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Seminar Organization
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Approach: Using data-driven/machine learning "
techniques for materials discovery \
v
Discovering more efficient materials- ?Jg\;}?
based hydrogen storage M
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Results: Success stories in data-driven discovery of
hydrogen storage materials
* New technical capabilities/physical insights
* Towards Pareto optimal materials
J
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Future Work:

Overcoming current limitations in ML-driven
discovery for hydrogen storage materials
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Approach:

Why use data-driven/machine learning techniques for materials discovery?



5 Data science/ML models in materials/chemical sciences
can be applied to problems of “all shapes and sizes”
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ML models are not: a magic box that solve all our problems, will always require “truth” data from
experiments or first principles calculations (often difficult in materials science)

ML models are: surrogates that execute many orders of magnitude faster than an experiment or first

principles calculation to make task X tractable (high-throughput screening, optimization, active search, etc.)

[1] Schutt, et al. Nat. Comm.10, 2049
[2] Leperi, et al. I&EC. 58 (39), 2019




Three main approaches to materials discovery

Experiments

(Chemical intuition
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ﬁest Performance

Synthesize material

Characterize material
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First-principles theory
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Run simulation &

predict performance

Machine learning (ML)

(Material propertyltraining data
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Convert materials to features
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Construct & train a model

Run model &
\ predict performance
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Generally speaking, data science and machine learning techniques can...

Predict properties and High-throughput screen materials Accelerate physics-based
elucidate design rules for orders of magnitude faster than simulations when lacking

optimal materials experiments or simulations experimental training data
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Tools provide a roadmap for...

A

H, storage: Data-driven discovery of Pareto optimal hydrogen storage alloys

H, generation: Data-driven discovery of water-splitting materials (STCH, liquid metals, etc.)




Application:

Discovering more efficient materials-based hydrogen storage



Discovering improved H, storage and generation techniques will facilitate
progress towards a hydrogen economy

H, to play a critical role in... Personal transportation | Air Travel
(Toyota/Hyundai) (Airbus)

Heavy duty (planes, trains, ships)

Commercial
19%

28%

Transportation ‘

TOTAL

CONSUMBTION Home energy storage | Utility-scale generation
98 (Lavo) (Shell)
QUADS* l
Residential _ Industral_‘ -
219% | 32%
shll, Lively. Nature 532 (7600)2016. | High T applications First Energy Earthshot Aims to Slash the Cost of Clean

Hydrogen by 80% to $1 per Kilogram in One Decade | I
"Clean hydrogen is a game changer" -- Secretary Granholm
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Are there undiscovered materials that could improve upon conventional H,
storage and generation technologies?

H, Generation objectives:

 High H, gravimetric and/or volumetric density | [. Water-splitting using only renewable energy
* Fast, reversible release near ambient T « Practical/cost-effective

* Practical/cost-effective
 Reduced infrastructure cost

VS.

“Conventional” |
Material X ?? 1.2 V in theory Material Y ?7?
1.8 V in practice

“Conventional”
(Compressed gas)
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Results: A data-driven roadmap towards Pareto optimal hydrogen storage alloys

» Milestone #1 : Explainable ML models predict metal hydride thermodynamics

»> Milestone #2 : ML enables discovery of destabilized high entropy alloy (HEA) hydrides

» Milestone #3 : ML screening & identification of Pareto optimal HEA hydrides
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Milestone #1:

Explainable ML models predict metal hydride thermodynamics
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Milestone #1: Explainable ML models predict metal hydride thermodynamics

(1) In(PZ,/P,) target property
O,
Lb

Metal Hydride h

ﬂgg ab'hgq-

: OO OO0

BB ODBODEE
AH AS

In(P2%/B,) = —

n( SQ‘/ O) R(ZSDC)-I-

Extracted from isotherms & van’t Hoff

F—

H concentration

Pressure

AH,AS are tabulated in HydPARK.csv
» Missing data, errors, etc.
» Only 15% of 2500 entries usable

. J

» Features derived from substituent elemental properties:
f; = fraction of element i, p; = elemental property of i

» Simple operations map composition to scalar feature:
p =X fivi, D=2 filpi — P, b = max(p;) — min(p;), etc...

