be the
most important feature. This is captured in the following
discussion.

One particular test trajectory was chosen from the 1,000
trajectories in the data-set. This trajectory, as shown in
Figure 16, is feasible.

0 5 10 15 20 25 30 35 40 45

Time (s)

0

5

10

15

20

25

30

35

40

A
lt

it
u

d
e
 (

k
m

)

0 5 10 15 20 25 30 35 40 45

Time (s)

-10

-5

0

5

10

15

20

A
n

g
le

 o
f 

A
tt

a
ck

 (
D

eg
)

!
"#
$#
%
&
'
()
*
+
,

-$+'().,

-$+'().,

!
/
0
"'
(1
2(
!
##
3
4*
()
&
'
0
,

!"#$%&'(&)*!"+&,-!" './&-)#$

$01.(%&1.&(23&/'('&%3(

Figure 16. A chosen feasible trajectory for explaining the
results obtained using SHAP along with the jump points.
The corresponding angle of attack profile is also included.

The chosen trajectory has jumps occurring at node points 29,
34 and 42, which are shown in Figure 16. The corresponding
SHAP values are shown in Table 3.

Table 3. SHAP values of different features corresponding to
jump points in control profile of the chosen trajectory.

Data Point # Angle of Attack (deg) SHAP Values
Time Altitude Velocity FPA

29 -8 0.3431 1.2848 3.6734 0.2792
30 -10 0.1581 1.8660 3.4531 0.1032
33 -10 0.1613 3.3503 1.9171 0.1517
34 0 0.1488 3.8376 1.4204 0.1736
41 0 0.1330 5.2111 0.1003 0.1362
42 20 0.1116 5.3742 -0.0201 0.1147

Although no immediate trend can be seen in the SHAP values
for the different features at the jump points, certain interesting
observations can be made. The dive from −8◦ to −10◦

between points 28 and 29 is supported more by the velocity
as compared to the altitude. For the remaining two jump
points, altitude is strongly supportive of gaining higher angle
of attack values to reach the final altitude of 3 km as further
diving could lead to violating this terminal altitude constraint.
Thus, the altitude is most important feature for most parts of
the trajectory, but not for all the points in the trajectory. At
certain parts, velocity dominates the decisions made by the
RL agent. The time and FPA features have feeble impact on
the RL agent’s decisions as is captured in Table 3.

Optimal Validation Results

The trajectory generated by the RL is validated in two ways.
First, the trajectory is validated by satisfying the boundary
conditions given in eq. (4). For the terminal boundary
conditions, we treat h− 3 km as an inequality constraint h ≤
3 km and we allow a tolerance of ±5◦ for γ. Satisfying the
boundary conditions ensures that the RL-derived trajectory is
feasible. Second, the RL-derived trajectory is compared to
the optimal solution solved with indirect optimization via the
beluga package in Python [36]. In the indirect optimization,
however, the action space for the control input α is con-
tinuous and is changed continuously instead of in 1-second
increments. The trajectories are therefore not expected to be
identical, but similarity between the two trajectories ensures
the RL-derived trajectory is near optimal.

Figure 17 shows the optimal solution with the one generated
by the RL trained network for the nominal case. The optimal
final time is 27.1 seconds. The optimal control profile starts
with the angle-of-attack at its minimum value of −20◦ for
more than half of the trajectory to descend as fast as possible.
Then, the angle of attack increases up to the maximum angle
of attack of 20◦ so that the vehicle levels out to satisfy
the terminal flight path angle constraints. The RL solution
satisfies the constraints, but takes a noticeably higher time of
35.5 seconds as a result of the more moderate control in the
beginning of the trajectory.

