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Background and Motivation

Why do we need radiation tolerant electronics now more than
ever?

Increasing satellite launch rate

Inviaorated alobal interest in interolanetarv exploration : :
Monthly Effective Mass of Objects in Earth Orbit by Region Applicable Space Environments
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R. A. Mewaldt, Adv. Space. Res. 1994, 14, 10, 737-747

Desired properties of radiation tolerant
electronics:

Reliable. hiah endurance. low power. SEU-




Transition Metal Dichalcogenides for Applications in lonizing

Environments
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TMDs are promising for logic
applications under energetic photon
and light ion irradiation

What about device performance under
swift heavy ion irradiation?




s | Why Study the Radiation Tolerance of the MoS, Memtransistor @ I

MoS, Memory Devices I

Memristive Behavior based on Defect-Mediated Switching

108
80 40 0 40 80
Vp (V)

S
1

Atomic Ratio [5/Mao)

z
-

174 153

g
*

Atomic Percent (at %) ™
]
]

Atomic Percent (at %)

-
*
| |

Area 1 Area 2 Area
D. Li et al., ACS Nano 2018, 12, 9240-9252

500 1,000 1,500
Time {min)

Is the defect-reliant
MoS, memtransistor

inherently radiation
tolerant?

T 0 & 10 " V. K. Sangwan et al., Nature
Voltage (V) 1 ! Nanotechnol. 2015, 10, 403-406

ano 2018, 12, 9240-9252. (%)
J. Jadwiszczak et al., ACS Nano 2019, 13, 14262-14273
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7 | Experiment Details: Ex-situ Irradiation of MoS, Devices and Films @ I

keV - MeV Au* used for all irradiations in this
work
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Device Irradiation:
2x array of back gated memtransistors
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Large Area MoS, Irradiation
2x large area CVD MoS, on SiO,/Si
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s | Etching and Oxidation of MoS, Induced by Au* Irradiation

Initial MoS, chemistry:
~1.9 S:Mo ratio
Nominal MoO, concentration for polycrystalline CVD MoS,

48 keV Au® irradiation:

Mo, S sputtering occurs
43% decrease in Mo 3d intensity after 2E15 cm2 Au*
92% decrease in S 2p intensity after 2E15 cm2 Au*

MoO, concentration increases from 10% to’50% after 2E15 cm-2 Au*

¢ S1: S:Mo (Total)
@ S1: Fraction Mo-O
A S2: S:Mo (Total)
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9 | Increased Disorder and Point Defect Density in Au* Irradiated

MoS,

Irradiation-induced tensile strain in MoS,: E',,
and A, red shift after 2E13 cm™ Au*

Significant increase in defect density at higher
Au* fluences

~2x increase in E',; (in-plane mode) FWHM

Complete loss of Raman response in somgyMoS,

regions ﬂ ~
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10 | Atomic Scale Defects in MoS, Induced by 2.8 MeV Au* @ I

~ Initial A 1.2E1,3%‘f¢:?m-2|
What we did: Irradiated CVD N
MoS, on a lacey carbon grid
with 2.8 MeV Au*

Multi-atom defects generated in
MoS, by Au* irradiation

S:Mo sputtering rate ratio ~ 4.7
under 104-108 eV Au*
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Resistance Switching Collapse in Heavy lon Irradiated
12 | Memtransistors

L BN |
ERE
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Initial memtransistor behavior: 10'-102 resistance ratio, gateable I range |ss 3 I
. S . . EEE
R(E"irtSdiation: 2a:s
V. K. Sangwan et al., Nature 2018,
554, 500-504

Causes collapse of resistance switching and gateability
|, increase with increasing Au* fluence due to variable hopping conduction’
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13 Conclusions

NU1 6 R12C3
Au* irradiation in the keV — MeV energy range:
Creates Mo and S vacancies and larger holes in 1L MoS,

Significant sputtering, oxidation, and reduction in S:Mo
ratio occurs
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Memtransistor behavior persists through an
unusually high heavy ion fluence of 2E13 cm2, which
is effectively 200 years worth of galactic cosmic
rays®. This highlights the potential for S, 100 200 300 400 500 600 700
memtransistor to be highly reliable oversixfended VVavenumber (crm)
missions beyond low earth orbit
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Initial

*when scaled based on active device area in MoS, memtransistor versus active device area in a % i .
single commercial logic device B o 1
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15 | Supporting Information: Photoluminescence vs Au* Fluence @

