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Motivation: Low Temperature Molten Sodium (Na-NaI) Batteries

Martha GrossNa-NaI battery: 

Na  Na+ + e-    E 0 = 0 V
I3

- + 2e-  3I-   E 0 = 3.24 V

2Na + I3
-    2Na+ + 3I-   E0

cell
 = 3.24 V

Realizing a new, low temperature molten Na battery requires new battery materials and 
chemistries – particularly in sodium ion conductors 

Sodium ion conductors - A Key Ingredient for 
Success
• Highly Na+-conductive
• Chemical compatibility with molten Na and halide 

salts
• Zero-crossover
• Good mechanical integrity

 Important for large-scale, long-duration, long-lifetime 
applications
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NaSICON Solid Electrolyte

SiO4 or PO4 ZrO6 Na

Key Qualities of NaSICON Ceramic Ion Conductors
• Na3Zr2PSi2O12

• High Na-ion conductivity (>10-3 S/cm at 25oC)
• Chemical compatibility with molten Na and halide salts
• Zero-crossover
• Mechanical integrity???
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Methodology: Environmental Indentation and Atomic Force 
Microscopy

Left: G200 Nanoindenter and Bruker Dimension Icon AFM in glovebox

Right: Micromaterials NanoTest Vantage Micro/Nanoindenter with environmental chamber
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Nanoindentation Methodology: Mechanical Properties
Oliver-Pharr Analysis for modulus (E) and hardness (H)

Crack length and energy-based methods for fracture toughness (Kic)

ᵄ� ᵅ�ᵅ�ᵄ�ᵅ�ᵅ� = ᵄ� ᵅ�ᵅ�ᵅ�ᵅ�ᵆ� − ᵄ� ᵅ�ᵅ�
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Indentation Results: Cycled NaSICON
Exposed and cycled in symmetric sodium test cell

Sodium conduction causes mechanical changes in NaSICON
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Indentation Results: Cycled NaSICON (cont.)

New features appear during cycling at high current density; 
these regions have higher modulus and hardness
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Indentation Results: NaSICON Fracture Toughness

Material

SiC 3.00-6.00
MgO 2.50
Fused Silica 0.80
WC 6.00-20.00
NaSICON (crack length method) 1.90 ± 0.60

Fracture toughness is closely related to critical 
current density in solid electrolytes
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Indentation Results: Fracture Toughness by Small Cracks

Smaller cracks may not be long enough to 
give “accurate” fracture toughness values
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“Chipping” Event? Material

NaSICON (large crack length method) 1.90 ± 0.60
NaSICON (small crack length method) 5.18 ± 0.77



Indentation Results: Energy-based Fracture Toughness

ᵄ� ᵅ�ᵅ�ᵄ�ᵅ�ᵅ� = ᵄ� ᵅ�ᵅ�ᵅ�ᵅ�ᵆ� − ᵄ� ᵅ�ᵅ�

Kic: Fracture Toughness
Wirrev: Total irreversible indentation work
Wpp: Purely plastic indentation work
Wcrack: Work done to create cracks
Er: Material reduced modulus
Am: Indent contact area

Material

NaSICON (large crack length method) 1.90 ± 0.60
NaSICON (small crack length method) 5.18 ± 0.77
NaSICON (energy-based method) 2.84 ± 0.79

Energy-based method provides:
• More consistent cracking behavior
• Simplified measurement (no imaging)
• Reduced damage to samples

• Agrees with traditional crack length method
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What if there are no 
cracks?



Cycled NaSICON Fracture Toughness: Energy-based Method
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Fracture toughness not significantly impacted by 
Na+ conduction

Cycling NaSICON should not affect ability to 
handle higher current densities
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Conclusions and Future Work
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• Characterized the mechanical performance of NaSICON solid electrolytes 
before and after electrochemical cycling in molten sodium cells
• Mechanical properties change during electrochemical cycling and may depend on 

current density and new phases
• Employed an energy-based method to measure the fracture toughness of 

NaSICON solid electrolytes
• Allows for simplified measurement 
• Agrees well with traditional fracture toughness measurement

• Will explore failure behavior of NaSICON at high current densities
• How dendrites may affect solid electrolyte even in molten environment

• Characterization of coatings for NaSICON interfaces and NaSICON/polymer 
composite electrolytes
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Energy-based Fracture Toughness

B1

ᵄ� ᵅ�ᵅ�ᵄ�ᵅ�ᵅ� = ᵄ� ᵅ�ᵅ�ᵅ�ᵅ�ᵆ� − ᵄ� ᵅ�ᵅ�

Kic: Fracture Toughness
Wirrev: Total irreversible indentation work
Wpp: Purely plastic indentation work
Wcrack: Work done to create cracks
Er: Material reduced modulus
Am: Indent contact area
l: Exponent fit for loading curve
m: Exponent fit for unloading curve
hp: Residual indentation depth
hm: Maximum indentation depth



Local Mechanical and Electrochemical Behavior

Quantitative Nanomechanical Mapping 
(QNM)

0

110 nm

Surface Height

150 mV

Electrochemical strain amplitude

0

Electrochemical Strain Mapping (ESM)

Grains/boundaries, secondary phases, porosity 
contribute to mechanical performance

Ionic mobility of Na+ in NaSICON can be 
correlated with surface features
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Residual Stress in NaSICON by XRD
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Compressive stress in NaSICON pellet changes after cycling – 
may be responsible for different modulus/hardness 

Uncycled NaSICON Cycled in Na|NaSICON|Na
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Surface Chemistry of NaSICON by XPS
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Zr signal in cycled NaSICON is weaker than before cycling – 
possibly contributing to difference in mechanical performance
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