» Any composition mapped to same dimensional feature vector:

XMagpie = {ﬁpa yTeov X s } € R
> Necessary if exact structure unknown (e.g. TiFe; 4,Nb; o5)

» Gradient boosting trees (ensemble of m trees):
= Fn(x) + hpp(x)
h.,(x), a new estimator, corrects the previous model, F,,(x)
i.e. is fit to minimize residual error, y — F;,(x)

> Expressive, interpretable model if sufficient data

[1] Ward, et al. npj Comp. Mater. 2016

Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020




14 I Milestone #1: Explainable ML models predict metal hydride thermodynamics

Thermodynamics (equilibrium plateau pressure) model validation

5 -
% 80 - [
o% 3 60 -
a7 =
= _10- 2 40 1
§
= _15 - £ 20 -
(MAE) 1est = 1.41
—20 4 0-
-20 —10 0 —20 ~10 0
True In(P:quo) True |n(P§q/Po)
- -~ - L " I
*ML model can predict = In(P¢,/P,)with cross-validation test <MAE> = 1.4

\_ J

\
Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020 !
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Milestone #1: Explainable ML models predict metal hydride thermodynamics

(3) Thermodynamics (individual AH and AS) model validation

Model AH [kJ/mol Hy] \
@

(MAE) 1oe = 5.45

0
o
L

(=3}
o
L

e
o
L

Frequency in database
8

o
L

0 50 0 25 50 75
True AH [kJ/mol Hy] True AH [kJ/mol H,]

Can predict y = AS with cross-validation test
<MAE> = 14 J/(mol K)

= (MAE)1est = 13.51. 7

Can predict y = AH with cross-validation test
<MAE> = 5.5 kJ/molH2

Model AS [J/(mol H, -

o
1

0 100 200
True AS [J/(mol Hy - K)]

Frequency in database

100 -

80

60 ~

40 -

20 -

50 100 150
True AS [J/(mol H, + K)]

/

Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020



A physical descriptor also encoding electronic info

High _
mean CovalentRadlus
mean Electronegativity
[mode NdValence

|s there Mg?

p

F‘ea’mre vali

16 I Milestone #1: Explainable ML models predict metal hydride thermodynamics
Model interpretability with SHapely Additive Predictions (SHAP)'
How does a model’s output depend on the value of a given feature?
“Elemental solid ground state volume/atom?”: ‘
SHAP value (1mpact on model output) I

*Linear correlation with v,,,: In (Pg") X~ —MVp, + b
\ J

[1] Lundberg, et al. NIPS, 2017.
Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020




17 ‘ Milestone #1: Explainable ML models predict metal hydride thermodynamics

A DFT case study on correlation of hydride thermodynamics with v,,,

(F’robe the reaction:
ABs5 + 3.5H, - ABsH-

£

AH

AE,,

H stabilization energy
\Hydride enthalpy

UNi; CeNis LaNi,

20 | |
0 Q
C
40 ! : Q
-60
AEy
[kd/molH,]
-85 | : |
0
AH
[kJ/molH,]
-40 = @
13 Vo 14.5

Decreases with v,,,

Net decreases with v,

J

Witman, Ling, Grant, Walker, Agarwal, Stavila, Allendorf. J. Phys. Chem. Lett., 11 (1), 2020
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Conclusions:

Compositional ML models can predict metal
hydride thermodynamics

Interpretability of ML models reveals design rules
of increasing complexity

DFT can validate ML-established design rules for
specific hydride classes with limited throughput
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Milestone #2: ML enables discovery of destabilized high entropy alloy (HEA) hydrides
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20 I Milestone #2: ML enables discovery of destabilized high entropy alloy (HEA) hydrides

DOWPE
RRRRRS
OO0

[ 1. Define chemical/materials exploration space ]

4

P
In (ﬂ) Model 2. High-throughput screening/property prediction

Phase Model
[3. Apply necessary additional down-selection criteria]
Manual Select

[ 4. Experimental validation ]