Discussion

The three-fold T&E framework used to evaluate the emer-
gency descent problem demonstrates not only that the agent
achieves the mission, but also characterizes its performance
in a novel way. Comparison with the trajectory generated
via indirect optimal control demonstrates that the agent takes
more time than the optimal solution in the nominal case
(Figure 17). SHAP values incorporated into the T&E (Fig-
ure 15) help characterize why the agent is more or less

10



Figure 17. RL output compared to optimal solution
obtained via traditional trajectory optimization method.

robust to different perturbations (Figure 8). In the case of
the optimal descent model, it is shown that the altitude has
by far the biggest impact on the control decisions made by
the DNN. Correspondingly, the agent is far more sensitive to
perturbation to altitude than it is to velocity or FPA.

The training and the T&E framework identify several key
benefits of employing RL in this optimal descent and other
similar aerospace problems. One benefit is that the DNN,
unlike the exact indirect solution, adapts the control output
given a perturbed state and the acceptable ranges/distributions
of these perturbations can be quantified by the T&E frame-
work. These ranges and distributions expose limitations of
the RL agent and can help in setting performance require-
ments for other system elements such as lower-level flight
control systems that implement actions or sensors that pro-
vide state information. Moreover, once trained, the DNN re-
quires minimal computational resources to evaluate, thereby
keeping the real-time application potential very strong. The
trained DNN can be re-evaluated rapidly along the trajectory
so that control inputs are generated real-time in a closed-loop
manner. This is in contrast to implementing an exact indirect
solution in open-loop. In training the DNN, the majority of
the computational burden is off-line, where the model can be
arbitrarily sophisticated. Conversely, implementing optimal
control in a receding horizon framework [37], typically re-
quires a computationally “light-weight” model for real-time
execution.

6. SUMMARY AND FUTURE WORK
In this paper we have outlined the current state of RL research
in practice for aerospace applications and noted a persistent
deficiency in the treatment of performance characterization
under uncertainty from the perspective of SE4AI. To this
end, we have generated a sample problem and defined, then
exercised a T&E methodology for RL applications. In par-
ticular, we have noted the types of variations that are likely
to be present in this type of problem, shown the steps that
can be taken to explain the decisions made by a trained DNN
using RL, and compared the outcome to known and accepted
solutions. This exercise has not been exhaustive since it

may not necessarily transfer to all possible applications of
RL in aerospace, but it has demonstrated the impact of
variations that may otherwise have gone unexamined. It is
our hope that the framework of evaluation proposed in this
work stimulates further discussion in this area to continue
effectively leveraging RL in real-time applications.

In the future, we intend to continue to refine this approach
in an effort to inspire other researchers in RL to consider
the benefits and limitations of their efforts. Determining
relationship between SHAP values and optimal control theory
is also part of the future work.

ACKNOWLEDGMENTS
This work was supported by the Laboratory Directed Re-
search and Development program at Sandia National Lab-
oratories, a multi-mission laboratory managed and operated
by the National Technology and Engineering Solutions of
Sandia LLC, a wholly owned subsidiary of Honeywell In-
ternational Inc. for the U.S. Department of Energy’s Na-
tional Nuclear Security Administration under contract DE-
NA0003525. This work describes objective technical results
and analysis. Any subjective views or opinions that might
be expressed in the paper do not necessarily represent the
views of the U.S. Department of Energy or the United States
Government.

REFERENCES
[1] R. Sutton and A. Barto, “The Reinforcement Learning

Problem,” in Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: The MIT Press, 2015.

[2] S. He, H.-S. Shin, and A. Tsourdos, “Computational
Missile Guidance: A Deep Reinforcement Learning
Approach,” Journal of Aerospace Information
Systems, vol. 18, no. 8, pp. 571–582,
Aug. 2021, publisher: American Institute of
Aeronautics and Astronautics. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/1.I010970

[3] B. Sun and E.-J. van Kampen, “Reinforcement-
Learning-Based Adaptive Optimal Flight Control
with Output Feedback and Input Constraints,”
Journal of Guidance, Control, and Dynam-
ics, pp. 1–8, Jun. 2021. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/1.G005715

[4] S. Kim, J. Park, J.-K. Yun, and J. Seo, “Motion Planning
by Reinforcement Learning for an Unmanned Aerial
Vehicle in Virtual Open Space with Static Obstacles,”
in 2020 20th International Conference on Control, Au-
tomation and Systems (ICCAS), Oct. 2020, pp. 784–787,
iSSN: 2642-3901.

