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Title: 3He NSFs for sensitive neutron polarimetry and neutron E-field imaging

Speaker: Yuan-Yu Jau, Sandia National Laboratories (USA)

With the mature spin-exchange optical pumping (SEOP) technique, high-pressure (= 1 atm),
hyperpolarized 3He cells have been widely used as neutron spin filters (NSFs) to polarize cold-to-thermal
neutrons and to analyze neutron polarization for various neuron science applications. Compared to
other neutron polarizing and analyzing technologies, 3He NSF has several advantages including relatively
high polarizing and analyzing power (> 90%), capable of flipping the polarizing and analyzing direction
via adiabatic fast passage (AFP) of the 3He spins, long 3He spin relaxation time (hundreds of hours), small
size and low weight that enable various orientations of a 3He NSF, etc. By taking advantage of 3He NSFs,
we demonstrated simple experimental implementation that is capable of detecting a small angular
change («<1073 rad) in neutron spin orientation. Using a high-flux neutron beam, 1076 rad angular
sensitivity is in-principle feasible within a day. With this sensitive neutron polarimetry capability, we
further demonstrated electric-field (E-field) imaging using polarized neutrons for first time in the world.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
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2 1 Scientific motivation

Nondestructive but penetrative electric-field (E-field)
imaging can be highly valuable for studying material
property and structure regarding electric potential,

electric polarization, charge distribution, and dielectric
constant behind physical barriers.



3 | Possible probe candidates:

»Charge particles, such as electrons or alpha particles:
Can directly interact with electric fields but cannot travel
far in a space filled with matters.

» High-energy photons, such as hard X-ray or gamma-ray:
Can in-principle go through metals but its interaction
strength with electric field is too small to be useful based
on quantum electrodynamics (QED).



+1 How about Neutrons?

**Neutrons are highly penetrative through many elements!
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s | Taking advantage of electromagnetism with special relativity

Neutron spin seems to be able to interact only with magnetic field. So how about the electric field?

Neutrons, however, do see an effective magnetic field when they are moving through a space with electric field E
due to the relativistic effect, and from Lorentz transformation, we find the effective magnetic field B,¢f to be:

B 1 —v x E

a V1-v2/c2

Since neutron is kind a heavy particle, its speed |v]| is usually way less than speed of light c. We then find the total

effective magnetic field to be (including the ambient magnetic field By,}):

v X E
Beﬁ' — Bl&b — Tj fOI' ‘V‘ < C.

BeH

We find a net change in the angle vector @ of a neutron spin due to field-induced precession from its trajectory / to
be:

= @= e Blab—e (ev X E) where e; = and e, = v/|v
o— [ /Ifyn[m [ % dl, where 1 = (T)/|(D)], and e, = v/|v].

V| 2

One unique feature we can see from the equation above is that the spin rotation angle 8 due to electric field is
independent of the neutron velocity.

Thus, we can determine electric-field vector by measuring the
neutron spin rotation with different probing parameters!



¢ I Conceptual diagram of E-field imaging with polarized neutrons
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7 I Methods of neutron polarization analysis

Conventional neutron polarization analysis configuration
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s I Realizing neutron transverse polarization analysis

................. Spin analyzer

Unpolarized

|

|

neutrons Spi :F*"h—"—_"“"""? :

pin = ES > —i> » =
|

: l

|

[

polarizer |

Counting
Detector
or Camera

X

Guiding B-field :
(A polarized *He cell) or e p : o

(A polarizing supermirror with Low-field chamber A *He NSF inside a l_. 2
adiabatic transition field) transverse solenoid y
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Data of transverse polarization analysis
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Results of transverse polarization analysis
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TABLE 1. Comparison of experimental (PHADES) and theoretical values with 3.54
x 107 total detection counts.

Experiment Theory
Noise of single data point 273 266
Total measurement noise 6.1 x 10° 5.95 x 10°
Angular resolution 66 (mrad) 0.24 + 0.01 0.25 + 0.01

TABLE II. Comparison of experimental and theoretical values of angular resolution

with 5.9 x 10" photoelectrons in detection using a monochromatic neutron beam at

0.425 nm on the NG6e beamline.
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Sensitive neutron transverse polarization analysis
using a 3He spin filter

We f'ind the available area Of the 3He Cell Cite as: Rev. Sci. Instrum. 91, 073303 (2020); cloi: 10.1063/5.0005898 an - \!)

to be 55.4 cm?, and use a polychromatic
beam. We find the expected accumulated

N, for one day to be 5.9 x 10'% x (area
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ratio) X (polychromatic enhancement) X ? Author to whom correspondence should be addressed: y/auGisandia gov
(duration ratio) = 5.9 x 1010 x 55.4/31.7 x  asrancr

1000 x 24/12.5 = 2 x 10'. Hence, the
calculated daily dependent angular
resolution is 86 = [(0.87 + 0.02) x / 2 x

We report an experimental implementation for neutron transverse polarization analysis that is capable of detecting a small angular change
(<<107° rad) in neutron spin orientation. This approach is demonstrated for monochromatic beams, and we show that it could be extended
to polychromatic neutron beams. Our approach employs a *He spin filter inside a solenoid with an analyzing direction perpendicular to the
incident neutron polarization direction. The method was tested with polarized neutron beams and a spin rotator placed inside a y-metal
shield just upstream of the analyzer. No cryogenic superconducting shields or additional neutron spin manipulations are needed. With a
counting detector, we experimentally show that the angular resolution 88 = 1/(P,A+/N) rad is only determined by the counting statistics
for the total counts N and the product of the neutron polarization P, and the analyzing power A. With a high-flux neutron beam, 107 rad
angular sensitivity is feasible within a day. This simple, classical-quantum-limited transverse polarization analysis scheme may reduce the

1 01 4/ 82 + 8 /d —1 = O 70 + O 07 X 1 0—6 overall complexity of experimental implementation for applications requiring sensitive neutron polarimetry and improve the precision in
- . - . fundamental science studies and polarized neutron imaging.

rad/ / d.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0005898




11 ‘ Direct electric field imaging using polarized neutrons
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We experimentally demenstrate that electrically neutral particles, neutrons, can be used to directly
visualize the electrostatic field inside a target volume that can be physically isolated or occupied.
Electric field images are obtained using a spin-pelarized neutron beam with a recently developed
polarimetry method for polychromatic beams that permits detection of a small angular change in spin
orientation. This Letter may enable a new diagnostic technique sensitive to the structure of electric
potential, electric polarization, charge distribution, and dielectric constant by imaging spatially
dependent electric fields in objects that cannot be accessed by other probes.
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13 1 Summary and outlook

* We have demonstrated a simple experimental implementation using 3He NSFs and
spin-polarized neutrons for transverse polarization analysis with counting detection
and imaging detection. For the future, this 3He NSF-based transverse polarization
analysis may reduce the overall complexity of experimental implementation for
applications requiring sensitive neutron polarimetry and improve the precision in
fundamental science studies and polarized neutron imaging.

 We have demonstrated direct images of an electrostatic field in parallel plate
capacitors using a polarized, polychromatic neutron beam. Our work may enable new
diagnostic power of the structure of electric potential, electric polarization, charge
distribution, and dielectric constant inside an investigated target by visualizing
spatially dependent electric field from a distance.
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