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Using scaled power flow experiments at 20 MA to
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; | Scaled Power Flow Experiments on Z

1.  Motivation for a next-generation pulsed power (NGPP) facility.
2. Design of a 50-MA-equivalent power flow scaling platform at 20 MA on Z.

3. Using velocimetry to diagnose the current delivered through scaled
transmission lines.

4. Results, analysis, and modeling of the first power flow scaling experiments.

5. Follow-on scaling experiments and future work.

The first power flow scaling experiments on Z indicate that the current coupling
through a 50-MA-equivalent transmission line (R ~ 1-2 cm) is essentially lossless.
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Scaled Power Flow Experiments on Z

1.  Motivation for a next-generation pulsed power (NGPP) facility.
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‘ A next-generation pulsed power (NGPP) facility will provide a world-leading, |
5

multi-mission capability for stockpile stewardship and discovery science. |
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An NGPP facility will enable the pursuit of high fusion yield from both
magnetic indirect drive (MID) and magnetic direct drive (MDD) concepts.

I
MID - Double-Ended Hohlraum MDD — MagLlIF Ice Burner |

Slutz et al. PoP 2016

Studied on Z in the 2000s [Cuneo IEEE TPS 2012]. » MagLIF actively studied on Z [e.g., Gomez PRL 2020]. I
Generated symmetric capsule implosions to CR 14. « Generates >10'3 DD neutrons or ~5 kJ DT-equivalent. I
Scales to ~0.5 GJ at >60 MA [Vesey PoP 2007]. * DT “ice burners” scale to high yield (>1 GJ) at >60 MA
MID research on Z paused in ~2007 with NIF startup. [Slutz PoP 2016, 2018 and NP11.00076 — Wed. AM].
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Scaled Power Flow Experiments on Z

2. Design of a 50-MA-equivalent power flow scaling platform at 20 MA on Z.
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An NGPP facility will likely use the post-hole convolute transmission line
architecture that has been used to great effect on Z and Saturn before it.

Four parallel outer MITLs (magnetically
insulated transmission lines) combine at
the convolute to form one

The delivers current to the
load region where the associated
magnetic pressure implodes the load.

Current loss can occur in the convolute,
the , and/or the load region.

Key question: Will this architecture hold
up under increased electromagnetic stress
on an NGPP facility?

Approach: Conduct scaled power flow
experiments at 20 MA on Z to test current
delivery at 50 MA NGPP conditions.
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Z is quite successful at driving a number of different physics loads.
Current loss depends on the inductive characteristics of the load.

Dynamic Hohlraum
The load that Z was designed to drive.
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Hutsel et al. PRAB 21, 030401 (2018)

Current loss mechanisms are thought to be self-limiting, and we are building
predictive multi-scale models. > Are there any surprises at NGPP conditions?

Power-flow loss mechanisms are generally
understood to be self-limiting

—

lon losses enhanced
by electron flow

Electron flow current
and ion diode losses

Space charge limited,
clamped by magnetic
insulation

clamped by negative
voltage feedback

Space charge limited,

Plasma expansion
& gap closure

Reducing the
effective gap could
enhance losses

Use both experiments and modeling to test our understanding.
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Efficient models will improve our
detailed 3D understanding

(DFT on H20 desorption)

Detailed surface
science models

Large-scale 3D J\ o
hybrid fluid-PIC :
simulations

Bennett et al. PRAB 22, 120401 (2019)
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Load region ‘
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Convolute
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Outer MITLs Convolute

:

Here we focus on the inner MITL. > Model as a radial transmission line
driven by a generator and stressed by an imploding inductive load.
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Recent MaglLIF experiments demonstrate the importance of understanding
12 I and mitigating inner MITL current loss on Z [Gomez PRL 2020].
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» Tactics: Grow the minimum A/K gap and reduce the load region inductance.

* Result: MagLIF current delivery increases from ~16 MA to ~20 MA.

» Additional tests indicate that inner MITL current loss is reduced (in addition to the convolute).
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We can’t substantially increase the load inductance on NGPP, so can we
13 1 use a similar inner MITL with similar gaps and still deliver current!?
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A scaled transmission line with a 2 mm A/K gap that spans R = 5-9 mm on
14 1 Z can match the J and E of a 50 MA MagLIF inner MITL.
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Adding a AR5 (2-mm radius, 400-pym thick) copper liner on-axis mimics
15 I the dynamic stress of a representative 50-MA NGPP MagLIF implosion.
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¢ | Scaled Power Flow Experiments on Z

3. Using velocimetry to diagnose the current delivered through scaled
transmission lines.
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Load current velocimetry is a powerful technique that is routinely used

17
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Myers et al. PRAB, to be submitted (2021)

to infer the current delivered to load region on Z.

» Measure the explosion of the return can with
fiber-coupled VISAR and PDV point probes.

* Use MHD simulations of the flyer to infer the
load current waveform.
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Jennings et al. PRAB, in preparation.



Z Line VISAR (ZLV) is a new line-imaging velocity interferometer that
18 I provides radially resolved velocity measurements on the top flyer plate.
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ZLV has become a workhorse diagnostic for understanding
current drive on ICF, power flow, and materials experiments.

Myers et al. PRAB, to be submitted (2021)
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The velocities measured on the ZLV commissioning experiment agree
19 ¥ with four MHD codes to #5%. 2 ZLV and the codes work in this regime.
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Myers et al. PRAB, to be submitted (2021)
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200 » Velocities are extracted from the ZLV interferograms using
the Fourier Transform Method of Celliers et al. [RS/ 2004].

