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Reversible Hydrogen Storage by Metastable Hydrides in
Functionalized Porous Hosts
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Metastable Metal Hydrides
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, | Size-dependent physical and chemical properties of metal hydrides E:

Nanoscaling of metal hydrides has the potential to weaken metal-hydrogen chemical bonds, accelerate the
kinetics, alter reaction pathways, and enable reversibility
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We want to determine which factors
contribute to:
= Improved thermodynamics
= Increased reaction rates
=> Reversible H, uptake and release
—> High selectivity for hydrogen gas
= Low concentration of intermediates
and byproducts

Mahosoructured Metal Hydrides for Hydrogen Storage
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Andreas Schneemann et al. Chemical Reviews, 2018, 118, 10775.



4 LMoIecuIar Mg(BH,), nanoconfined in a Metal-Organic Framework

H, release 150 °C lower than bulk, complete desorption by 200 °C
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H, desorption from Mg(BH,),@UiO-67bpy is irreversible, likely due to hydride
attack on the Zr-carboxylate linkages and subsequent MOF collapse

A. Schneemann et al. ACS Nano 2020, 14, 8, 10294-10304
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5 LLithium alanate (LiAlH,) nanoconfinement in porous carbon
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Bulk LIAIH,

LiAlH, . — LiAlH,,, 150 — 175 °C (endo) melting

w

LiAlHs —1/3L1sAlHg s +2/3Al 5 +Hoy, 150 — 200 °C (exo) 5.3 mass% H;

LisAlHg (s — 3LiH 5 +Al s +3/2H; ,, 200 — 270 °C (endo) 2.6 mass%H,
LiH s +Alg — LAl +1/2H, 400 — 440 °C (endo) 2.6 mass%H,

* 10.6 wt% capacity (7.9 wt% for the first two decompositions), fast
desorption kinetics

First decomposition is exothermic due to high Li;AlH, lattice energy

AH<0, AS>0 - thermodynamically irreversible

LiAIH, solvation (diglyme, THF, and Me,0), Ti catalyst have been
employed

Direct reversibility of bulk thought to be impossible
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Nanoconfinement accelerates H, release from nanoscale LiAlH,

Reversibility is only achieved using nitrogen-doped CMK-3 with no evidence of Li;AlH, formation

N, adsorption/desorption isotherms
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host charge transfer is required for reversibility

Only LiAlH, hosted by nitrogen-doped NCMK-3 exhibits reversibility (1000 bar H,, 50 °C)
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8 h\lanoconfinement of alane (AlH;) in Covalent Triazine Frameworks (CTF)

CTF-biphenyl

N gy
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/
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ZnCl, | 400 °C

CTF-bipyridine

Bulk AlH; properties:

~10.4 wt% grav. capacity

Vol. capacity 2X L-H, (148 g H,/L)
Fast desorption
Rehydrogenation thought to be
thermodynamically impossible

V. Stavila et al. Angew. Chem. Int. Ed. doi.org/10.1002/anie.202107507
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9 | Spectroscopy indicates AlH; is uniformly distributed throughout CTF pores

TEM and electron diffraction
(Primarily amorphous with some larger crystalline particles)

T
S—

EELS Al 2p XPS AlH,
PXRD (a) [ AH, 1ALO, ALO, v Al 2p
_ : AlL,O,
CTF-biphanyl ' i
Lo AlH,@CTF-bip

AlH,@CTF-bipy

-\H&

AlH,@CTF-biph

AlH;@CTF-biph

Intensity, a.u

CTF-bipyridine

Counts per second

AIH,@CTF-bipyridine

Postion [*2Theta] (Copper (Cu))

. : ' . 60 80 100 120 140 160 8 80 78 76 74 72 70

an 50 &0 70

Energy Loss, eV Binding Energy, eV

(c) &

EDS maps:
AlH,@CTF-biph

100 nm 100 nm

) B

AlH,@CTF-bipy

200 nm 200 nm 200 nm

I
0
!

V. Stavila et al. Angew. Chem. Int. Ed. doi.org/10.1002/anie.202107507



N, adsorption isotherms (77 K) Sieverts data for H, desorption
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Spectra show evidence of small AlH, clusters and complexed Al
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12 LDFT cluster model allows ?’Al NMR peaks to be assignhed E:
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Periodic DFT model reveals a mechanism for AlH; reaction with CTF-bipy
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DFT calculations predict bipy-AlH, complex is a radical, confirmed by EPR
14 | spectroscopy

0.84e transferred from AlH, to CTF-bipy
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Characterization of CTF-biphenyl and CTF-bipyridine
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