
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under

contract DE-NA0003525.

Dakota and Pyomo for Closed and
Open Box Controller Gain Tuning

SAND2021-13485

Kyle R. Wi l l iams, J . Just in Wi lbanks, Rachel
Schlossman, David Kozlowski , and Ju l ie Par ish

Sandia National Laboratories

Tutorial Session: Open Source Software for Control

60th Conference on Decision and Control

SAND2021-14271CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Introduction

• Control engineering: stabilization of dynamic systems

• Developing mathematical model

• Synthesizing a control law

• Tuning the parameters

• Many toolboxes exist

• Tool suites for linear time invariant systems

• Robust control

• Multi-objective software

• Dakota and Pyomo for control system tuning

• Open source, developed at Sandia

• Dakota: written in C++, can operated in “closed box” form via direct interaction with an
input/output model

• Pyomo: written in Python, requires transparent “open box” model

2

Background

• Dakota
• Complex optimization problems

• Closed box interface: only needs I/O

• Can interact with MATLAB, Simulink, GNU Octave,
Python, etc.

• Implements a variety of optimization algorithms
(genetic algorithms, gradient based)

• Pyomo (Python Optimization Modeling)
• Open box: needs modeling equations

• Supports a wide range of optimization problems
(LP, QP, NLP, MIP, SP)

• Supports differential algebraic equations (DAEs)

• Transparent parallelization of subproblems using
Python parallel communication libraries

3

Available at https://dakota.sandia.gov

Available at https://www.pyomo.org

Example problem: cart-pole system

• Nonlinear, underactuated system

• Goal is to balance the pole at the unstable
equilibrium (vertical position)

• Controlled in two ways:

• Linear quadratic regulator (LQR) design

• Partial feedback linearization (PFL) design

4

LQR optimization: setup

• Pyomo steps

1. Create Pyomo model: state / control /
objective vars, derivative vars, time
horizon

2. Define dynamics constraints “for t in
m.T: m.dx1dt[t] = m.x2[t]”

3. List boundary conditions and initialize
guess

4. Solve: define solver, in our case IPOPT

5

LQR objective

Linear control law

Full nonlinear dynamics (Pyomo solver
taking gradients)

• Dakota steps

1. *.in file: input file which specifies solver type
(COLINY EA), ranges and initial guesses

2. *.sh/*.vbs: opens MATLAB in either Windows
or Linux

3. *_Wrapper.m: a MATLAB file used to specifiy
the current parameter choices made by
Dakota

4. *.m: additional MATLAB files which contain
dynamics and control laws (can call *.slx
files); called from *_Wrapper.m

LQR optimization: results 6

• Validation

• Pyomo and Dakota produce controller
gains which stabilize 𝑥 = 0, 𝜃 = 𝜋

• Pyomo compute time: ~2 seconds

• Dakota compute time: ~30 minutes

• Gain comparison

Fundamental tradeoff: upfront
setup time for computation time

Partial feedback linearization7

• Why PFL?

• Linear control law: LQR design only valid near the chosen equilibrium point

• Nonlinear control law: Partial feedback linearization demonstrates “swing up” capabilities

• Step 1: prescribe desired dynamics: ሷ𝜃 = 𝑣 ≡ 𝑘𝑑 ሶ𝜃𝑑 − ሶ𝜃 + 𝑘𝑝 𝜃𝑑 − 𝜃

• Step 2: solve for control law

• Assuming a perfect model with perfect cancelation, we get the following transfer function

which is stable for Re 𝑠2 + 𝑘𝑑𝑠 + 𝑘𝑝 < 0

Additional study:
• Apply time delayed control 𝑢(𝑡 − 𝜏) signal
• Closed loop transfer function is lost

Partial feedback linearization8

subject to nonlinear dynamics, prev nonlinear control law

Penalty on settling time 𝑡𝑠
• Pyomo: use 𝑤1=0.02 as surrogate
• Dakota: use 𝑡𝑠 directly

Nominal gains
Improved gains, which

consider time delay

Delayed
system

Perfect
system

Delayed
system

Perfect
system

Pyomo: with and without 0.1s control input delay Dakota with 0.1s delay

Summary9

• Dakota and Pyomo are powerful tools for control design

• Primary tradeoff: setup time vs. optimization time

• Pyomo enjoys fast computation times, but model setup is non-trivial

• Dakota computation times can be very long, but enjoys freedom in optimization criteria

• Single input system shown in this work, easily extensible to to multi-input systems
(see ref for example)

• Although not shown here, Bayesian Optimization is another optimization
framework to be considered

• In [18], BO is used to tune Q and R matrices of an LQR synthesis to induce some desired
behavior

