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Approach: Using data-driven/machine learning 
techniques for materials discovery

Application: Discovering more efficient materials-
based hydrogen storage

Results: Success stories in data-driven discovery of 
hydrogen storage materials
• New technical capabilities/physical insights
• Towards Pareto optimal materials

Future Work: Overcoming current limitations in ML-driven 
discovery for hydrogen storage materials
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Approach: 

Why use data-driven/machine learning techniques for materials discovery?



Data science/ML models in materials/chemical sciences 
can be applied to problems of “all shapes and sizes”
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Small molecule property predictions1

Inputs 
(Z, r)

Outputs 
(E)

Angstroms            …

[1] Schutt, et al. Nat. Comm.10, 2019
[2] Leperi, et al. I&EC. 58 (39), 2019

ML models are not: a magic box that solve all our problems, will always require “truth” data from 
experiments or first principles calculations (often difficult in materials science)

ML models are: surrogates that execute many orders of magnitude faster than an experiment or first 
principles calculation to make task X tractable (high-throughput screening, optimization, active search, etc.)

Inputs 
(PSA unit parameters)

Outputs 
(CO2 purity of PSA units)

Chemical plant performance prediction2

to                 …                         Acres



Three main approaches to materials discovery

Chemical intuition

Synthesize material

Characterize material

Test Performance

Experiments

Seconds     Minutes        Hours           Days          Weeks        Months         Years         Forever

Run experiments

First-principles theory

Run simulation & 
predict performance

Physics-based simulations

Run physics-based simulations
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Run ML

Material property/training data

Convert materials to features 

Construct & train a model

Run model & 
predict performance

Machine learning (ML)

Train ML Develop ML



Generally speaking, data science and machine learning techniques can…

Predict properties and 
elucidate design rules for 

optimal materials
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High-throughput screen materials 
orders of magnitude faster than 

experiments or simulations

Accelerate physics-based 
simulations when lacking 
experimental training data

=ᵇ� ᵈ�ᵉ� = ᵈ�ᵉ� + ᵈ�

Best material

Tools provide a roadmap for… 

H2 storage: Data-driven discovery of Pareto optimal hydrogen storage alloys
H2 generation: Data-driven discovery of water-splitting materials (STCH, liquid metals, etc.)
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Application: 

Discovering more efficient materials-based hydrogen storage



Discovering improved H2 storage and generation techniques will facilitate 
progress towards a hydrogen economy
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Personal transportation 
(Toyota/Hyundai)

Utility-scale generation 
(Shell)

Home energy storage 
(Lavo)

Air Travel 
(Airbus)

High T applications

Heavy duty (planes, trains, ships)

H2 to play a critical role in…

Sholl, Lively. Nature 532 (7600) 2016. First Energy Earthshot Aims to Slash the Cost of Clean 
Hydrogen by 80% to $1 per Kilogram in One Decade
"Clean hydrogen is a game changer" -- Secretary Granholm



[4] www.shell.com/energy-and-innovation/

Are there undiscovered materials that could improve upon conventional H2 
storage and generation technologies?

• High H2 gravimetric and/or volumetric density 
• Fast, reversible release near ambient T
• Practical/cost-effective
• Reduced infrastructure cost

700 
bar vs.

Material X ??“Conventional”
(Compressed gas)

H2 Storage objectives: 

Material Y ??
“Conventional”
1.2 V in theory
1.8 V in practice

H2 Generation objectives:

• Water-splitting using only renewable energy
• Practical/cost-effective

vs.
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Results: A data-driven roadmap towards Pareto optimal hydrogen storage alloys

 Milestone #1 : Explainable ML models predict metal hydride thermodynamics

 Milestone #2 : ML enables discovery of destabilized high entropy alloy (HEA) hydrides

 Milestone #3 : ML screening & identification of Pareto optimal HEA hydrides
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Milestone #1: Explainable ML models predict metal hydride thermodynamics
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[1] Ward, et al. npj Comp. Mater. 2016
Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020

Milestone #1: Explainable ML models predict metal hydride thermodynamics

H2 Metal Hydride

Extracted from isotherms & van’t Hoff

H concentration

Pr
es

su
re

(2) Constructing a compositional ML model1

�
 Necessary if exact structure unknown (e.g. TiFe0.92Nb0.08)

 Expressive, interpretable model if sufficient data
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Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020

Thermodynamics (equilibrium plateau pressure) model validation

Milestone #1: Explainable ML models predict metal hydride thermodynamics
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Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020

Milestone #1: Explainable ML models predict metal hydride thermodynamics
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Model interpretability with SHapely Additive Predictions (SHAP)1

[1] Lundberg, et al. NIPS, 2017.
Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020

Milestone #1: Explainable ML models predict metal hydride thermodynamics

How does a model’s output depend on the value of a given feature?

