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Overview

• Scattered neutron spectroscopy
• Why backscattered neutrons?
• Experimental results from OMEGA
• Outlook:
• Multiple lines of sight and asymmetry
• Edge measurements in an igniting capsule
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Johnson et al., RSI (2012)
Crilly et al., PoP (2018)
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Example neutron spectrum
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Backscatter 
edge/ kinematic 
endpoints



Backscatter
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Pre-collision: Post-collision:

• Backscatter velocity related to the 
component of the ion motion in 
direction of neutron
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Where do neutrons scatter
Hotspot Free-Falling shellShocked shell
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Where do neutrons scatter
Hotspot Free-Falling shellShocked shell
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Where do neutrons scatter
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Scattering triton velocity 
distribution
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Taking moments (averaging 
is scatter weighted):
Mean scatter bulk flow:

Apparent scatter 
temperature:

Scattering triton velocity 
distribution

∆�
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Fluid velocity variance 
(deceleration, spatial profiles, 
etc.)
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Translation to a spectral shape
• Shift in edge position = average scattering triton velocity
• Slope of edge = variance in scattering triton velocity (thermal + non-thermal)



Experimental Results on OMEGA
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Experimental Results on OMEGA
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Mannion et al., PRL (in sub.)
C. J. Forrest et al., RSI (2016)



Experimental Results on OMEGA
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Mannion et al., PRL (in sub.)

• Shots were down-selected 
based on hotspot 
symmetry metrics 

• Measured shell velocities 
of ~ 70km/s 

• Temperatures trend with 
uimp

LILAC Thermal

LILAC Apparent



Experimental Results on OMEGA

• Considered trends of inferred 
hotspot and shell parameters 
with shell decompression
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Shah, Phys. Rev. E., (2021)
Mannion, PRL, (in sub.)



Asymmetry
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• Substantial experimental evidence for 
mode 1 drive asymmetries at both 
OMEGA and NIF:
• Motion in time-resolved X-ray 

images
• Hotspot velocity
• Apparent temperature anisotropy

• Theory, simulation and some 
experimental measurements suggest 
that mode 1 drive → mode 1 areal 
density 



Cyro-offset series
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Experimental data deconvolved using 
evolution algorithm by Forrest

Trends in mode 1 model reflected in 
experimental data

• Target offsets introduce mode 1 drive 
asymmetry



nD and nT edges

• With measurements of both the nT and nD edges 
we can separate thermal and non-thermal 
components
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Burn Regimes

• Using hydro-scaled 1D simulations we can access 
the different burn regimes
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Based on N161023
Rout = 909 um
tpeak = 6.25 ns
Yamp,Chimera = 4
“Self-heating”

Scale x1.1
Rout = 1000 um
tpeak = 6.88 ns
Yamp,Chimera = 9
“Robust Ignition”

Scale x1.2
Rout = 1090 um
tpeak = 7.50 ns
Yamp,Chimera = 40
“Propagating Burn” 

McGlinchey et al., PoP, (2018)
Tong et al., Nuc. Fus., (2019)



Hydrodynamic 
differences
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Bang times

As the degree of fusion burn 
increases:

1. Larger burn average 
temperatures

2. Larger scatter average 
temperatures

3. Larger scatter average 
expansion velocities



Synthetic neutron spectra
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1. Later arrival = expanding shell
2. Broader edge = higher fuel temperature

Neutron transport calculations 
performed by Minotaur on 1D 

Chimera hydrodynamic profiles



NIF Experimental Data
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1. Later arrival = expanding shell
2. Broader edge = higher fuel 

temperature



Conclusions
• Scattered neutron spectra contain a wealth of 

information about dense fuel conditions
• Experimental data from OMEGA has shown that 

the backscatter edge is sensitive to key implosion 
physics
• Model development will allow us to explore 3D 

backscatter spectroscopy
• The backscatter edges could prove to be a key 

diagnostic of burn propagation into the dense fuel
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Extras
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Burn Regimes

• Self-heating
• Hotspot temperature 

drops after peak 
compression

• Robust Ignition
• Increase in hotspot 

temperature but 
insufficient confinement

• Propagating Burn
• Large fraction of DT mass 

heated to thermonuclear 
temperatures
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Time at which 
mechanical work on 

hotspot = 0

Tong et al., Nuc. Fus., (2019)



• Single scattered neutron spectrum requires:
• Differential cross section (ENDF + Experiment*)
• Birth neutron spectrum   (Measured DT spectrum)
• Scattering ion velocity distribution
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Translation to a spectral shape

* Frenje et al. 
PRL 2011



Mode 1 simulations and models
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Crilly et al., PoP (2018)
Crilly et al., PoP (2021)



Bang Time Profiles
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Synthetic neutron spectra
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1. Later arrival = expanding shell
2. Broader edge = higher fuel 

temperature