[5] T. McDermott, D. DeLaurentis, P. Beling,
M. Blackburn, and M. Bone, “AI4SE and
SE4AI: A Research Roadmap,” INSIGHT,
vol. 23, no. 1, pp. 8–14, 2020,
https://onlinelibrary.wiley.com/doi/pdf/10.1002/inst.12278.
[Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/inst.12278

[6] M. Stein, “Large sample properties of simulations us-
ing latin hypercube sampling,” Technometrics, vol. 29,
no. 2, pp. 143–151, 1987.

[7] J. Antony, Design of experiments for engineers and
scientists. Elsevier, 2014.

11



[8] A. Barredo Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser,
A. Bennetot, S. Tabik, A. Barbado, S. Garcia,
S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila,
and F. Herrera, “Explainable Artificial Intelligence
(XAI): Concepts, taxonomies, opportunities and
challenges toward responsible AI,” Information Fusion,
vol. 58, pp. 82–115, Jun. 2020. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/
S1566253519308103

[9] J. Junell, T. Mannucci, Y. Zhou, and E.-J. Van Kampen,
“Self-tuning Gains of a Quadrotor using a Simple
Model for Policy Gradient Reinforcement Learning,” in
AIAA Guidance, Navigation, and Control Conference,
ser. AIAA SciTech Forum. American Institute of
Aeronautics and Astronautics, Jan. 2016. [Online].
Available: https://arc.aiaa.org/doi/10.2514/6.2016-1387

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,”
CoRR, vol. abs/1707.06347, 2017. [Online]. Available:
http://arxiv.org/abs/1707.06347

[11] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous con-
trol with deep reinforcement learning,” 2019.

[12] G. Wu, M. Fan, J. Shi, and Y. Feng, “Reinforcement
Learning based Truck-and-Drone Coordinated Deliv-
ery,” IEEE Transactions on Artificial Intelligence, pp.
1–1, 2021, conference Name: IEEE Transactions on
Artificial Intelligence.

[13] L. Federici, B. Benedikter, and A. Zavoli,
“Deep Learning Techniques for Autonomous
Spacecraft Guidance During Proximity Operations,”
Journal of Spacecraft and Rockets, pp. 1–12,
Aug. 2021, publisher: American Institute of
Aeronautics and Astronautics. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/1.A35076

[14] D. Izzo and E. Öztürk, “Real-Time Guidance for
Low-Thrust Transfers Using Deep Neural Networks,”
Journal of Guidance, Control, and Dynamics, vol. 44,
no. 2, pp. 315–327, Feb. 2021, publisher: American
Institute of Aeronautics and Astronautics. [Online].
Available: https://arc.aiaa.org/doi/10.2514/1.G005254

[15] S. McGuire, P. Michael Furlong, C. Heckman,
S. Julier, and N. Ahmed, “Human-Aware
Reinforcement Learning for Fault Recovery Using
Contextual Gaussian Processes,” Journal of Aerospace
Information Systems, vol. 18, no. 7, pp. 429–
441, Jul. 2021, publisher: American Institute of
Aeronautics and Astronautics. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/1.I010921

[16] P. G. Buzzi, D. Selva, and M. S. Net,
“Autonomous Delay Tolerant Network Management
Using Reinforcement Learning,” Journal of Aerospace
Information Systems, vol. 18, no. 7, pp. 404–
416, Jul. 2021, publisher: American Institute of
Aeronautics and Astronautics. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/1.I010920

[17] G. S. Parnell, Trade-Off Analytics: Creating and Ex-
ploring the System Tradespace. Somerset, Uinted
States: John Wiley & Sons, Incorporated, 2016.

[18] L. Xin, “Numerical Methods for Engineering Design
and Optimization: Latin Hypercube Sampling (LHS),”
2014.