R SRR =
»¢ﬁﬂ%@

Witman, Ek, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. Chem. Mater. 30 (11), 2021



21 I Milestone #2: ML-based discovery of destabilized high entropy alloy (HEA) hydrides

(1) HEA overview:

(

\ (3) Screening refractory HEA space

([ Destabilized hydrides experimentally confirmed! ]\
w TiE-MLEf
TiZ-N=Z1Ta
> >4 elements, ~ equimolar .
» Defined lattice type QS TlnHt
» Solid solution character necessitates a ‘:& E Tiv ANk
iti . TivIvoT:
\_ compositional ML model Y, & X et
=
ik W Tivicvk
+ Tivicr¥bRa
E ={Al, Ti, V, Cr, Zr, Nb, Mo, Pd, Hf, Ta} e T e
1.
(E) + (E) + (E) 672 compositions L )
—
4)"\s5) " \6 P

/

Far too many for experiments...

Witman, EKk, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. Chem. Mater. 30 (11), 2021



(1) AITiVNbTa & AITiVCr synthesis (2) ML model & design rule confirmed by PCT experiments

~
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(" As synth. Post-H, ) ( (Vitalie & |52 |

Y W | (Gustav, Robert) ‘ é

Vot 0% Martin, & _

. 4 7\ Jeffrey) Succeggfully targeted E

AlKE1 destabilized hydrides ~
Al

(increase in P

== AlTiVCr
10— 2 4 == AITiVNbTa

__________ 290 °C —fa- TiVZrNbHf

eq)

22 | Milestone #2: ML enables discovery of destabilized high entropy alloy (HEA) hydrides }

No 0.0 0.5 1.0 1.5 2.0
__ elemental H Concentration [wt%]
segregation “
5 MAIL(2.2) »* R*(0.90
ST X | 1k R -
__________ ~ 7 ml e Validated ML model
Nb Lo1 AL —8 - e . T i
L 2 m B & design rule
;Y —12 1 #.-"’ = H*"-.H I
= * |
— | | | | | |
—12 -8 —1 15.0 16.5 18.0

\ (g, /) MT, Vpa, )

Witman, EKk, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. Chem. Mater. 30 (11), 2021



23 | Milestone #2: ML enables discovery of destabilized high entropy alloy (HEA) hydrides

Investigating thermodynamic trends with Density Functional Theory

[Compute OK formation enthalpy of alloy 100
and hydride for single HEA config.:

(Sanliang)

t
1

ﬁEf,allny = g 07
1 e
N (Ealloy - Eie{alloy] Ei) Q ~
% —100 A ~ o x\\\ 5
AEf,hydride = = \\\ \\\
«. —200 4 —@— BCC alloy x\ X

1 N
~| Ehydride — |5 ) EH, — ietalloy Ei
v (Bryarce = (3) B, = Zictaton £ -@— FCC alloy N

—300 4 =>€&' BCC hydride
=& FCC hydride D
Y %4

A
/

/

/
R —

| | |
Analysis Reveals: AlTiVCr AITiVNDbTa TiVCrNb TiVZrNbHf

« Enthalpic driving force for BCC alloy -> FCC transition @ high H/M ratios
\- The general correlation of less stable lattice = more stable hydride (similar to v,,, design rule) )

Witman, Ek, Ling, Chames, Agarwal, Wong, Allendorf, Sahlberg, Stavila. Chem. Mater. 30 (11), 2021

.
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Conclusions:

* Introduced a powerful ML capability for high-
throughput screening

 ML-directed and experimentally validated
synthesis of HEA hydrides

« DFT-enabled insights into thermodynamic trends



25

Milestone #3: ML screening & identification of Pareto optimal HEA hydrides
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26 ‘ Milestone #3: ML screening & identification of Pareto optimal HEA hydrides

