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ABSTRACT

As machine learning (ML) models are deployed into an ever-diversifying set of application spaces, ranging
from self-driving cars to cybersecurity to climate modeling, the need to carefully evaluate model credibil-
ity becomes increasingly important. Uncertainty quantification (UQ) provides important information
about the ability of a learned model to make sound predictions, often with respect to individual test
cases. However, most UQ methods for ML are themselves data-driven and therefore susceptible to the
same knowledge gaps as the models themselves. Specifically, UQ helps to identity points near decision
boundaries where the models fit the data poorly, yet predictions can score as certain for points that are
under-represented by the training data and thus out-of-distribution (OOD). One method for evaluating
the quality of both ML models and their associated uncertainty estimates is out-of-distribution detec-
tion (OODD). We combine OODD with UQ to provide insights into the reliability of the individual
predictions made by an ML model.






CONTENTS

References

12



LIST OF FIGURES

Figure o-1. Three Data sets drawn from Gaussian Distributions. ............................ 10
Figure 0-2. OOD points and uncertainty scores for a linear regression (LR) model classifying the
raw data seen in Figure ) 10



LIST OF TABLES

Table o-1. Categories of created when applying MPD and OOD to ML predictions. ............ II






PRELIMINARY RESULTS FOR USING UNCERTAINTY AND
OUT-OF-DISTRIBUTION DETECTION TO IDENTIFY UNRELIABLE
PREDICTIONS

ML models are integrated into almost every imaginable application space with a few examples being
cybersecurity, image analysis, self-driving cars, and recommender systems. Many of these applications are
of high consequence, such as those pertaining to national security, and thus evaluating the quality of ML
predictions is of utmost importance. Typically, ML models are evaluated using measures of performance
averaged over samples in a fixed test set. Examples include the use of cross-validation and hold-out to
estimate metrics such as classification error, F-score, precision, and recall. However, for critical decisions,
we need to know whether a model’s prediction is reliable for individual instances.

Many ML models will provide a probability estimate that indicates the confidence of a model in its
prediction. Yet, these estimates may or may not be credible depending on how well the model was trained
in the part of the feature space where a specific point resides. Therefore, there have been efforts to quantify
the uncertainty of a model’s estimates by considering sources of uncertainty in an ML pipeline [1].

Uncertainty estimates can evaluate the quality of a model’s probability estimate. However, if an unseen
sample lies in an area of the feature space where the training data is underrepresented, the model’s prob-
ability estimate is often incorrect and the associated UQ score overly optimistic. OODD methods can
identify these underrepresented areas.

Figure o-1 shows three overlapping data sets, all three are sampled from Gaussian distributions. In this
example, an ML model would have difficulty discriminating between the points that lie in the overlap
regions. A model could also potentially be overly optimistic in ares with limited points if the sparsity is
due to under sampling and not the behavior of the generating distribution. In real-world problems, such
regions may exist though be hard to detect in high-dimensional spaces—even when large quantities of
training data are available. For example, Moosavi-Dezfooli et al. [2] and Szegedy et al. [3] show that Deep
learning models that often make high-confidence predictions on points that are significantly removed
from the training distribution.

Figure o-2 illustrates how UQ and OODD measurements can provide useful, complementary information.
The points are classified using a logistic regression model trained only on data generated from distributions
1and 2. We choose not to place samples from distribution 3 in the training set to represent a data class
unknown to the model.

The OOD points are determined by a Local Outlier Factor (LOF) model [4] and the uncertainty scores
are calculated using minimum prediction deviation (MPD) [s]. The data samples are shaded by their

uncertainty scores with darker shades representing high levels of uncertainty. The OOD points are marked
with Xs.
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Figure 0-1. Three Data sets drawn from Gaussian Distributions.
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Figure 0-2. OOD points and uncertainty scores for a linear regression (LR)
model classifying the raw data seen in Figure 1.
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Table 0-1. Categories of created when applying MPD and OOD to ML predic-
tions.

As expected, there are higher levels of uncertainty for points near the model’s decision boundary. However,
the MPD scores are low (certain) in the sparsely populated areas of the space. Depending on where these
points lie, this level of certainty may be correct. However, the points that fall in the sparsely populated
overlap regions, present high levels of certainty. Such samples would present higher levels of uncertainty if
we merely sampled more data in their local regions. Thus, while uncertainty can be highly informative
about the reliability of the model’s prediction, the MPD scores can themselves be unreliable in low density
regions and provide misleading information.

An OODD method, such as LOF, provides a means for detecting such spaces. While such issues are
obvious in these simple 2-dimensional plots, such low density regions could exist in small pockets in higher
dimensional space—even if the data is well sampled overall. The out-of-distribution samples might also
belong to an unanticipated, unknown class for which the model is untrained

We can summarize the data shown in Table o-1. Category 1 are points that are in-distribution (ID) and
far from a decision boundary; these are both certain and ID. Category 2 are the points that are ID, but
close to a decision boundary and thus the predictions are uncertain. Category 3, denoted by peach Xs in
Figure 0-2, are OOD, but since they are also far from the decision boundary have low uncertainty scores.
Category 4 points, also marked by peach Xs, are OOD and close to a decision boundary making them
uncertain. We can improve ML outomes by identifying the points about which the model is uncertain (2
and 4) and that are not representative of the training data (3 and 4).
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