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What is the return of investment for cyber? (.!i
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We cannot improve,
what we cannot measure
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(U) SECURE'’s story in a nutshell {.‘

(U)Cyber experimentation should be a pillar of science of cyber security, just as
computational Science and Engineering (CSE) is a pillar of science.

* (U) Cyber experimentation is commonly used to answer questions about
cyber systems

o (U) but lack of rigor limits its use in high-consequence systems

* (U) To study complex cyber systems, we need to

o (U) answer “what if questions” with high-confidence
Emulytics

o (U) assess confidence in our results under uncertainty
Uncertainty Quantification

o (U)make robust decisions under uncertainty in an adversarial environment
Adversarial Optimization

* (U) Inspiration: Sandia’s know-how and capabilities from our nuclear stockpile
stewardship

» (U) Challenge: Cyber systems are different than physics-based systems
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(U) Cyber experimentation approaches (.!i

Figure unclassified
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(U) SECURE'’s position:
* (U) Results should be independent of the platform and the tools used for the experiment
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(U) Exemplar: How vulnerable is the power grid '.’z

against a cyber attack? W

« (U) Ukraine attack was based on Crash Override Malware
* (U) The attacker gains remote access to power grid components to turn them

on and off.
_ o Figure unclassified
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SCADA networks

* (U) Goal: characterize loss of load resulting from malware infection in
enterprise network

o (U) Account for uncertainties in threat, network conditions

Power grid

Enterprise network

* (U) Approach: Piecewise studies to inform Markov transition probabilities
and uncertainties
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results with a Markov model

L

(U) We design an experimentu%:lrasesgig step, and aggregate Y./ z

Experiment 1: Experiment 2:

Defend against C2 Defend against

reconnaissance
Figure unclassified

Pivot to engineering
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Enterprise network SCADA networks

Overarching Themes: verification and validation,
extreme events, scalable algorithms
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(U) Aggregated results (.!

Bverage

B Higher consequences * (U) Plotting attack success metrics
1 or more RTU Figure unclassified from Markov analysis: mean t!me fto
Harder attacks attack success vs. fraction of time in

/ the “READY” state.

* (U)Extended our analysis framework to
support UQ in transition probabilities,
and variations in each step’s

150 -

100 -

'--.._ll inherent timestep.
¥ v, * (U) Experiments provide range of
50y transition probabilities (depending on
Lower consequences L scenario, attacker strategy, etc.)

Easier attacks
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(U) Markov analysis allows:

(U) Defender goal: push attacker toward top-left . Estimates of how secure the

of the plot (e.g. through better IDS)

system is under attack

* Ranking of attacker/
(U) Each dot on the chart above represents a defender strategies

combination of C2 data, scanning/detection data,
and attacker/defender strategy
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Unclassified
(U) So What? (.3!
* (U) What changed?

o (U) We produced an objective process that can quantify security.
U) All assumptions are listed; all processes are repeatable;

EU) All experiments are verified; all models are validated;

o (U) We have a scientific processes that can, and will be improved.
(
(

U) No more disagreeing with expert opinions.
U) Instead challenge assumptions; propose better algorithms/metrics.

* (U) What can we do now? Quantifiable Security
o (U) Quantify return on investment for cyber security
o (U) ldentify critical components both for improving security and model fidelity
o (U) Quantify attack consequences and enable mission-driven cyber security
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(U) Optimal Segmentation — rigorous comparison of two solutions (.!

Figure unclassified

Optimization/Emulation Workflow Results
"""" \ Figure unclassified
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(U) Takeaway: Designed a workflow that interfaces emulation with (U) Takeaway: Mathematical optimization

identifies a segmentation policy that is more robust
under a CrashOverride attack

mathematical optimization to investigate network segmentation

Unclassified
S e



Unclassified

|dentifying extreme events is crucial (.

(U)

(U) We need to identify events with low-likelihood yet high-consequence
o (U) Solution: Multi-fidelity sampling for tail events; optimization for extreme

points
_ Figure unclassified
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(U) Verify each experiment (.!

 (U) Distribution of alert

times shift as namespaces i Alert Times
are added ) Distribution
* (U) Quantified similarity | Al
with Tukey Multiple - 1N
Companson Test ; “ . |, Figure unclassified
o (U) Shows clear drop in |
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* (U) Large p-value indicates
that the null hypothesis
can’t be rejected

o (U) Larger p-value ->
similar results

Alert Times Comparison
Tukey Multiple Comparison p-valu

MNamespaces
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(U) Validate each model ‘.!

* (U) Can we validate our models against data from real systems?
o (U) Joint study with TAMU

* (U) Mean and median indicate good agreement. The low values of the 5t
percentile between 100-120 seconds help identify times which have some
realizations with less agreement.

Summary statistics of repeated subsets of sample size 500 from TAMU and SNL
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Validation Lessons from Weapons program: '.3

small scale tests = full system o

. ‘— Prediction of Full-System
T /\ Response Quantity of Interest
Scaling Arguments /
for Use with Full Size / \ Full ,_Syslrem
Systems Validation
/ Full System
‘ Z[ Rare

Leverage information
Propagate
Uncertainties

across the hierarchy

Scaled Prototypes
Fewer |IETs

Coupled
Calibration/
Validation

|§;n:}$§:§;,:; Multiphysics Components
Ranking and Subsystems

Fewer Integral Effects Tests

. i Component
Single Physics Components Calibration/

Many Separate Effects Tests Validation




Example study for NC3 survivability/endurability

*Experimental questions

Experimental *Identify inputs, outputs, topology

plan

*Topology information from NC3

*Transfer this information to experimentation topology
Topology

*Scenario orchestration
Fault/degradation injection (Netflix “Chaos Monkey”, but for experimental testbeds)

*Multifidelity models (emulation + math/simulation/surrogate models)
B *Sampling strategies to comprehensively cover space of possible fault scenarios
experiments

*Validate low fidelity models against high fidelity models
«Start with small topology, exhaustively enumerate fault scenarios, test MF model against exhaustive results
Vel *Where possible, compare to real world data




Rigorous Cyber Experimentation can provide NC3, '.z

what CSE provided to the nuclear weapons programs o

We cannot improve what we cannot measure

* Cyber experimentation provides measurements and is an essential tool for designing future
complex systems

Rigor is paramount for high-consequence systems

 We need to look at the whole system and
build our confidence bottom up
tailor requirements top down

« Computation Science and Engineering (CSE) is a pillar of our nuclear weapons programs
Inspiration behind SECURE

« SECURE has been developing methods and tools to bring rigor into cyber experimentation.
| can be used to

Assess a system and/or its components
Set justifiable requirements for components
Enable survivability/endurance by design

* We worked with NC3 in mind, and we are ready to face this challenge