“Elemental solid ground state volume/atom”:
A physical descriptor also encoding electronic info

Is there Mg?
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Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020

Milestone #1: Explainable ML models predict metal hydride thermodynamics

Δᵃ� ᵅ�ᵅ�ᵅ�

Δᵃ� ᵃ�

Δᵃ�

Lattice deformation penalty
H stabilization energy
Hydride enthalpy

UNi5     CeNi5    LaNi5

ᵰ� ᵅ�ᵄ�
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Conclusions:

• Compositional ML models can predict metal 
hydride thermodynamics

• Interpretability of ML models reveals design rules 
of increasing complexity

• DFT can validate ML-established design rules for 
specific hydride classes with limited throughput
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Milestone #2: ML enables discovery of destabilized high entropy alloy (HEA) hydrides
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Witman, Ek, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. Chem. Mater. 30 (11), 2021

Milestone #2: ML enables discovery of destabilized high entropy alloy (HEA) hydrides

1. Define chemical/materials exploration space

2. High-throughput screening/property prediction

3. Apply necessary additional down-selection criteria
Manual Select

Phase Model

4. Experimental validation



Milestone #2: ML-based discovery of destabilized high entropy alloy (HEA) hydrides21

(1) HEA overview:

 > 4 elements, ~ equimolar
 Defined lattice type
 Solid solution character necessitates a 

compositional ML model

(2) Enumerating refractory HEA space

(3) Screening refractory HEA space

Destabilized hydrides experimentally confirmed!

Witman, Ek, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. Chem. Mater. 30 (11), 2021
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(1) AlTiVNbTa & AlTiVCr synthesis
As synth. Post-H2

Validated ML model 
& design rule

No 
elemental 
segregation

(2) ML model & design rule confirmed by PCT experiments

Witman, Ek, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. Chem. Mater. 30 (11), 2021

(Gustav, 
Martin, & 
Jeffrey)

290 oC

Successfully targeted 
destabilized hydrides

(increase in Peq)

(Vitalie & 
Robert)

Milestone #2: ML enables discovery of destabilized high entropy alloy (HEA) hydrides
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Investigating thermodynamic trends with Density Functional Theory

Witman, Ek, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. Chem. Mater. 30 (11), 2021

Milestone #2: ML enables discovery of destabilized high entropy alloy (HEA) hydrides

Compute 0K formation enthalpy of alloy 
and hydride for single HEA config.:

(Sanliang) 
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Conclusions:

• Introduced a powerful ML capability for high-
throughput screening

• ML-directed and experimentally validated 
synthesis of HEA hydrides

• DFT-enabled insights into thermodynamic trends



25

Milestone #3: ML screening & identification of Pareto optimal HEA hydrides



(Claudia & Anis)            = Experimental validation
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(1) Screening an expansive HEA space

(2) Multiple ML property predictions

True Value

M
L 

Pr
ed

ic
tio

n

True Value

M
L 

Pr
ed

ic
tio

n
H/M

(MAE=0.14)

In preparation

Objectives / Quantity to maximize:
 Optimal thermodynamics 
 High volumetric capacity 
 High gravimetric capacity
 Raw material cost

(3) Identification of ~100 Pareto optimal materials 
for stationary storage

Pareto
optimal

Milestone #3: ML screening & identification of Pareto optimal HEA hydrides
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(1) Screening an expansive HEA space

(2) Multiple ML property predictions

True Value

M
L 

Pr
ed

ic
tio

n

H/M 
(MAE = 
0.14)

In preparation

(3) Identification of ~100 Pareto optimal materials 
for hydrogen compressors

Milestone #3: ML screening & identification of Pareto optimal HEA hydrides

True ValueTrue Value
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Conclusions:

• Given a set of ML models for various hydride 
properties, Pareto frontiers can be determined

• Random off-equimolar perturbations substantially 
advance the Pareto frontier, indicating potential 
for future improvement

• We have highlighted (with experimental validation 
pending) Pareto optimal compressor and 
stationary storage materials
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Future Work: 

Overcoming barriers to ML-driven hydride discovery 
(e.g. how to deal with limited data)



More/Better Experimental Data: Promoting standardization, 
reproducibility, and community-based “high-throughput” data acquisition
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Very non-uniform 
distribution of target

Addition of new 
data systematically 
shifts predictions

Challenge: Accuracy and accessibility of HydPARK data

Lack of updatability: data stored in “offline” CSV file
Lack of completeness: 15% of HydPARK entries are usable
Lack of consistency: different values for identical materials

Solution: NREL DataHub app and backend 
for standardized PCT upload and storage

Much faster data acquisition than 
can be achieved by one group alone



More/Better Computational Data: If experimental measurements and 
physics-based simulation are too expensive, accelerate the latter with ML
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Challenge: Need an accurate, many-element potential 
energy surface (PES) for simulations (MD or MC)

PES choices:  Force Field  ,        ML PES,              DFT

Not necessarily 
transferable/ 
generalizable

Too expensive for 
extensive sampling 
in complex systems

Solution: Direct atomistic 
simulation & screening of metal 
hydride thermodynamics?



Thank you for your attention. 

Questions?

Contact: mwitman@sandia.gov
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