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« Control engineering: stabilization of dynamic systems
« Developing mathematical model

« Synthesizing a control law
*  Tuning the parameters

*  Many toolboxes exist
« Tool suites for linear time invariant systems
+  Robust control
- Multi-objective software

- Dakota and Pyomo for control system tuning
«  Open source, developed at Sandia

- Dakota: written in C++, can operated in “closed box” form via direct interaction with an
input/output model

- Pyomo: written in Python, requires transparent “open box” model

I
> 1 Introduction m
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Background

Dakota

Complex optimization problems
Closed box interface: only needs 1/0

Can interact with MATLAB, Simulink, GNU Octave,

Python, etc.

Implements a variety of optimization algorithms
(genetic algorithms, gradient based)

Pyomo (Python Optimization Modeling)

Open box: needs modeling equations

Supports a wide range of optimization problems
(LP, QP, NLP, MIP, SP)

Supports differential algebraic equations (DAES)

Transparent parallelization of subproblems using
Python parallel communication libraries

P> DAKOTA

Optimization
Uncertainty Quantification
Parameter Estimation
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+ | Example problem: cart-pole system

* Nonlinear, underactuated system

* @Goalis to balance the pole at the unstable
equilibrium (vertical position)

- Controlled in two ways:
Linear quadratic regulator (LQR) design

Partial feedback linearization (PFL) design /777 777777777777
. 1 . 5 |
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s | LOR optimization: setup

T
minimize J:/ ()T Qx(t) + u(t)! Ru(t)dt
0

subject to  Nonlinear dynamics given by (1) -«

a(t) = —Kx(t) -

 Pyomo steps

1. Create Pyomo model: state / control /
objective vars, derivative vars, time
horizon

2. Define dynamics constraints “for tin
m.T: m.dx1dt[t] = m.x2[t]"

3. List boundary conditions and initialize
guess

4. Solve:; define solver, in our case IPOPT

o

4 LQR objective

Full nonlinear dynamics (Pyomo solver

taking gradients)

Linear control law

- Dakota steps

1.

*.in file: input file which specifies solver type
(COLINY EA), ranges and initial guesses |

*.sh/*.vbs: opens MATLAB in either Windows
or Linux

*_Wrapper.m: a MATLAB file used to specifiy
the current parameter choices made by
Dakota

*.m: additional MATLAB files which contain
dynamics and control laws (can call *.slx
files); called from *_Wrapper.m
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LOR optimization: results

Validation
- Pyomo and Dakota produce controller

gains which stabilize x = 0,0 ==

Pyomo compute time: ~2 seconds
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Why PFL?
 Linear control law: LQR design only valid near the chosen equilibrium point
« Nonlinear control law: Partial feedback linearization demonstrates “swing up” capabilities

I
Partial feedback linearization m

Step 1: prescribe desired dynamics: 6 = v = kq(0% — 0) + k,(6% — 6)

Step 2: solve for control law
1

cos

U= — [Uﬁ(mc + my, sin? 0) 4+ m, 062 cos § sin + (m. + m,)gsin (9]

Assuming a perfect model with perfect cancelation, we get the following transfer function
which is stable for Re{s? + kgs + k,} < 0

kp + kas J Additional study:
0(s) = 2 + ks + k (s) « Apply time delayed control u(t — ) signal
;_i_}_’, « Closed loop transfer function is lost
T(s) S




s | Partial feedback linearization

]
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o I Summary

Dakota and Pyomo are powerful tools for control design

Primary tradeoff: setup time vs. optimization time
« Pyomo enjoys fast computation times, but model setup is non-trivial

« Dakota computation times can be very long, but enjoys freedom in optimization criteria

Single input system shown in this work, easily extensible to to multi-input systems
(see ref for example)

Although not shown here, Bayesian Optimization is another optimization
framework to be considered

- In[18], BOis used to tune Q and R matrices of an LQR synthesis to induce some desired
behavior
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