« 2D simulations are driven with the load current extracted
from return can velocimetry. - “Lossless” current delivery.
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Farmer et al. PRAB, to be submitted (2021)



Comparing 2D and ID simulations indicates that the flyer behavior is
20 I decoupled radially so that ID current unfold techniques can be used.

Simulated velocities [km/s]

9
e The 1D and 2D Eulerian simulations are generated by
£ the SNL implementation of the GORGON MHD code
37 [Chittenden PPCF 2004, Jennings IEEE TPS 2010].
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| D current unfolds at four different radii indicate lossless current
21 I delivery across the top flyer plate. 2 Constrained to ~0.5 MA (~3%).
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,, | Scaled Power Flow Experiments on Z

4. Results, analysis, and modeling of the first power flow scaling experiments.
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Use load current velocimetry to diagnose the current delivered to the
return can and through the scaled transmission line.

Spatially resolved
current delivery

along the scaled —
transmission line.

Z Line VISAR ¢

Fiber probes

Input current to

the scaled -

transmission line.

Scaled transmission line

5 mm
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The load currents (return can) on the non-imploding and imploding
24 I Power Flow Scaling experiments agree with pre-shot circuit modeling.
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25

Z Line VISAR returned interferograms that provide spatially resolved shock
breakout and flyer velocity information along the scaled transmission line.

Non-imploding — 23537

« Shock breakout and post-shock
fringe motion observed on the first
Power Flow Scaling experiment!

» Reduction in reflectivity at small radii
(highest velocities/pressures).

» A velocity map was successfully
extracted from the ZLV data.
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The velocities measured on the non-imploding experiment agree with
26 | |ossless post-shot simulations to better than 10%! = Minimal current loss.
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« Shock breakout and post-shock
fringe motion observed on the first
Power Flow Scaling experiment!

» Reduction in reflectivity at small radii
(highest velocities/pressures).
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» A velocity map was successfully
extracted from the ZLV data.

« 1D Lagrangian flyer simulations are
driven by the return can current.
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Current delivery through a 50-MA equivalent scaled transmission line
27 I that is stressed by a static inductance is essentially lossless!
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Current delivery through a 50-MA equivalent scaled transmission line that
28 I js stressed by a static inductance is essentially lossless!
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The imploding experiment with LiF windows generated a high-quality
29 I interferogram across the full ZLV field of view (R = 5—9 mm).
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The velocities once again agree with post-shot lossless simulations to
30 I better than 10%. = Still minimal loss in spite of the imploding liner!

Imploding — 23617 9 m
8
T @
E £
w7 =
= 8
@ 2
6
* Much cleaner interferograms 5 : : .
obtained with LiF windows. ¢
» Shock breakout profile is different m
due to out-of-spec flyer: B =
E —
| 5 £
E 0.8 ~30 pm or 5% 27 =
-~ ] . Re}
o 0.6 © o
() 1 6 |
2 04 |
E 1 Designed Thickness
0.24 = Inferred thickness 5 : : : ' : : : : | o
0ol 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160
T4 6 8 10 12 Time [ns]
Radius / mm

CLAYTON MYERS — POWER FLOW SCALING — APS-DPP BI01.00005 — NOVEMBER 8, 2021



Current delivery through a 50-MA equivalent scaled transmission line

31 I that is stressed by an imploding liner is essentially lossless!
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32
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Excess velocity in both experiments indicates that a larger-than-expected
pressure is driving the flyer at smaller radii. 2 ~5% effect on the current.
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We have ruled out many possible causes:

« Temporal or spatial shifts of the ZLV data.
» Nonlinear LiF window index of refraction.
» Larger-than-expected early time current.

i This leaves two candidate effects:

 Particle/plasma bombardment of the flyer.

« Radially varying current asymmetries.

20+ Return can (dashed)
ZLV 5.0 mm
18 ZLV 6.0 mm

CLAYTON MYERS — POWER FLOW SCALING — APS-DPP BI01.00005 — NOVEMBER 8, 2021




State-of-the-art multi-fluid and kinetic modeling of the non-imploding
33 I experiment shows extensive plasma formation but little loss.

« Analytic calculations of magnetic insulation indicate that all species are insulated in the gap.
« Multi-fluid and kinetic simulations show negligible loss (~100 kA) in spite of 10""/cc plasmas.
« Ongoing work: Calculate particle/plasma energy deposition in flyer. 2 Feed to current unfolds.
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Current delivery through a 50-MA equivalent scaled transmission line
34 I that is stressed by an imploding liner is essentially lossless!
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;5 | Scaled Power Flow Experiments on Z

5. Follow-on scaling experiments and future work.
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Future work: Four additional experiments are planned for QI of CY22.
36 ¥ Further increase the electric field stress and test reproducibility.
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Increase the static stress by reducing the A/K gap from 2
mm to 500 um. - Study gap closure effects.

* Increase the dynamic stress by decreasing the liner wall
thickness from 400 ym to 200 ym. - ARS to AR10.

« Make bottom-side velocimetry measurements to quantify
the current delivered to the inner target volume.

* Implement higher-precision machining methods and

conduct detailed as-built flyer metrology.
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Future work: Increasing the load volume increases the electric field stress
37 ¥ to match the ) and E of a 70 MA MagLIF inner MITL over R ~ 2-3 cm.
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Key result: Scaled experiments show that a transmission line operating at
33 ¥ 50 MA conditions can efficiently deliver current to within | cm of the load!
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