[19] J. C. Helton and F. J. Davis, “Latin hypercube sampling
and the propagation of uncertainty in analyses of com-

plex systems,” Reliability Engineering & System Safety,
vol. 81, no. 1, pp. 23–69, 2003, publisher: Elsevier.

[20] A. K. Raz, C. R. Kenley, and D. A.
DeLaurentis, “System architecting and design
space characterization,” Systems Engineering, vol. 21,
no. 3, pp. 227–242, May 2018. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/sys.21439

[21] A. Dachowicz, K. Mall, P. Balasubramani, A. Mahesh-
wari, A. Raz, J. H. Panchal, and D. Delaurentis, “Mis-
sion Engineering and Design using Real-Time Strategy
Games: An Explainable-AI Approach,” Journal of Me-
chanical Design, pp. 1–15, 10 2021.

[22] D. A. DeLaurentis, J. H. Panchal, A. K. Raz, P. Balasub-
ramani, A. Maheshwari, A. Dachowicz, and K. Mall,
“Toward automated game balance: A systematic engi-
neering design approach,” in 3rd IEEE Conference on
Games. IEEE conference proceedings, 2021.

[23] A. B. Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Ben-
netot, S. Tabik, A. Barbado, S. Garcı́a, S. Gil-López,
D. Molina, R. Benjamins et al., “Explainable artificial
intelligence (xai): Concepts, taxonomies, opportunities
and challenges toward responsible ai,” Information Fu-
sion, vol. 58, pp. 82–115, 2020.

[24] S. Lundberg, “A game theoretic approach to explain
the output of any machine learning model.” Jan.
2021, original-date: 2016-11-22T19:17:08Z. [Online].
Available: https://github.com/slundberg/shap

[25] E. Puiutta and E. M. Veith, “Explainable reinforcement
learning: A survey,” in International Cross-Domain
Conference for Machine Learning and Knowledge Ex-
traction. Springer, 2020, pp. 77–95.

[26] A. Heuillet, F. Couthouis, and N. Dı́az-Rodrı́guez,
“Explainability in deep reinforcement learning,”
Knowledge-Based Systems, vol. 214, p. 106685, 2021.

[27] R. Leissner, “Do you want to train a simplified self-
driving car with reinforcement learning?” 2020.

[28] J. Dohmen, R. Liessner, C. Friebel, and B. Bäker,
“Longicontrol: A reinforcement learning environment
for longitudinal vehicle control.” in ICAART (2), 2021,
pp. 1030–1037.

[29] R. Leissner, “Dear reinforcement learning agent, please
explain your actions.” 2021.

[30] L. Shapley, “A value for n-person games,[in:] contribu-
tions to the theory of games ii, aw tucker, hw kuhn,”
1953.

[31] S. M. Lundberg and S.-I. Lee, “A unified approach to
interpreting model predictions,” in Advances in neural
information processing systems, 2017, pp. 4765–4774.

[32] M. Ribeiro, S. Singh, and C. Guestrin, “Local inter-
pretable model-agnostic explanations (lime): An intro-
duction,” 2019.

[33] G. Duan, Y. Sun, M. Zhang, Z. Zhang, and X. Gao,
“Aerodynamic coefficients models of hypersonic vehi-
cle based on aero database,” in 2010 First International
Conference on Pervasive Computing, Signal Processing
and Applications, 2010, pp. 1001–1004.

[34] A. Raffin, A. Hill, M. Ernestus, A. Gleave,
A. Kanervisto, and N. Dormann, “Stable baselines3,”
https://github.com/DLR-RM/stable-baselines3, 2019.

[35] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama,
“Optuna: A next-generation hyperparameter optimiza-
tion framework,” in Proceedings of the 25rd ACM

12



SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2019.

[36] T. Antony, M. Grant, M. Sparapany, S. Nolan
et al., “Beluga,” https://github.com/Rapid-Design-of-
Systems-Laboratory/beluga/graphs/contributors, 2021.

