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Tunable burst-mode coherent anti-Stokes Raman Scattering (CARS) [[m

2

Motivation: Develop a broadband tunable ns source for CARS thermometry measurements at 100 kHz

data acquisition rate.
To achieve necessary speed we are using a burst-mode laser for which Time-Bandwidth Product
has pulse repetition rates up to several hundred kHz. At{ps] Aw[cm—l] > 14.67

» But lacks tunability needed for CARS! | |
A =150 ~1x=100

Recent development of ps-optical parametric generators (OPGs) oo

has allowed for ps-CARS measurements in shock tubes! oot
» ps-CARS spectra typically have much more noise due to the %’P 0
lack of averaging and the noise in the broadband pulses * ool
* 50-60 ps = 0.5-2 Raman lifetimes o | | | | |
* 10 ns = hundreds of Raman lifetimes T ey

* ps-CARS modeling uncertainties
» Pulse width, pulse delays, pulse shapes are important ‘
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Non-collinear Optical Parametric Oscillator (NOPO) S @!

* CARS measurements require a broadband, species specifiC 5= —g.=  @prove
Wavelength . . WCARS |
> Generate broadband 607 nm for N, vibrational CARS. ®pump ok
« OPO axis is tilted with respect to beam. Matching of ‘
group velocities in the NOPO allows to access for broad
bandwidth. pump Turning BBO Crystal Output Coupler Phase-matching diagram
mirtor / N Pump, k, - 355 nm
High Reflector > Slgnal k - 607 nm |
5o / dler, k; - 855 nm
-
~ Pump Beam I
|
r
0-53\[% = group velocity of signal beam
FWHMNOPO = 1 1 I
C (E - E) = group velocity of idler beam




Experimental Set-up for 40 kHz CARS syste

Pulse Burst Laser/NOPO:
* 1.5 ms burst @ 40 kHz for 45 pulses

* 355 nm pump beam: 50 mJ/pulse T
: 0
* 9 cm cavity length 501
« Cavity tilt angle of 5° AN
f=500 MM_ \ Heen
Burner

BOXCARS set-up R=65% 607 nm 3 \ {;\eidump |
 Pump/probe beam: 40 mJ/pulse BBO Crystal \ \ (:| ng_\ Beamn dump
* 0.5m spectrometer with PI 607 HR I/DD < A \ H -

ProEM EMCCD for 40 kHz ey | 52T N |

355 HR / / 355 HT 607 HR 473 HR
607 HR I

f=-50 mm /
a i ’ 2x 473 bandpass
=100 mm— =75 mm

Pulse-Burst Spectrometer I
Laser P




s 1 NOPO performance at 40 kHz

OPO Characteristics

» 5 mJ/pulse for 10% efficiency

» Excellent shot-to-shot reproducibility
» Good beam quality output

Near field: Far field:

Nonresonant background (NRB) in Argon

= Coupled 370 cm' of bandwidth
= Central wavelength jitter of 30 cm™’
= Bandwidth variation of 18 cm’
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. | Single-shot CARS from the Hencken burner

»Single-shot data have been taken for
T=1700-2200 K (¢p=0.52-0.86).
»Used burst-averaged nonresonant

background.

vV Icars

» Temperature inferred by library fit using

CARSFT.
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| Temperature vs. Equivalence ratio

2400 -
*10 bursts of ~45 pulses/bursts were taken for —Equilibrium Temperature
each equivalence ratio. 2200 ¢ Experimental
«Comparison to adiabatic equilibrium f‘;
temperatures show excellent agreement with 5 200
single-shot CARS temperature. -

a 1800 -
*Lowest uncertainty of 4.9% E

*Highest uncertainty of 5.7% 1600 -

1400 - - - . .
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Equivalence Ratio

Eq. Ratio T ean T Precision (%)
0.52 1695.8 82.6 4.9 I
0.61 1863.7 91.7 4.9
0.69 2025.7 106.3 5.2 |
0.77 21259  121.22 5.7
0.86 2222.7 124.1 5.6 |




- 1Summary and Conclusion HH H _—
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v' Demonstration of broadband NOPO output at 40 kHz with FWHM ~ 370 cm™'. &%
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v" Single-shot CARS measurements were taken in a near-adiabatic hydrogen flame with

temperatures of T=1700-2200 K (¢=0.52-0.86). B |
: w: T=1695K er\\

Future work: R )
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v'Good shot-to-shot reproducibility with a 10% conversion efficiency. T e o a0 o0 ‘
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v' Measurement precision of ~5% for all equivalence ratios.
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» Add an optical parametric amplifier (OPA) stage to boost Stokes pulse energy to 20
mJ/pulse. I

» Increase pulse repetition rate to 100 kHz for longer bursts. |

» Perform single-shot measurements in a shock tube or shock tunnel up to 5000 K
and several bars. |
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