(1) Screening an expansive HEA space

(3) Identification of ~100 Pareto optimal materials

for stationary storage

4 E ={Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, A fObjectives / Quantity to maximize:
Cu, Zn, Zr, Nb, Mo, Pd, Hf, Ta} » Optimal thermodynamics ->  —|AH — 27|
» High volumetric capacity -> HI/M
E E E . » High gravimetric capacity -> Hwt%
( 4) + (5) + (6) — 20,944 compositions » Raw material cost >  -cost
/ 0 - Pareto 3.0
optimal
HIM AH —101 2.5
(MAE=0.14) (MAE = 5.5 kJ/molH,) ~
- ; . N —20 - 2.0 X
(MAE}yar = 0.14 % (MAE)yq; = 5.45 - | o
c A //', 8' /” I g
_% ,é" 5_ ﬁﬁg < —30 A 1.5 T
2 - S 3 a |
© & o -
GLJ ] @ o _ 11"§ _40 . . 1.0
E 3' Bl off-equimolar
S - 1 “° —50 - B equimolar 0.5
1/ . . S 05 1.0 15 2.0
True Value True Value H/M

In preparation

= Experimental validation (Claudia & Anis)

\

J

T B BBNN€ B



27 ‘ Milestone #3: ML screening & identification of Pareto optimal HEA hydrides

(1) Screening an expansive HEA space

(3) Identification of ~100 Pareto optimal materials
for hydrogen compressors

4 . )
E ={Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Objectives / Quantity to maximize: A
Cu, Zn, Zr, Nb, Mo, Pd, Hf, Ta} » Py @T,=25C > P
. . » Compression ratio @ Ty= 150 C -> Py/P,
- » High volumetric capacity ->  HM
(4) + (5) + ( ) — 20,944 compositions » Raw material cost ->  -cost
/ 104 - 1.6
O 5 1.4
H/IM AH AS o 1073
(MAE = (MAE = (MAE = L0 :
5.5 kdJ/molH 14 J/molK Y
0.14) 2) ) 3 1021 =
c (MAE) vy = 0.14 (MAE)yy =545 7 {MAE)7es = 13.51.7 + T
O | P / . ©
I Fool] e o
g o - . . ‘r,;'& ;‘_".:'- 101-
5 _ | og® 1 I off-equimolar
= | 100_’ Bl equimolar
True Value True Value True Value 10'—6 16—2 1'02 l
In preparation . PL at25°C )
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Conclusions:

Given a set of ML models for various hydride
properties, Pareto frontiers can be determined

Random off-equimolar perturbations substantially
advance the Pareto frontier, indicating potential
for future improvement

We have highlighted (with experimental validation
pending) Pareto optimal compressor and
stationary storage materials
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Future Work:

Overcoming barriers to ML-driven hydride discovery
(e.g. how to deal with limited data)
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More/Better Experimental Data: Promoting standardization,
reproducibility, and community-based “high-throughput” data acquisition

Lack of updatability: data stored in “offline” CSV file
Lack of completeness: 15% of HYydPARK entries are usable
Lack of consistency: different values for identical materials

Frequency in database

[nis]
o
1

. o
] o
L 1

[}
o

o

Very non-uniform
distribution of target

—10 0
True In(P2,/FPs)

I
[}
(=

| il

/Ps) (orig.)

Q
eq

P

In(

Addition of new
data systematically
shifts predictions

_10 T -

U_ -

—10 0

In{PS,/ Po) (HydPARK+}

Solution: NREL DataHub app and backend
for standardized PCT upload and storage

S thees TS 10 DataHub

=d concentration: 1.4465
overed concentration: 1,5410

Much faster data acquisition than
can be achieved by one group alone |




31 I More/Better Computational Data: If experimental measurements and
physics-based simulation are too expensive, accelerate the latter with ML

Challenge: Need an accurate, many-element potential
energy surface (PES) for simulations (MD or MC)

PES choices: Force Field |, ML PES, DFT

X X

- . :
Not necessarily Too expensive for
transferable/ extensive sampling
. v .
generalizable in complex systems

CIMAE=0.002

o
I

—0.04 7

o

frequency
N

e [ WM HWHN

—0.075 —0.050 —0.01 0.00
Eppr [eV] Emi — Eppr [eV]

Solution: Direct atomistic
simulation & screening of metal
hydride thermodynamics?
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Thank you for your attention.
Questions?

Contact: mwitman@sandia.gov