[37] C. E. Garcia, D. M. Prett, and M. Morari, “Model
predictive control: Theory and practice—a survey,”
Automatica, vol. 25, no. 3, pp. 335–348, 1989.

BIOGRAPHY[

Ali K. Raz is an Assistant Professor
of Systems Engineering and Operations
Research and an Assistant Director for
C4I & Cyber Center at George Mason
University. His research interests are
in integration of intelligent aerospace
systems and information fusion systems.
Prior to joining Mason, he was a Visiting
Assistant Professor in School of Aero-
nautics and Astronautics at Purdue Uni-

versity. He holds a BSc. and MSc. in Electrical Engineering
from Iowa State University and a PhD. in Aeronautics and
Astronautics from Purdue University. He is a senior member
of both IEEE and AIAA.

Sean Matthew Nolan is a Ph.D. student
and Research Assistant at Purdue Uni-
versity and AIAA student member. He
received his B.S. in Aeronautical and As-
tronautical Engineering and M.S. Aero-
nautics and Astronautics from Purdue in
2015 and 2018 respectively. His work
focuses on trajectory optimization using
indirect methods and its applications.

Winston Levin is a M.S. student and
research assistant at Purdue University
in the Center for Integrated Systems in
Aerospace (CISA). He earned his B.S.
in Aeronautical and Astronautical En-
gineering from Purdue in 2020. His
research assistance for CISA focuses on
using reinforcement learning and indi-
rect optimization for autonomy of high
speed vehicle mission planning.

Kshitij Mall is a post-doctoral research
associate at the Center for Integrated
Systems in Aerospace, Purdue Univer-
sity. He obtained his Ph.D. and Masters
degrees from the School of Aeronautics
& Astronautics, Purdue University. He
was a Post-doctoral Research Fellow in
the department of Aerospace engineer-
ing at Auburn University in 2019. Previ-
ously, he completed B. Tech. in Mechan-

ical Engineering at JSSATE Noida, India and then worked for
a year at Infosys Technologies Ltd. as a Computer Systems
Engineer Trainee. His research interests lie in the areas
of Optimal Control Theory, Atmospheric Flight Mechanics,
Explainable Artificial Intelligence, and Human-Class Mars
missions. He is a member of AIAA.

Ahmad Mia is a Masters’ student
and research assistant at George Mason
University at the Center of Excellence
in Command, Control, Communications,
Computing, Intelligence and Cyber (C4I
and Cyber). He received his B.S. in
Bioengineering from George Mason in
2017. His current research work focuses
on assisting with performing robustness
testing on reinforcement learning mod-

els.

Linas Mockus is Senior Research Sci-
entist at Purdue University. His interests
lie in the application of AI and Bayesian
statistics to complex problems in Engi-
neering. He received Ph.D. in Chem-
ical Engineering from Purdue Univer-
sity, Ph.D. in Computer Science, M.Sc.
and B.Sc. in Applied Mathematics from
Moscow Institute of Physics and Tech-
nology.

Kris Ezra is a Research Scientist at
Purdue University in the Center for
Integrated Systems in Aerospace who
specializes in modeling and simulation
approaches for system-of-systems prob-
lems and software design and interop-
erability. He received his B.S. (2010),
M.S. (2011), and Ph.D. (2015) degrees
in Aeronautics and Astronautics from
Purdue University under the direction of

Dr. Daniel DeLaurentis.

Kyle Williams received the B.S. and
M.S. degrees in Mechanical Engineer-
ing from Purdue University in 2005 and
2007. From 2010 to 2019 he was a
Control Systems Engineer with Caterpil-
lar, Inc. He received the Ph.D. degree
from Purdue University in 2018 in Dy-
namic Systems, Measurement and Con-
trol. Since 2019 he has been a Principal
Member of the Technical Staff with San-

dia National Labs. His current research interests focus on
enhanced control and autonomy for aerospace systems.

13


