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- History of In situ lon Irradiation TEM

ion beam line

Courtesy of: J. Hinks
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“The direct observation of ion
damage in the electron microscope
thus represents a powerful means
_of studying radiation damage” :

! D.W. Pashley and A.E.B. Presland Phil Mag. 6(68) 1961 p. 1003 § X

Facilities reported in literature
(5] w
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IBIL from a quartz stage inside the TEM

Sandia’s Concurrent In situ lon
Irradiation TEM FaCiIity Collaborator: D.L. Buller
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Single lon Strikes:
46 keV Au'-ions into ~5 nm Au nanoparticles

Collaborator: D.C. Bufford




Simultaneous In situ TEM Triple Beam:
2.8 MeV Au** + 10 keV He* /D,

Collaborator: D.C. Bufford

In situ triple beam He, D,,
and Au beam irradiation
has been demonstrated
on Sandia’s IF'TEM!
Intensive work is still
needed to understand the
defect structure evolution
that has been observed.

Speed = Approximate fluence:
x1.5 - Au 1.2 x 103 ions/cm?

- He 1.3 X 10" ions/cm?
- D 2.2 x10% jons/cm?
m Cavity nucleation and disappearance 11/ Sandia National Laboratories




‘f In situ Qualitative Mechanical Testing

Collaborators: C. Barr

Dislocation interactions as a function of GB

Gatan straining TEM Holder character (23 twin GB below):

*  Minimal control over displacement and no “out-of-

box” force information TEM \ V ACOM'TEM-" A

g=<111>

’

«  Successful in studies in observing dislocation-GB

\ \ \ £
interactions/mechanisms -

.’I

+ ldeally both grains have kinematic BF 2-beam g= <11 1>’ \ ‘.-.r'f

conditions: challenging in ST holder

r

j," Dev from ideal CSL:

' .
I re
| ] R

-
Observe deformation mechanisms in
nanocrystalline metals during tensile straining:

Traditional Gatan Heating and Straining Holder 30 nm

Thin film tension “jig”: Jet thinned disk:
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In situ Quantitative Mechanical Testing

Contributors: J. Sharon, B. L. Boyce, C. Chisholm, H. Bei, E.P. George, P. Hosemann, A.M. Minor, & Hysitron Inc.

Notched Bar

Hysitron PI95 In Situ Nanoindentation TEM Holder Hysitron Corp.

- Sub nanometer displacement resolution
- Quantitative force information with pN resolution
m Concurrent real-time imaging by TEM

Nanoinderﬂlgﬁﬁn%

T
-

Load (pN)

Notched Micro
Tension Bars
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Depth (
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Collaborators: C. Barr, B. Boyce, & W. I_Vlook é 80 4'—‘57;:
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Crack Propagation, Closure, and Re-Direction

Collaborators: C. Barr, W. Mook, B.L. Boyce, Ta Duong, & M. Demkowiz

564,000 cycles (A) 644,000 cycles (B)

724,000 cycles (C)




| In-situ Specimen Drive Laser System

Collaborator: P. Price, A. Monterrosa, D. Adams, M. Abere, & IDES Inc.

Specimen Drive Laser
a. Adjustable power 1064 nm infrared specimen (IR) drive laser

b. IR laser is reflected directly onto the specimen with metal
mirror

c. Heat specimens in in situ holders, which otherwise would
not be possible

. Laser capabilities:
5 > 2-20 Watts
1 > Pulsed or continuous operation
2 — > 50 um diameter spot size
> Positioning mirror, which can be used during laser

operation

Laser Alignment TEM Holder

Electron Beam

* Phosphor screen

» Borescope

IR Laser - CCD camera

* Precise alignment of the
laser to the electron beam

—— INTEGRATED
— ELECTRON
- SOLUTIONS

Sandia National Laboratories




Complex Interaction Au NPs
Exposed to Laser Irradiation

Contributors: P. Price, L. Treadwell, A. Cook, & IDES Inc.

