This paper describes objective technical results and analysis. Any subjective views or opinions that mightlbelexpressed}in|
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States'Government.

SAND2021-14271C

Sandia
National
Laboratories

Dakota and Pyomo for Closed and
Open Box Controller Gain Tuning

Tutorial Session: Open Source Software for Control

60th Conference on Decision and Control

Kyle R. Williams, J. Justin Wilbanks, Rachel
Schlossman, David Kozlowski, and Julie Parish

U.S. DEPARTMENT OF -
@ENERGY NAYSE
At i vy s
Sandia National Laboratories is a
multimission laboratory managed
and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy's \ aucnal
Nuclear Security Adminigtration under
contract DE-NAOOUSR28. o,

SAND2021-13485 g

Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering SolutionsfofiSandia,|LLC, alwhollylowned!
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administrationfundercontract DE-NA0003525.

« Control engineering: stabilization of dynamic systems
« Developing mathematical model

« Synthesizing a control law
* Tuning the parameters

* Many toolboxes exist
« Tool suites for linear time invariant systems
+ Robust control
- Multi-objective software

- Dakota and Pyomo for control system tuning
« Open source, developed at Sandia

- Dakota: written in C++, can operated in “closed box” form via direct interaction with an
input/output model

- Pyomo: written in Python, requires transparent “open box” model

I
> 1 Introduction m
I

Background

Dakota

Complex optimization problems
Closed box interface: only needs 1/0

Can interact with MATLAB, Simulink, GNU Octave,

Python, etc.

Implements a variety of optimization algorithms
(genetic algorithms, gradient based)

Pyomo (Python Optimization Modeling)

Open box: needs modeling equations

Supports a wide range of optimization problems
(LP, QP, NLP, MIP, SP)

Supports differential algebraic equations (DAES)

Transparent parallelization of subproblems using
Python parallel communication libraries

P> DAKOTA

Optimization
Uncertainty Quantification
Parameter Estimation
Sensitivity Analysis

.

N

Input Parameters

esign + uncertain + state
continuous - discrete

/ Model \

simulation « surrogate « multi-fidelity
nested recursions

N

(
Response Qols

objectives ¢ constralnts
residuals

formulation recasting

i pre- | Simulation | i posi] ;
nggg.e.eag.s Interface |:process y

Available at https://dakota.sandia.gov

Q.
) PYDIVID

Available at https://www.pyomo.org

N\

+ | Example problem: cart-pole system

* Nonlinear, underactuated system

* @Goalis to balance the pole at the unstable
equilibrium (vertical position)

- Controlled in two ways:
Linear quadratic regulator (LQR) design

Partial feedback linearization (PFL) design /777 777777777777
. 1 . 5 |
I = —— Jul+ mp sin (46° + g cos 9)] (la)
Me + My SIN
_. 1 | |
f = [cos @ — my,l6° cos @ sin H—
((me + mysin®) ﬂ i |

(e + myp)g sin 9] (1b) |

s | LOR optimization: setup

T
minimize J:/ ()T Qx(t) + u(t)! Ru(t)dt
0

subject to Nonlinear dynamics given by (1) -«

a(t) = —Kx(t) -

 Pyomo steps

1. Create Pyomo model: state / control /
objective vars, derivative vars, time
horizon

2. Define dynamics constraints “for tin
m.T: m.dx1dt[t] = m.x2[t]"

3. List boundary conditions and initialize
guess

4. Solve:; define solver, in our case IPOPT

o

4 LQR objective

Full nonlinear dynamics (Pyomo solver

taking gradients)

Linear control law

- Dakota steps

1.

*.in file: input file which specifies solver type
(COLINY EA), ranges and initial guesses |

.sh/.vbs: opens MATLAB in either Windows
or Linux

*_Wrapper.m: a MATLAB file used to specifiy
the current parameter choices made by
Dakota

*.m: additional MATLAB files which contain
dynamics and control laws (can call *.slx
files); called from *_Wrapper.m

6

LOR optimization: results

Validation
- Pyomo and Dakota produce controller

gains which stabilize x = 0,0 ==

Pyomo compute time: ~2 seconds

—_—
[g]
et

VA

NN

()

Dakota compute time: ~30 minutes E
= os|
Fundamental tradeoff: upfront 2 P ———
setup time for computation time 5 T oavors solion
= um aMATLAB Solution
-1.5 : :
0 5 10
Time (t) [s]
Gain comparison
Method K, K; Kg KQ J
Pyomo -6.82 | -12.45 | 92.32 | 28.68 | 60.92
Dakota -6.85 | -12.42 | 91.13 | 28.10 | 60.86
MATLAB | -7.07 | -1298 | 9494 | 2948 | 61.06

15

(b)

=

Input Force (u) [N]

195

150

185

Pendulum Position () [*]

170

180 —
175

p Pyomo Solution
e Dz kota Solution
e nMATLAB Solution

= Dpsired Perduluim Position (&

5

0 15
Time () [s]
10
of\.
Py S0l ution
10 e Dakota Solution
mu aMATLAR Solution
=20
-30 . :
0 5 10 15
Time (t] [s]

o
!
|

"

7

Why PFL?
 Linear control law: LQR design only valid near the chosen equilibrium point
« Nonlinear control law: Partial feedback linearization demonstrates “swing up” capabilities

I
Partial feedback linearization m

Step 1: prescribe desired dynamics: 6 = v = kq(0% — 0) + k,(6% — 6)

Step 2: solve for control law
1

cos

U= — [Uﬁ(mc + my, sin? 0) 4+ m, 062 cos § sin + (m. + m,)gsin (9]

Assuming a perfect model with perfect cancelation, we get the following transfer function
which is stable for Re{s? + kgs + k,} < 0

kp + kas J Additional study:
0(s) = 2 + ks + k (s) « Apply time delayed control u(t —) signal
;_i_}_’, « Closed loop transfer function is lost
T(s) S

s | Partial feedback linearization

]
T Penalty on settling time ¢,
minimize .J = (Hd(t) _ H(t))gdt Hwrky + Werts Pyomo: use w1=Q.02 as surrogate
0 - Dakota: use ¢t directly
subject to nonlinear dynamics, prev nonlinear control law
Pyomo: with and without 0.1s control input delay Dakota with 0.1s delay
. . Improved gains, which 1
Nominal gains consider time delay 200
350 . . " . :
(a) (o) 07— 11— &
= 300 ! ; | L R S 180
S 5o Delayed < 150 Delayed | <
'g 200 Sy-Stem g SyStem ﬁ 160 L == Desired Pendulum Pusitiun{ﬁd) |
2 Z 100 | . £ e COLINY EA
150 O 1 e == SOGA
né Perfect . Perfect 2 140 == =COLINY PS : |
% 100 system %‘ 50] system| - == Gradient
g 50 R & 120
a¥ a) . | . .
0 — - | () A S S S—— 0 1 2 3 4 5
0 1 2 3 4 5 0 1 2 3 4 5 Time (t) [s] S
Time (t) [s] Time (t) [s] W

o I Summary

Dakota and Pyomo are powerful tools for control design

Primary tradeoff: setup time vs. optimization time
« Pyomo enjoys fast computation times, but model setup is non-trivial

« Dakota computation times can be very long, but enjoys freedom in optimization criteria

Single input system shown in this work, easily extensible to to multi-input systems
(see ref for example)

Although not shown here, Bayesian Optimization is another optimization
framework to be considered

- In[18], BOis used to tune Q and R matrices of an LQR synthesis to induce some desired
behavior

-~

