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Machine learning has had a broad impact in science 
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• ML has provided significant advances in 
predictive science & engineering
• Flexible accurate DNN surrogates
• More efficient computations
• Striking example:  protein folding

• DeepMind’s AlphaFold

• E.g. NN potential energy surface (PES)
• High dimensional complex surface 
• Chemistry, material science
• PES exploration, MD computations

NN construction for the PES of hydrocarbon molecules

A C5H5 system reaction rate computed from NN PES vs DFT
Work with: Yoona Yang, Seamus Hoolahan, Mike Eldred, and Judit Zador, SNL



Utility of Enforcement of Physical Constraints in ML
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• Constraints enforcement confines NN predictions to a manifold, which 
reduces the dimensionality of the optimization problem
• Expect a simpler loss landscape
• Reduces NN training effort: exclude exploration in unphysical directions

• Ensures that NN predictions satisfy conservation/symmetries/invariances
• Does not risk error/bias, while enforcement of physical models can

• Physical constraints, conservation laws, invariances are incontrovertible
• Physical models, relying often on constitutive laws, can be approximate

• Note: role of geometric constraints in superior accuracy of AlphaFold2
Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold. 
Nature 596, 583–589 (2021). https://doi.org/10.1038/s41586-021-03819-2
https://www.nature.com/articles/d41586-020-03348-4

https://doi.org/10.1038/s41586-021-03819-2
https://www.nature.com/articles/d41586-020-03348-4


Means of Enforcement of Physical Constraints in ML
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• Explicit enforcement via regularization with governing equation residual
• Implicit enforcement via tailored feature design or NN structure 

• This enforcement by construction is in principle preferrable 
• Satisfies constraints irrespective of training

• Examples of implicit enforcement:
• Feature vector use of symmetry functions for NNPES in chemistry

• Pre-specified uniform-length summary of molecular geometry
• Alternately, Graph CNNs with internal molecular coordinates
• Turbulent stress tensor invariance properties embedded in NN-structure

• Challenge: 
• General strategies for enforcement of constraints in governing equations

Ling et al 2016

Behler & Parrinello 2007

Cho & Choi 2019



ML potential in dynamical systems
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• Regression
• Surrogate NN for compute-intensive system subcomponents 
• Data reduction via surrogate NN or reduced-order representations
• Inputs to (smooth) observables surrogate NN  for Bayesian inference
• Surrogate NN for coarse representation of full model prediction

• Dynamical features, structural features, …
• Classification

• Learning from simulation/observational data
• Discovery of underlying dynamical features

• Learning of optimal features as predictable information-rich 
summaries of system dynamics 