PL Argument: —
Nano Research 2018, 11 (8): 4123-4132 e
Increase in X peak can indicate an increase in sulfur vacancies 2.8 MeV Au"

Increase in X peak often corresponds with decreased B peak, which indic{
the higher energy spin orbit valence band

B peak decreases with increasing sulfur vacancy concentration
Lower energy D peak corresponds with sulfur vacancy-induced recombing

Our samples:

X peak decreases by 85.7%, B peak decreases by 46.5%, D peak decrea

Nearly simultaneous decrease in X and D points to a signature of Frenkel
and S removal instead of preferential S vacancy creation, which could ma
decrease in the B peak / increase in the D peak 600 625 650 675 700 725

Wavelength
Comparatively smaller decrease in B peak than X and D peaks could indid o avelength (nm)
increasing disorder

Very small ~0.02-0.07 eV shift of all peaks after irradiation

Other simi
0.52 after

85.7% PL
Intensity
Reduction

Intensity (arb.)

VD MoS, to

[nitial 1E13 2E13 Initial 1E13 2E13
Manuscript in preparation 2.8 MeV Au* Dose (cm™) 2.8 MeV Au* Dose (cm™@)




16 | Increased Disorder and Point Defect Density in Au* Irradiated @
MoS,

Point defect concentration in MoS, can be extracted NUT 6 R12C3
using an empirical relationship based on the
LA(M):A,4 or LA(M):E,, intensity ratio
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S. Mignuzzi et al., Phys. Rev. B 2015, 91, 195411

I(LA)/1(A,,) ratio indicates 2x increase in MoS, point
defect density after irradiating with 2E15 cm-2 48 keV
Au*

The Raman-extracted defect density conflicts with 5 3
XPS results, which indicate significant S sputtering ' _ ey

R . Initial 1E13 1E14 1E15 1E16
and dlsorderlng ; IZS keV Au* Fluence (cm™)

Manuscript in preparation
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In-Situ SAED during 2.8 MeV Au* Irradiation of MoS,

Initial 1.2E14 cm? 8.7E14 cm2



18 | In-situ lrradiation and TEM Experiment Details
Experiment Progression

® |

. e . I E-beam off
[on beam conditions —~ | E-beamon
2.8 MeV Au** g E-beam off | (Imaging) | lon beam on
__ 5 &
0.03 em L lon beam on: lon beam off 3
: . o )
TEM conditions = I I
T, = 30.4°, T, = 0° o : :
S ; . C
SAED taken at 60 cm () | I
)
Magnification of Images: 40kx L : :
Electron beam blanked during irradiation ! !
TEM image and SAED took ~3 minutes each step I I :
I I
| |
Time (min)
Elapsed Time (min) | Current Start (nA) | Current End (nA) Estimated Fluence (ions/cm?) | Set Number
1.25 x 10" -
2.5 x 10
B

Manuscript in preparation

3.74 x 104

4.99 x 10

8.74 x 10



19 lon Irradiation Effects on Device Performance: R15C2

NU1-6 R15C2
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20 lon Irradiation Effects on Device Performance: R19C6
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lon Irradiation Effects on Capacitance: NU1-3
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Persistent Resistance Switching after Laser Irradiation: A Control

23 | Experiment

R16CT, Vg =0

) 0.0005
0.0004

= 0.0003

" 0.0002

0.0001
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Pre-irradiation Post-irradiation 1

|Id-Vd vs Vg as a function of Au*
fluence (one representative
device)

Scatter plot: switching ratio vs
Au* fluence

Scatter plot: Absolute HRS and
LRS vs Au* fluence

Manuscript in preparation

Post-irradiation 2
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Optical Response and Defects of Laser Exposed MoS,
E'y + Ayg Intensity Map
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Electrode

Sulfur vacancies generated by laser irradiation: T -
blue shift and intensification of E,; and A,

modes " Laser
. : e . . Mos, Irradiated
Increase in PL intensity in laser irradiated MoS,

region indicates laser irradiation catalyzes

vacancy passivation (consistent with previous ) um 0 CCD cts
F

reports) A, Position Map ;',c - 418 rel. 1/cm

| - ™

395 rel. 1/em

Laser irradiation generates and passivates

sulfur vacancies in MoS,, effect on ‘ %
memtrancictar hahaviar ic minar compared - -
to / MoS, Photoluminescence: X Exciton Intensity 5

9000 CCD cts -

Electrode .

405 rel. 1/em

Manuscript in preparation \ 2 370 rel. 1/em

a $I’
Irradiated
MosS,

-1 um 0 CCDcts