Speed = 2.5x

| A Complex Combination of Sintering, Reactions, and Ablation Occurs




Can we Combine Laser Heating with Mechanical Testing?

Contributors: R.L. Grosso, E.N.S. Muccillo, D.N.F. Muche, G.S. Jawaharram, C.M. Barr, A.M. Monterrosa, R.H.R. Castro, S.J. Dillon

Indenter

Hysitron PI-95 Geometry Ti Metal Mount

Al,O; rod
YSZ Indenter

Ti mount

Cu mount

YSZ Substrate



High Temperature Stress-Strain

Contributors: R.L. Grosso, E.N.S. Muccillo, D.N.F. Muche, G.S. Jawaharram, C.M. Barr, A.M. Monterrosa, R.H.R. Castro, S.J. Dillon
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Pushing the Laser Limit —
1604 °C and 2056 °C ScSZ-ScSZ

Contributors: R.L. Grosso, E.N.S. Muccillo, D.N.F. Muche, G.S. Jawaharram, C.M. Barr, A.M. Monterrosa, R.H.R. Castro, S.J. Dillon
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Diffraction for Temperature Calibration
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Temperature Upper Bound

Contributors: R.L. Grosso, E.N.S. Muccillo, D.N.F. Muche, G.S. Jawarram C.M. Barr, A.M. Monterrosa, R.H.R. Castro, S.J. Dillon

Before Sc,0; doped ZrO,




Mechanism for Fiber Growth

Contributors: R.L. Grosso, E.N.S. Muccillo, D.N.F. Muche, G.S. Jawaharram, C.M. Barr, A.M. Monterrosa, R.H.R. Castro, S.J. Dillon
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Calculated G.B. Diffusivity Compared to Literature

Contributors: R.L. Grosso, E.N.S. Muccillo, D.N.F. Muche, G.S. Jawaharram, C.M. Barr, A.M. Monterrosa, R.H.R. Castro, S.J. Dillon
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In situ TEM lon Irradiation + Mechanical Testing =

In situ TEM Irradiation Creep

Contributors: G.S. Jawaharram, S. Dillon & R.S. Averback
Controlled Loading Rate Experiments
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Creep Response at Different Loading Rates

Contributors: G.S. Jawaharram, S. Dillon & R.S. Averback
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“ Steady-State Irradiation Creep at Constant Load Cu-W

Contributors: G.S. Jawaharram, S. Dillon & R.S. Averback

Irradiation Creep (Constant Load)
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Ni-Ag Multilayer Irradiation Creep at Constant Load

Contributors: G.S. Jawaharram, S. Dillon & R.S. Averback
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Sandia National Laboratories



Comparison of Creep Data

Contributors: G.S. Jawaharram, S. Dillon & R.S. Averback
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- Ex situ Mechanical Testing End Station

Collaborators: D. Buller, B. Boyce, J. Carroll, P. Price, C. Taylor, B. Muntifering, S. Briggs, N. Heckman, J.A. Scott

- Combined three individual mechanical testing in tandem
beamline end station

- Limited (optical, IR only) imaging capabilities
M - Have successfully collected preliminary data using this system
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In situ lon Irradiation SEM (I3SEM) Vision

Collaborators: D. Buller, B. Boyce, J. Carroll, P. Price, C. Taylor, B. Muntifering, S. Briggs, N. Heckman, J.A. Scott

In situ SEM by Design Proposed Future Capabilities
sField Emission Gun = Low Pressure BSED
= Energy 500 eV to 30 keV = Heating Stage

. . JEOL Electron

= Resolution: = Peltier cooled Cryo stage JSMAT300HRLY Beam

= 30 kV 1.5 nm =High Speed EBSD )

