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Oxygen opacity measurements are essential to resolve the solar problem

• Oxygen is a dominant source of opacity near the convection zone base (CZB).

• If oxygen measurements are:

– lower than models predict, it could partially cancel the improved agreement 
between solar models and helioseismology resulting from past Z iron opacity 
experiments [Bailey et al., Nature 2015].

– higher than predicted, it will further help to resolve the solar problem.

2Basu and Antia, Phys Reports (2008);    Serenelli, ApJ (2009);    Blancard, ApJ (2012);    Seaton, MNRAS (1994)



Oxygen opacity spectra are challenging because they are strongly affected by 
approximations for plasma density effects

OP model;  Te = 192 eV;  ne = 1e23 e/cc
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• Bare atoms have bound-bound or bound-free absorption.
– Oxygen opacity is highly dependent on level of ionization.  Iron is less affected by small ionization changes.

• Density effects: Affected features:
Line broadening Opacity windows
Ionization potential depression Bound-free absorption
Occupation probability Ionization balance



Stellar evolution and the age of the universe can be constrained using WD stars;
Accurate oxygen opacity is important for WD cooling models

• White dwarfs (WDs) are “burned out” remnants of stars.

– 98% of all stars will become WDs, including the Sun.

– Cores are ~ 50:50 mixture of Carbon and Oxygen.

• WDs only cool with time, so surface temperature reveals their age.

– WD cooling models constrain the age of our galaxy.
[Winget et al. (1987)]

– Accurate opacities are required for WD cooling models.

• “DQ” class WDs have Carbon and often Oxygen in their atmospheres.

– These may be “failed Type Ia supernovae”.

– Studying them may help us understand how Type Ia supernovae are 
produced.

– DQ WD convection zone base (CZB) conditions have similar 
temperature and density as the solar CZB.
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Stellar Interior Tracks in EOS plane



Oxygen opacity experiments relevant to stellar interiors are being done at both Z and NIF
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Oxygen opacity experiments relevant to stellar interiors are being done at both Z and NIF
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Oxygen opacity experiments relevant to stellar interiors are being done at both Z and NIF
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Oxygen opacity experiments relevant to stellar interiors are being done at both Z and NIF
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Oxygen opacity experiments relevant to stellar interiors are being done at both Z and NIF

9

Z Opacity Platform NIF Opacity Platform
To Polar DIM (Opacity Spectrometer)

~3
0 

m
m

 c
en

te
r-

to
-c

en
te

r

Capsule Backlighter, 
CH, 2 mm dia

1 mm Ø 
glass 

C-stalk

0.
5 

m
m

 Ø
gla

ss
 st

alk

TCC

+9o-9o

Slits

Aperture

0o

Half-moon
sample SiO2

KAP/RAP crystals
X-ray film

Z-pinch radiation source

”Apollo” Hohlraum



Oxygen opacity experiments relevant to stellar interiors are being done at both Z and NIF

10

Z Opacity Platform NIF Opacity Platform
To Polar DIM (Opacity Spectrometer)

~3
0 

m
m

 c
en

te
r-

to
-c

en
te

r

Capsule Backlighter, 
CH, 2 mm dia

1 mm Ø 
glass 

C-stalk

0.
5 

m
m

 Ø
gla

ss
 st

alk

TCC

+9o-9o

Slits

Aperture

0o

Half-moon
sample SiO2

KAP/RAP crystals
X-ray film

Z-pinch radiation source

”Apollo” Hohlraum

MgO or MgO+SiO2 
with CH tamper



Oxygen opacity experiments relevant to stellar interiors are being done at both Z and NIF
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Oxygen opacity experiments relevant to stellar interiors are being done at both Z and NIF
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Oxygen opacity experiments relevant to stellar interiors are being done at both Z and NIF
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Oxygen and Silicon transmission have been successfully measured
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• Accurate opacity is only obtained for T ~ 0.15-0.85.
• We have had 3 shots so far with SiO2 samples.
• Spectrometer ranges have been extended to shorter λ (~ 5.0 Å) for Si and to longer λ (~ 19.5 Å) for O.
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Silicon line transmission shows good reproducibility between the first two shots
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He-ε
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Silicon line transmission shows good reproducibility between the first two shots
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• Electron density is inferred from Si He-δ and He-ε line broadening.

• Electron temperature inferred from He-like/Li-like and H-like/He-like Si line ratios 
and ratios of rarely-observed Li-like satellites.

Silicon line transmission shows good reproducibility between the first two shots
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Electron density is inferred from Si He-δ and He-ε line broadening, Ne ~ 8e21 e/cc

He-δ

He-ε
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Electron temperature inferred from He-like/Li-like and H-like/He-like Si line ratios 

• Li-like features indicate lower Te, ~150 eV.

• Ly-α indicates higher Te, ~170 eV

He-δ

He-ε

Li Li

He-β He-γ

Ly-α
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Temperature can also be inferred from population ratios from the Li-like satellites.
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Temperature can also be inferred from population ratios from the Li-like satellites.

• The 1s22p to 1s22s ratio has been useful 
in diagnosing photoionized plasmas.

• Using the 1s23ℓ to 1s22ℓ ratios may 
provide another method to infer Te.

ΔE = 24.8 eV

ΔE = 304 eV

ΔE = 279 eV



We had our first shot day in June and successfully recorded transmission data
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• All spectral elements required to extract transmission are 
recorded in a single shot.

– Backlighter continuum, target absorption, and self-
emission.



We successfully recorded transmission data from MgO+SiO2 and MgO samples
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• Preliminary plasma conditions:  Te ~ 130 eV and ne ~ 4x1022 e/cc.

• Electron temperature measured by Dante instrument.

• Electron density inferred from simulation results.  We hope to use GXD imager in the future.

• An independent analysis based on spectroscopy of the Mg lines is underway.



Plans for continued progress on oxygen opacities and resolving the solar problem

Z:
• Finalize oxygen opacity investigation at Te~160 eV and Ne~8e21 e/cc.

– Refining Te and Ne analysis results.
– Verify reproducibility and quantify uncertainties.

• Test oxygen opacity closer to solar CZB conditions (Te~180 eV, Ne~3e22 
e/cc).

• Test opacity models to quantify impact on solar models.

NIF:
• Analysis of present data set.

– Spectral analysis to infer Te and Ne.
– Extraction of oxygen opacity.

• Further experiment developments/improvements.
– Next samples will be “band-aid” style to help expansion measurement.
– Improvements to spectrometer filtering to avoid breakage.
– Next experiments will target higher temperature.
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