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Introduction

• Control engineering: stabilization of dynamic systems

• Developing mathematical model

• Synthesizing a control law

• Tuning the parameters 

• Many toolboxes exist

• Tool suites for linear time invariant systems

• Robust control 

• Multi-objective software

• Dakota and Pyomo for control system tuning

• Open source, developed at Sandia

• Dakota: written in C++, can operated in “closed box” form via direct interaction with an 
input/output model

• Pyomo: written in Python, requires transparent “open box” model 
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Background

• Dakota
• Complex optimization problems

• Closed box interface: only needs I/O

• Can interact with MATLAB, Simulink, GNU Octave, 
Python, etc.  

• Implements a variety of optimization algorithms 
(genetic algorithms, gradient based) 

• Pyomo (Python Optimization Modeling) 
• Open box: needs modeling equations

• Supports a wide range of optimization problems 
(LP, QP, NLP, MIP, SP)

• Supports differential algebraic equations (DAEs)

• Transparent parallelization of subproblems using 
Python parallel communication libraries
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Available at https://dakota.sandia.gov

Available at https://www.pyomo.org



Example problem: cart-pole system

• Nonlinear, underactuated system

• Goal is to balance the pole at the unstable 
equilibrium (vertical position)

• Controlled in two ways:

• Linear quadratic regulator (LQR) design

• Partial feedback linearization (PFL) design
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LQR optimization: setup 

• Pyomo steps

1. Create Pyomo model: state / control / 
objective vars, derivative vars, time 
horizon

2. Define dynamics constraints “for t in 
m.T: m.dx1dt[t] = m.x2[t]”

3. List boundary conditions and initialize 
guess

4. Solve: define solver, in our case IPOPT
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LQR objective

Linear control law

Full nonlinear dynamics (Pyomo solver 
taking gradients)

• Dakota steps

1. *.in file: input file which specifies solver type 
(COLINY EA), ranges and initial guesses

2. *.sh/*.vbs: opens MATLAB in either Windows 
or Linux

3. *_Wrapper.m: a MATLAB file used to specifiy 
the current parameter choices made by 
Dakota

4. *.m:  additional MATLAB files which contain 
dynamics and control laws (can call *.slx 
files); called from *_Wrapper.m



LQR optimization: results 6

• Validation

• Pyomo and Dakota produce controller 
gains which stabilize 𝑥 = 0, 𝜃 = 𝜋

• Pyomo compute time: ~2 seconds 

• Dakota compute time: ~30 minutes

• Gain comparison

Fundamental tradeoff: upfront 
setup time for computation time



Partial feedback linearization7

• Why PFL?

• Linear control law:  LQR design only valid near the chosen equilibrium point 

• Nonlinear control law:  Partial feedback linearization demonstrates “swing up” capabilities

• Step 1: prescribe desired dynamics:     ሷ𝜃 = 𝑣 ≡ 𝑘𝑑 ሶ𝜃𝑑 − ሶ𝜃 + 𝑘𝑝 𝜃𝑑 − 𝜃

• Step 2: solve for control law

• Assuming a perfect model with perfect cancelation, we get the following transfer function 

which is stable for Re 𝑠2 + 𝑘𝑑𝑠 + 𝑘𝑝 < 0

Additional study: 
• Apply time delayed control 𝑢(𝑡 − 𝜏) signal 
• Closed loop transfer function is lost



Partial feedback linearization8

subject to     nonlinear dynamics, prev nonlinear control law 

Penalty on settling time 𝑡𝑠
• Pyomo: use 𝑤1=0.02 as surrogate
• Dakota: use 𝑡𝑠 directly

Nominal gains
Improved gains, which 

consider time delay

Delayed 
system

Perfect 
system

Delayed 
system

Perfect 
system

Pyomo: with and without 0.1s control input delay Dakota with 0.1s delay



Summary9

• Dakota and Pyomo are powerful tools for control design

• Primary tradeoff: setup time vs. optimization time

• Pyomo enjoys fast computation times, but model setup is non-trivial

• Dakota computation times can be very long, but enjoys freedom in optimization criteria 

• Single input system shown in this work, easily extensible to to multi-input systems 
(see ref for example)

• Although not shown here, Bayesian Optimization is another optimization 
framework to be considered

• In [18], BO is used to tune Q and R matrices of an LQR synthesis to induce some desired 
behavior


