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Overview

* Scattered neutron spectroscopy
* Why backscattered neutrons?
* Experimental results from OMEGA

* Outlook:
* Multiple lines of sight and asymmetry
* Edge measurements in an igniting capsule



Example neutron spectrum
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Example neutron spectrum
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Backscatter

Pre-collision: Post-collision:
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Backscatter

Pre-collision:

Post-collision:
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Where do neutrons scatter
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Where do neutrons scatter
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Where do neutrons scatter

lon Temperature (keV)
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Scattering triton velocity
distribution
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Scattering triton velocity

distribution

Taking moments (averaging
is scatter weighted):
Mean scatter bulk flow:

7= —(vpu)

Apparent scatter
temperature:

Fluid velocity variance
(deceleration, spatial profiles,
etc.)
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Translation to a spectral shape

* Shift in edge position = average scattering triton velocity
* Slope of edge = variance in scattering triton velocity (thermal + non-thermal)

().204 == Free-Falling Shell 'f'\. -1.2
— == Shocked Shell I
“E- = Hotspot ,'
X ).15] we Total I 1.0
o J :
o I
1:" I
— 0.101 | F0.83
C: ().051 0.6
().00)

—1000 =500 0 5000 1000 3.00 325 350 375 4.00
Resolved lon Velocity (km/s) Energy (MeV)
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Experimental Results on OMEGA

nT edge analysis (single line of sight):
1. Measure and fit the primary DT
spectrum

)

2. Measure and fit the nT edge
(using vys, Tion)

3. Use hotspot measurements to
extract shell contribution

h » h

A. Crilly

Target
chamber

/Mid-beam
collimator
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Experimental Results on OMEGA
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Experimental Results on OMEGA

e Shots were down-selected

based on hotspot
symmetry metrics

* Measured shell velocities
of ~ 70km/s

* Temperatures trend with

uimp

RT bubble height
Inflight shell thickness

Nsim =

A. Crilly
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Experimental Results on OMEGA

RT bubble height

Nsim =

* Considered trends of inferred
hotspot and shell parameters
with shell decompression
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Asymmetry

* Substantial experimental evidence for
mode 1 drive asymmetries at both
OMEGA and NIF:

* Motion in time-resolved X-ray
images

* Hotspot velocity
e Apparent temperature anisotropy

* Theory, simulation and some
experimental measurements suggest
that mode 1 drive - mode 1 areal
density

A. Crilly
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Cyro-offset series

* Target offsets introduce mode 1 drive

asymmetry
Trends in mode 1 model reflected in Experimental data deconvolved using
experimental data evolution algorithm by Forrest
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nD and nT edges

* With measurements of both the nT and nD edges
we can separate thermal and non-thermal
components
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Burn Regimes

* Using hydro-scaled 1D simulations we can access

the different burn regimes

Based on N161023 Scale x1.1

Rout =909 um Rout = 1000 um
toeak = 6.25 N5 toeak = 6.88 N5
Yamp,Chimera =4 Yamp,Chimera = 9
“Self-heating” “Robust Ignition”

McGlinchey et al., PoP, (2018)

Tong et al., Nuc. Fus., (2019) A. Crilly

Scale x1.2

Rout = 1090 um
toeak = 7-50 Ns
Yamp,Chimera =40
“Propagating Burn”
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Hydrodynamic
differences

As the degree of fusion burn
increases:

1. Larger burn average
temperatures

2. Larger scatter average
temperatures

3. Larger scatter average
expansion velocities

A. CriIIy 23
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Synthetic neutron spectra
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Neutron transport calculations
performed by Minotaur on 1D
Chimera hydrodynamic profiles
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1. Later arrival = expanding shell
2. Broader edge = higher fuel temperature
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Normed (dN/dT)

NIF Experimental Data

nT Backscatter Edge Comparison: nTOF Data TC(17.976 m, 161.375°, 56.7507)
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Conclusions

* Scattered neutron spectra contain a wealth of
information about dense fuel conditions

* Experimental data from OMEGA has shown that
the backscatter edge is sensitive to key implosion
physics

* Model development will allow us to explore 3D
backscatter spectroscopy

* The backscatter edges could prove to be a key
diagnostic of burn propagation into the dense fuel



Extras



Burn Regimes

* Self-heating

* Hotspot temperature
drops after peak
compression

* Robust Ignition

* Increase in hotspot
temperature but
insufficient confinement

* Propagating Burn
* Large fraction of DT mass

heated to thermonuclear
temperatures

A. Crilly
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Translation to a spectral shape

* Single scattered neutron spectrum requires:
 Differential cross section (ENDF + Experiment*)

* Birth neutron spectrum (Measured DT spectrum)
* Scattering ion velocity distribution
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Normed (dN/dT)

Synthetic neutron spectra

nT Backscatler Edge Comparison: nTOF Data TC(17.976 m, 161.375°, 56.7507)
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