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Motivation: Low Temperature Molten Sodium (Na-Nal) Batteries

Realizing a new, low temperature molten Na battery requires new battery materials and
chemistries — particularly in sodium ion conductors
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NaSICON Solid Electrolyte

Key Qualities of NaSICON Ceramic lon Conductors
* NayZr,PSi,0,,

High Na-ion conductivity (>103 S/cm at 25°C)

Chemical compatibility with molten Na and halide salts
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Methodology: Environmental Indentation and Atomic Force
Microscopy

Left: G200 Nanoindenter and Bruker Dimension Icon AFM in glovebox

Right: Micromaterials NanoTest Vantage Micro/Nanoindenter with environmental chamber
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Nanoindentation Methodology: Mechanical Properties

Oliver-Pharr Analysis for modulus (E) and hardness (H)
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Indentation Results: Cycled NaSICON

Exposed and cycled in symmetric sodium test cell
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Sodium conduction causes mechanical changes in NaSICON

'-% University of K
‘B Kentucky 6




Indentation Results: Cycled NaSICON (cont.)
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New features appear during cycling at high current density;

these regions have higher modulus and hardness
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Indentation Results: NaSICON Fracture Toughness

Fracture toughness is closely related to critical
current density in solid electrolytes

Fracture toughness can be measured by observing
indentation cracks:

=) ()

A: Material independent constant=0.040 + 0.004
E: Young’s Modulus

H: Hardness

P: Maximum load during indentation

c: Length of crack measured by SEM
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SiC 3.00-6.00
MgO 2.50
Fused Silica 0.80
— WC 6.00-20.00
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Indentation Results: Fracture Toughness by Small Cracks

Load (mN)
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Material Kic (MPa\/ m)

NaSICON (large crack length method) 1.90 + 0.60
NaSICON (small crack length method) 5.18 + 0.77

Smaller cracks may not be long enough to
give “accurate” fracture toughness values
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Indentation Results: Energy-based Fracture Toughness
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NaSICON (large crack length method) 1.90 = 0.60
NaSICON (small crack length method) 5.18 £ 0.77
NaSICON (energy-based method) 2.84 £0.79
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W. _: Total irreversible indentation work
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Energy-based method provides:

More consistent cracking behavior
Simplified measurement (no imaging)

Reduced damage to samples

Agrees with traditional crack length method

W,,,: Purely plastic indentation work
W_,..: Work done to create cracks
E,: Material reduced modulus

A, Indent contact area
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Cycled NaSICON Fracture Toughness: Energy-based Method

4
Fracture toughness not significantly impacted by
Na* conduction
2
Cycling NaSICON should not affect ability to
handle higher current densities
0
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Conclusions and Future Work

Characterized the mechanical performance of NaSICON solid electrolytes

before and after electrochemical cycling in molten sodium cells
* Mechanical properties change during electrochemical cycling and may depend on
current density and new phases

Employed an energy-based method to measure the fracture toughness of
NaSICON solid electrolytes

* Allows for simplified measurement
* Agrees well with traditional fracture toughness measurement

Will explore failure behavior of NaSICON at high current densities
* How dendrites may affect solid electrolyte even in molten environment

Characterization of coatings for NaSICON interfaces and NaSICON/polymer
composite electrolytes
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Energy-based Fracture Toughness
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K;.: Fracture Toughness

W,.,: Total irreversible indentation work
W,,,: Purely plastic indentation work
W« Work done to create cracks

E,: Material reduced modulus

A, Indent contact area

|: Exponent fit for loading curve

m: Exponent fit for unloading curve

h,: Residual indentation depth

h,,: Maximum indentation depth
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Local Mechanical and Electrochemical Behavior

Quantitative Nanomechanical Mapping
INNINNN |

180 nm 40 GPa

Grains/boundaries, secondary phases, porosity
contribute to mechanical performance

Surface Height Elastic Modulus

lonic mobility of Na* in NaSICON can be
correlated with surface features
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Residual Stress in NaSICON by XRD

Uncycled NaSICON
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Compressive stress in NaSICON pellet changes after cycling —

may be responsible for different modulus/hardness
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Surface Chemistry of NaSICON by XPS

Exposed to Na Cycled in Na|NaSICON|Na
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Zr signal in cycled NaSICON is weaker than before cycling —

possibly contributing to difference in mechanical performance
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