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Machine learning has had a broad impact in science

C Network

ML has provided significant advances in
predictive science & engineering

* Flexible accurate DNN surrogates Cnftn:

C AEVs - -

* More efficient computations

H AEVs .-

e Striking example: protein folding
* DeepMind’s AlphaFold

H Network

NN construction for the PES of hydrocarbon molecules

Arrhenius for well 1 to well 2
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* E.g. NN potential energy surface (PES) el ., : o
* High dimensional complex surface ol .
e Chemistry, material science * .
e PES exploration, MD computations - .
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Work with: Yoona Yang, Seamus Hoolahan, Mike Eldred, and Judit Zador, SNL



Utility of Enforcement of Physical Constraints in ML

* Constraints enforcement confines NN predictions to a manifold, which
reduces the dimensionality of the optimization problem

e Expect a simpler loss landscape
 Reduces NN training effort: exclude exploration in unphysical directions
* Ensures that NN predictions satisfy conservation/symmetries/invariances

* Does not risk error/bias, while enforcement of physical models can
* Physical constraints, conservation laws, invariances are incontrovertible
* Physical models, relying often on constitutive laws, can be approximate

* Note: role of geometric constraints in superior accuracy of AlphaFold2

Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold.

Nature 596, 583-589 (2021). https://doi.org/10.1038/s41586-021-03819-2
https://www.nature.com/articles/d41586-020-03348-4
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Means of Enforcement of Physical Constraints in ML

Explicit enforcement via regularization with governing equation residual

Implicit enforcement via tailored feature design or NN structure

* This enforcement by construction is in principle preferrable
» Satisfies constraints irrespective of training

Examples of implicit enforcement:

* Feature vector use of symmetry functions for NNPES in chemistry
. . Behler & Parrinello 2007
* Pre-specified uniform-length summary of molecular geometry

e Alternately, Graph CNNs with internal molecular coordinates cho & choi 2019

e Turbulent stress tensor invariance properties embedded in NN-structure
Ling et al 2016

Challenge:
* General strategies for enforcement of constraints in governing equations
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ML potential in dynamical systems

* Regression

* Surrogate NN for compute-intensive system subcomponents
e Data reduction via surrogate NN or reduced-order representations
* Inputs to (smooth) observables surrogate NN for Bayesian inference

* Surrogate NN for coarse representation of full model prediction
* Dynamical features, structural features, ...

e C(Classification

* Learning from simulation/observational data
* Discovery of underlying dynamical features

* Learning of optimal features as predictable information-rich
summaries of system dynamics
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