= 1kV4nm = High Speed EDS
= Mag 5x to 600kx = Low energy ion source Light and

Heavy lon

= Pressure 10-150 Pa = PL/CL/IBIL Beam
= Sample dimension: 200 mm « FIB
diameter x 80 mm height = Hot/Warm Cell capability
= 90 tilt and 360 rotation = TKD/STEM detector
= 12 Ports = 3D measurement software
= Hysitron PI-85 = Liquid environments

Straining Stage

= Electron Lithography
= Custom Piezo Fatigue Stage

We are designing this to be the world’s best in situ SEM for
| overlapping extreme environments

(111} Sandia National Laboratories



" " Heavy lon Design and Proof of Concept

Collaborators: D. Buller, B. Boyce, J. Carroll, P. Price, C. Taylor, B. Muntifering, S. Briggs, N. Heckman, J.A. Scott
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L] L ] And o~ B L]

Custom Adaptor & S\Il\ol"itchint
Loose Bellows g Magne
; Cup &
Viewin C;°""°' at®
arget Steering
hamber Slits Magnets’

uyill Ty

e Beam Gate
Focusin Profile Valve
g Lens Monitor

Einzel Steering
Lenses Magnets
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- 3 stal I 3’ stand
N
7
6’ stand

Al Pedestals g
12x(6”dx6 3/4”thickness)

I3SEM planned for
multiphase
development. Ultimate
plan is for multiple
accelerators being
attached for dual or
triple beam
experiments.

Eirst Beam into
SEM oniApril 6 : Tr % :
2018 S—— (111 Sandia National Laboratories



In situ High-cycle Fatigue

Collaborators: .N. Heckman, B.L. Boyce,

i " . ,..,,-.'1.._."
-
s — - Nanocrystalline Ni-
e o e 40Fe, 10-60 nm
e ' 3 ﬂ_m'ﬁ grain size, 10 ym
g ™ notch, imaged at
v L~ 60°
‘fw,, o~ - Cycled at 30 Hz,
-‘ £ w 4000 cycles

between images

. Direct insight into crack propagation and

| failure during cyclic loading




In situ Compression: =
Molecular Crystals =

Collaborators: C.M. Barr, M. Cooper, D.C. Bufford, and J. Lechman

l

T
200 400 600 800 1000
Displacement (nm)

) Displacement controlled fracture of molecular crystal




In situ Indentation:
Ceramics

Collaborators: .N. Heckman, B.L. Boyce,

Alumina

30 mN peak
load

3 mN/s load
rate

1x speed

Sandia National Laboratories



4 Angled In situ Compression:
e Steels

Collaborators: .N. Heckman, B.L. Boyce, B. Muntifering

P Kovar
ol 5 micron
B displacement
0.5 micron/s
1x speed

sandia National Laboratories



: Recently Installed High Speed EBSD and EDS

T AR e e S T L . . Y TR

EDAX Velocity™ EBSD Camera o EDAX Octane Elite EDS System e

. Capable of fast acquisition (> 3000 > High light element sensitivity ' 5
indexed points per second) > High count & throughput rates

-+ High signal-to-noise ratio, phosphor
screen optimized for high speed
collection

Enables study of R =
grain #1 Allows for analysis

growth/evolution < of precipitates,

during irradiation, solute segregation,

heating and
straining
experiments

| and phase ID




Future Vision:

Testing Greater Extremes in the TEM

Hydrothermal Vents

R
Liquid in

e

Advanced Manufacturing

Volcanic Activity




Unconventional In situ Microscopy . &nsuF
Creates a Wealth of Possibilities

= Plethora of extreme environments that have not been
fully explored.

= Utilizing the TEM as an experimental chamber provides
a range of nanoscale extreme environments.

= Combining extreme conditions opens up the ability
more complex real world applications.

= ACOM and other analytical techniques coupled with in
situ observations provides a nice bridge to MD and
mesoscale modeling.

= |f you would like to hear about the I3SEM let me know

The future is bright and fastly
approaching for coupled in situ TEM

Collaborators:
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