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Wind Power Basics
Modern Turbine Design

Hub

Gear Box

Pitch System

Yaw System

Generator

Blade



4+ 1 Wind Power Basics

Wind Power output 1s
proportional to the area
swept by the blades (A= 7 r ?)

WindPower = % PAV’

Wind Power output is

proportional to wind speed P = Air Density

A = Area swept by blades
cubed. V = Wind speed
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Wind Power Basics
Power vs. Wind Speed
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Wind Power Basics
Component Design

IEC design value of resistance, including partial

IEC design value of load factors for materials and consequences of failure
Characteristic Characteristic value of resistance
value of load (e.g., 95 % exceedance)
Safety
Expected load margin Resistance
distribution (non-linear function of
material properties)
s Tn*Tm
o -
LOADS (RESPONSE) RESISTANCE

IEC

Source: IEC 61400-5



Hub Height (feat)

Wind Power Trends
7 & Larger Turbines Have Led to Cheaper Energy

o m
amrerage and Project-level LCOE (2020 $/MWh)
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Wind Power Trends

Cost of Energy Comparison
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Wind Power Trends
9 I Energy Mix
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Wind Power Trends
10 ¥ Deployment

wind
12.2 GW

Wl
other 4

0.2 GW

nuclear patteries
1.1GW 43GW

natural
gas
6.6 GW

U.S. electric generating capacity additions (2021)

. ..

e .

v

% .
solar *- . s
wind ‘i ose
nuclear &
natural gas
batteries
other

QO size indicates capacity

[ JP R
..' \ JE

Traverse
e 999 MW

A Coastal Virginia
.+ & _.— Offshore Wind

L Y

e b 12 megaw atts (MW)

%? . :'_'_' L

e ) 2 :
* ‘Vogtle (Unit 3)
w . 1,100 MW
®

Manatee Solar &. 3
Energy Center

409 MW 6@

Source: DOE-EIA




1n I U.S. Wind Resource

United States - Land-Based and Offshore Annual Average Wind Speed at 100 m

Wind Speed

Source: Wind resource estimates developed by AWS Truepower,
LLC. Web: hitp:/mww.awstruepower.com. Map developed by
NREL. Spatial resolution of wind resource data: 2.0 km.
Projection: Albers Equal Area WGS84.

Where science delivers performance.

NATIONAL RENEWABLE ENERGY LABORATORY
19 SEP-2013 3110




12 I Wind Power Generation

Q4 2020 Installed Wind Power Capacity (MW)

| ;
— | Y Wind Power Capac
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Total Installed Wind Capacity: 122,465 MW

~39M Homes

U.S Potential Wind Capacity in Megawatts (MW) at 80 Meters
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Total Potential Wind Capacity: 10,640,080 MW

Source: Cleanpower.org




U.S. Population Density and
13 I Electric Transmission

“+= Electric Transmission Line (2345kv)

Population Density by County
0- 1 (peoplefaquars mile)
1-10
10-50

i s0- 100

M 100 - 500

W50 1000

1 0. 2000

| B

Source: DOE-EIA



14 I Challenges/Opportunities

Turbine wakes
Atmospheric

boundary
Mathematics

- Statistics and data science

- Computational mathematics
- Computer science and engineering

Source: Science 2019, Grand Challenges in the Science of Wind Energy




15 I Science Challenges in Wind Energy Research

1. Improved understanding of atmospheric and wind power
plant flow physics

2. Aerodynamics, structural dynamics, and offshore wind
hydrodynamics of enlarged wind turbines

3. Systems science for integration of wind power plants into the
future electricity grid
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Large Rotors

Substantial reductions in the cost of wind energy have come from large
Increases in rotor size

Performance: Larger rotors capture substantially more energy both
through a greater swept area and accessing increased wind speeds at
higher altitude

Grid Integration: Larger rotors also enable higher capacity factor wind
plants, yielding less variability in power production

Deployment: Limited high wind resource sites remain, further
deployment depends on developing lower wind resource sites



Large Rotor Challenges
17 I Design and Manufacturing

0.25
z 0
%]
5
Q 0
>
£ I Frequency
o 01 .
© —Weibull
3
& 005 - —Normal

0

Q23 34 &S 56 67 7B 6<9 9<10 10<1111<1212<13 13>
Angle [Deg]

Flaw Distribution

Specimen Detail/Substructure Test
Production

160

140

\
120

Failure Strain (%)

S
14 - \ . o
: Wy 0.75 Shift for this
L -". 7 — ] flaw appears to
! My e . be conservative
0.8 g
z 0 Rl A
' R=0.1 ~a__ a
o —— TT5 Strain = 5.12N0427 B ——
. -
02 - Flaw Stain = 0,75%5,12N0427
a 1
LE+03 1.E+04 1.E+05 1E+00 1.E407 LE+03 LE+DD

—_ +*
3
= 100
a \:‘
<
Z 8 + > I
g
ER
i ¢ Tension Data
40
——Sin Fit
20
0 . . . . . :
0 5 10 15 20 25 30
Average Off Axis Fiber Angle
Ultimate Strength
£-N Curve
# TestData M .75Flaw Shift A Extendsd Power (Test Data} Power (.75 Flaw shift)

2
Shift by Difference in

1.8 -
I'§0 — Static Strain to Failure
16

Applied Cycles

Fatigue

Source: Montana State



Large Rotor Challenges
18 I Design and Manufacturing
1
09 -
<= Detectable Flaw Size 0s A
||1||||||||||||||t'|l_-|'-|__|| |'|r:||'|||||'|'||||1||||[ 0_72 l.’, -
1 2 3 4 5 6 7 8 9 1 G E ] ’,’ i: e Cumulative POD
- - 4 S/ ====-Inspector A
Nondegtructive Inspection Foe W/ R ———————— ipector
\ Need this S o iy j;{ Cumulative PODggs = 1.333 | |- Inspector C
overlap 2 /A e R I P Inspector D
SRR | [1 1] ([ TTTT TTT T TTITTTTTT] z /7 / R R R R e Inspector £
1 2 3 5 6 7 B g 10 E r” ,‘I' ',”','2[ ',Il / '.' ----- Inspector F
Damage Tolerance O /O e e S T inspector G
/ ! ’:’,,"" f:’l - N Inspector H
Allowab’e F’aw 8’29 ll- 02 'l':"’ ’,/9'}:/ I,::’ ',' ----- Inspector |
] ‘n' / / r',’l q,’" S e R R Inspector J
1 0/ "',’ " 4|
0.1 ;r’, "0/' o B B — e e IR Inspector K
’r,,’ / /,:,’ /’ Inspector L
o 1Ll e |
0 0.5 1 15 2 25 3
Flaw Size (Diameter in Inches)

Sources: SkySpecs, ICM




Large Rotor Challenges

19 I Design and Manufacturing p—
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Large Rotor Challenges
20 I Transportation

Width limited to ~4.75m
Length limited to ~80m
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Large Rotor Challenges

Operations
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e Rotor Challenges

22 Environmental
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23 I Advanced Concepts

Trailing edge tabs and flaps, top,
and synthetic jets, bottom (UC-
Davis, 2008)

Downwind Rotors

On-Site Manufacturing (TPl Composites, 2003)

Inflatable

Pre-fabricated ;
re-fabrica aerodynamic shell

primary structure

Aera-shell is sandwich
construction of 2 dry fabric

Aero-shell can be layers with injectable foam
compartmentalized T
spanwise and chordwise <~"— )
Inflatable Blade Concept (Mendoza, 2017) —

Bi-Wing Concept (Chu, 2017)






